
The Fail-Heterogeneous Architectural Model∗

Marco Serafini and Neeraj Suri

Technical University of Darmstadt, Germany

{marco,suri}@cs.tu-darmstadt.de

Abstract

Fault tolerant distributed protocols typically utilize a ho-

mogeneous fault model, either fail-crash or fail-Byzantine,

where all processors are assumed to fail in the same man-

ner. In practice, due to complexity and evolvability rea-

sons, only a subset of the nodes can actually be designed to

have a restricted, fail-crash failure mode, provided that they

are free of design faults. Based on this consideration, we

propose a fail-heterogeneous architectural model for dis-

tributed systems which considers two classes of nodes: (a)

full-fledged execution nodes, which can be fail-Byzantine,

and (b) lightweight, validated coordination nodes, which

can only be fail-crash. To illustrate the model we intro-

duce HeterTrust as a practical trustworthy service replica-

tion protocol. It has a low latency overhead, requires few

execution nodes with diversified design, and prevents in-

truded servers from disclosing confidential data. We also

discuss applications of the model to DoS attacks mitigation

and to group membership.

1. Introduction and motivation

Distributed services can be subject to malicious attacks

which exploit vulnerabilities to take control of participant

nodes and make them maliciously deviate from the specified

operations. Similar to other design faults, security-related

vulnerabilities could be eliminated by performing fault pre-

vention and removal. However this is often impossible be-

cause fault removal processes (verification and validation)

are time-consuming, do not scale well to complex systems,

and can be ineffective in evolvable systems where new vul-

nerabilities can appear at any time, for example by installing

faulty software or by incorrect configurations. As a conse-

quence, intrusions and Byzantine failures in complex and

evolvable systems needs to be considered and, if necessary,

tolerated by means of replication and design-diversity.

The use of design-fault tolerance, achieved through

design-diversity, as a complement to design-fault removal

∗Research supported in part by DFG TUD-GK MM, EC DECOS and

ReSIST

have been long debated in the safety-critical systems do-

main, where both options are viable thanks to small design

sizes. However, the advantages of the first approach have

not yet been substantiated by sufficient experimental evi-

dence [19]. In fact, thorough fault removal, if feasible, can

give high confidence in the absence of design faults, and

thus justify the assumption of fail-crash behavior if random

hardware faults are correctly handled (see e.g. [4, 25]).

Using fail-crash nodes with small designs can lead to

significantly more efficient protocols without changing the

overall distributed system model. Therefore, we introduce

an architectural fault model based on a separation of con-

cerns between two classes of nodes: full-fledged execu-

tion nodes containing the application logic and providing

the service of interest, and lightweight coordination nodes

providing only restricted coordination functionality. The

model is fail-heterogeneous as no assumption is made on

faulty execution nodes, while coordination nodes can only

be fail-crash. It represents an intermediate step between the

classic homogeneous fail-crash and fail-Byzantine models,

and allows new tradeoffs between efficiency and safety.

Overall, we present the following contributions:

• We introduce and motivate the fail-heterogeneous ar-

chitectural model, taking the problem of practical

trustworthy state machine replication as a case study

and presenting the HeterTrust protocol;

• We demonstrate that, by using a majority of coordina-

tion nodes with the same correct design, the minimal

number of replicas with diversified design to tolerate

f malicious faults can be reduced from 3f + 1 [3] to

2f + 1;

• We indicate how attackers can be prevented from dis-

closing confidential data of intruded servers by means

of simple symmetric-key cryptography;

• We show that the latency overhead for replication and

confidentiality with respect to a non replicated service

is two communication steps;

• We discuss possible applications of the model to

Denial-of-Service (DoS) attacks mitigation and to

group membership.

The paper is structured as follows: after discussing re-

lated work on state machine replication in Section 2, we

introduce the HeterTrust protocol in Section 3 and prove its

properties in Section 4. Further applications of the model

are discussed in Section 5.

2. Related work

In order to substantiate the comparison with other mod-

els we consider different state machine replication ap-

proaches that are used to implement generic fault-tolerant

services [26].

Byzantine agreement protocols and the homogeneous

fail-Byzantine model were introduced to tolerate arbitrary

physical faults in synchronous safety-critical systems [15].

Distributed systems designed to tolerate f Byzantine faults

can in general handle m ≥ f less severe faults, although

not necessarily at the same time. In order to model this, hy-

brid fault models [18, 22, 28] assume that any node in the

system can fail in a malicious or benign manner, as long as

upper bounds on the number of faulty nodes is kept.

Hybrid architectures partition the system into different

subsystems with different sets of assumptions. For example,

the Wormhole model [27] considers systems that are parti-

tioned into multiple subsystems, which can be character-

ized by different failure modes and synchrony assumptions.

An example of architecture under this model is TTCB [8],

where each node is composed of two different subsystems.

The first is an asynchronous, fail-Byzantine payload subsys-

tem connected to the payload subsystems of the other nodes

through an asynchronous payload channel. The second is

a smaller synchronous, fail-crash control subsystem with

limited computational capabilities and usually connected to

the other control subsystems in other nodes through a dedi-

cated, low bandwidth and synchronous control channel.

The fail-heterogeneous architectural model differs from

hybrid fault models as it associates different fault models

to specific nodes of the distributed system. It also differs

from the Wormhole model as it does not consider different

subsystems internal to nodes, nor different degrees of syn-

chrony within specific subsystems.

The BFT protocol [5] for homogeneous fail-Byzantine

systems implements state machine replication and guaran-

tees that replicas do not diverge even in presence of mali-

cious attacks and intruded participants. Compared to the

Paxos protocol [16, 17], which is its fail-crash counterparts,

BFT requires more replicas to tolerate f faults (3f + 1 in-

stead of 2f + 1) and has a higher latency. Subsequent work

showed that a latency comparable to the crash-only case

is achievable at the cost of a higher degree of replication

(5f + 1) [21].

If agreement and execution are separated, as proposed

in [29], agreement processes can have a simple design and

require fewer local resources, while only 2f + 1 complex

replicas of the servers need to be diversified (using a proper

abstraction layer such as [6]). However, to keep the number

of faulty processes below the upper bound f there should

be no correlation between failures, i.e., intrusions, at any

different replica. As intrusions are made possible by design

faults, i.e., vulnerabilities, failure independence requires di-

versified design of each node participating to the protocol

(e.g., different operating systems must be used, different ap-

plications etc.) regardless of its role.

Based on similar considerations, our HeterTrust protocol

assumes the availability of a set of simple nodes dedicated

to replica coordination. The simplicity and generality of the

consensus operation can justify a thorough verification and

validation of the design of the nodes, which can then be re-

used in multiple contexts.

As pointed out in [29], replication of confidential data

increases the likelihood that an attacker can intrude a repli-

cated server and obtains confidential information. The au-

thors of [29] propose a privacy firewall to make sure that

(a) only replies processed by at least one correct process

might be sent out by the service, and (b) replies should be

as deterministic as possible to prevent attackers from using

steganography. This represents the best solution proposed

so far under a fail-Byzantine model. However, it requires a

high number of replicas, a long latency to filter replies, and

expensive threshold cryptography to make replies determin-

istic. The fail-heterogeneous architecture of HeterTrust rep-

resents a viable alternative to achieve the same properties

with less overhead and fewer replicas.

HeterTrust uses a majority of correct fail-crash coordina-

tion nodes to reduce the number of complex fail-Byzantine

execution nodes with diversified design to 2f + 1. In [9],

a similar result was achieved by relying on the synchrony

of TTCB communication for agreement. HeterTrust toler-

ates periods of asynchrony and requires only an Ω leader

election protocol (e.g. [1]) for liveness.

In [20] agreement and execution are also separated in

fail-crash systems to take advantage of regions with “early”

partial synchrony, where reaching agreement is easier. A

hierarchical protocol decomposition approach for WANs is

proposed in [2]. It allows choosing different combinations

of fault tolerance protocols at each site and among sites in

a customizable manner to mask Byzantine faults. Our ap-

proach differs from this as it binds failure modes to specific

nodes based on their design.

Table 1 presents a comparison between HeterTrust and

other deterministic state machine replication protocols.

Most of the compared protocols assume partially syn-

chronous system models similar to [11], except [9] where

a Wormhole model is assumed. We report the upper bounds

on crash (g) and Byzantine (f) faults tolerated. In general,

only a subset of the nodes required for agreement (n) needs

to actually implement the replicated service (e). Multi-tier

Table 1: HeterTrust - comparison with other deterministic state machine replication protocols

Protocol SM FM n e a Msg. complexity Latency Confid. Crypt.

Paxos [16, 17] PS C 2g + 1 g + 1 - O(n2)/O(n) 4/5 - -

BFT [5] PS B 3f + 1 3f + 1 - O(n2) 4 no MAC

FaB [21] PS B 5f + 1 2f + 1 - O(n2) 3 no MAC

Correia et.al [9] W W 2m + 1 2m + 1 - O(n2) 5 no MAC

Marchetti et.al [20] PS C e + a g + 1 2g + 1 O(n2)/O(n) 4/5 - -

Yin et.al [29] PS B e + a 2f + 1 f + 1/f2 + 4f + 1 O((3f + 1)2) 4/2f + 7 no/yes MAC/TS

HeterTrust PS H e + a 2f + 1 2g + 1 O(a2 + a · e) 4 yes MAC

n/e/a = lower bound on # nodes / execution processes / additional nodes; g/f/m = upper bound on # fail-crash / Byzantine / mixed nodes;

SM = System Model (Partially Synchronous / Wormhole); FM = Fault Model (Crash / Byzantine / Wormhole / Heterogeneous)

MAC = Message Authentication Codes; TS = Threshold Signatures

Execution

servers

Dedicated

coordinators

Clients

Partially synchronous network

Figure 1: A fail-heterogeneous architecture

architectures require additional nodes (a), for confidential-

ity or for faster agreement. In this case g and f represent

upper bounds for each layer. The state machine message

complexity and latency is measured during best-case runs as

the number of communication steps on the critical path from

a client request to its reply. Where indicated by the authors,

we consider the use of tentative executions [14]. For con-

fidentiality, additional communication steps are necessary

in [29] and HeterTrust. A simple variation of HeterTrust,

which does not provide confidentiality and allows saving

one communication step, is discussed briefly in Section 3.3.

Table 1 also indicates the type of cryptography used during

normal operation in the critical path. All mentioned fail-

Byzantine protocols use public keys during recovery.

3. The HeterTrust protocol

In this section we describe HeterTrust as a practical trust-

worthy state machine replication protocol for partially syn-

chronous systems. It uses dedicated coordination nodes

(called coordinators in the following) to order client re-

quests and filter replies coming from the execution nodes

(called servers in the following) for confidentiality. Coor-

dinators have use the same design, whereas servers use a

diversified design.

3.1. System model

The system is composed by c fail-crash coordinators, s
fail-Byzantine servers and a bounded number of authenti-

cated clients. If the system is to tolerate up to g coordinator

crashes and up to f Byzantine servers, we assume to have

c ≥ 2g +1 coordinators and s ≥ 2f +1 servers. The proto-

col tolerates any number of malicious clients. Participants

communicate through an asynchronous, unreliable network.

Point-to-point authenticated channels among participants

are ensured by means of MACs, i.e., symmetric cryptog-

raphy, and collision-resistant cryptographic hash functions

(to produce digests). For liveness, we additionally assume

that channels between any pair of correct hosts are fair-

lossy, i.e., they eventually deliver messages that are repeat-

edly resent, and that coordinators execute a leader election

protocol which eventually elects a single leader (commonly

called Ω). This becomes possible as soon as the system has

enough timely links [1]. In order to provide confidentiality,

coordinators must be physically interposed between clients

and servers (see Fig. 1).

3.2. Service properties

The protocol allows clients to send requests to the trust-

worthy replication service through the coordinators. The

leader among the coordinators assigns a progressive se-

quence number to each received request and sends it to the

servers, which execute the request and send it back, together

with the reply, to all coordinators. These filter out spuri-

ous or incorrect replies and forward the correct ones to the

client, which delivers it (see Fig. 2). Formally, the proper-

ties provided by the trustworthy state machine replication

service are the following (adapted from [20]):

Termination: If a correct client cl issues a request req then

it eventually delivers a reply repl.

Uniform Agreed Order: If a correct server computes a re-

quest req as the ith request, then every correct server

that processes the ith request must process req as the

ith request.

Update Integrity: For each request req, every correct

server computes the request at most once, and only if

a client has issued req.

Response Integrity: A client receives a reply repl only if

it has sent a request req and at least one correct server

has sent repl. If the client is correct, at least one cor-

rect server has computed repl as a reply to req.

R
E

Q
U

E
S

T

P
R

O
P

O
S

E

E
X

E
C

U
T

E
D

deliver

A
C

C
E

P
T

E
D

LEARNT

After receiving f+1 equal replies from

different servers, a coordinator can

trust the reply, accept the value,

and send the reply to the client

After receiving equal proposals and

replies from a majority of coordinators,

the client knows that the decision

will not be retracted and delivers the reply

Similar to clients, servers can commit

a request if a majority of coordinators

have accepted it and replied to the client

If g+1 coordinators

have learnt that a

request was delivered

by a client and

committed by a server

a slow server will be

able to retrieve it
servers

client

coordinators

Phase 1 Phase 2 Phase 3

commit

commit

commit

Figure 2: HeterTrust: Normal operations

Termination is the liveness condition of the service. Uni-

form Agreed Order prevents correct servers from diverg-

ing and is sufficient for linearizability, i.e., clients send-

ing concurrent requests to the service can observe the same

course of action. Update Integrity guarantees the “exactly-

once” semantic. Response Integrity enforces both integrity

and confidentiality as it requires filtering out spurious and

incorrect replies from Byzantine servers. Additionally,

HeterTrust ensures that a faulty server cannot use non-

determinism in content of the reply message to convey hid-

den confidential information via steganography.

The algorithms executed by the clients, by the coordina-

tors during normal operations and during recovery, and by

servers are Alg. 1, 2, 3 and 4 respectively. Table 2 explains

the local variables used by the processes and their initial val-

ues. In the following, we describe (a) the normal operations

of the protocol and (b) the recovery from leader crashes.

3.3. Normal operations

We first describe runs where there is single correct leader

coordinator endorsed by all correct coordinators and there

is no message loss. In these runs, the protocol proceeds

through three phases upon the reception of a request from

a client (see Fig. 2). In Phase 1, it tries to provide a quick

answer to the client. In Phase 2, it goes through an addi-

tional coordination step to let coordinators and servers know

about the reply (potentially) delivered by the client. Finally,

in Phase 3 it ensures that slow servers can directly retrieve

old requests from at least one coordinator without triggering

other instances of the agreement protocol.

Phase 1: Replying to clients. When the client wants

the service to perform an operation op, it assigns it a locally

unique timestamp t and forms a request req, which is en-

queued in requests (line 4). Correct clients send only one

request at a time, and locally queue requests if they are al-

ready waiting to deliver the reply for another request. The

task sendRequests periodically sends requests to the coordi-

Table 2: Local Variables (for sequence no. i)

Initial
Name Description

value

Acc set of accepted and -

non retrievable requests

acc[i, co] last ACCEPTED message received ⊥
from coordinator co

Accepted set of IDs of the coord. which sent -

equal ACCEPTED messages -

accval[i] accepted request ⊥
bComm buffer of requests to be committed ∅
bProp buffer of requests to be executed ∅

commReply[cl] proposal and reply of the last committed (⊥,⊥)
request from client cl

endGap end of a gap in the requests -

received by a server

endorse proposal number of the last 0
observed leader

exec[i, se] last EXECUTED message received ⊥
from server se

Executed set of IDs of the coord. which sent -

equal ACCEPTED messages

lastComm sequence number of 0
the last committed request

lastDel timestamp of 0
the last delivered request

lastProp proposal number of 0
the last executed request

Learnt[i] set of IDs of the coordinators which ∅
sent a LEARNT message

learntval[i] learnt request ⊥
maxAcc max seq. number with accepted but not -

retrievable req. (as from ENDORSE msgs)

maxAcc max seq. number with all previous -

retrievable req. (as from ENDORSE msgs)

Ongoing set of IDs of the client with ∅
not retrievable requests

op requested operation -

Proposals set of accepted requests -

(as from ENDORSE msgs)

repl reply to requests -

requests local queue of requests of a client ∅
Retr set of sequence numbers bound ∅

to a retrievable request

t timestamp to identify requests from a client 0

tEx current tentatively executed request (⊥,⊥)
and related reply

nators (lines 14–18). It then initiates the protocol by send-

ing a REQUEST message to all coordinators until they can

deliver a reply (lines 1–4).

When the leader coordinator receives a request (line 20),

it forms a proposal (req, prop) attaching a proposal num-

ber prop to the request, which is used by the other coordi-

nators to discard messages coming from old leaders. Each

coordinator is assigned a partition of the set of positive in-

tegers. Upon election, a leader coordinator increases its

proposal number until it becomes the highest observed by

enough others participants, which will then endorse it (see

Section 3.4 for details). A leader proposes only a bounded

number of requests in parallel and queues the remaining re-

quests (at most one for each client, line 21).

The proposal is then given an increasing sequence num-

ber i, stored in propval[i], and sent in a PROPOSE mes-

sage to all servers by the task sendPropose (lines 54–58).

Following the terminology of [17] the request is now pro-

posed. The sequence number will be used by each correct

server to order the execution of requests and thus to keep a

Algorithm 1: Client cl

upon initiate(op)1

t := t + 1;2

req := (op, t, cl);3

enqueue(requests, req);4

5

upon accepted(i, req, prop, repl) from coordinator co6

if lastDel ≥ req.t then7

acc[i, co] := (req, prop, repl);8

Accepted := {co | acc[i, co] = (req, prop, repl)};9

if |Accepted| ≥ ⌈(c + 1)/2⌉ then10

deliver(req.op, req.t, repl);11

lastDel := req.t;12

13

task sendRequest14

while (req := dequeue(requests)) 6= ⊥ do15

repeat16

send (REQUEST, req) to all coordinators; wait timeout;17

until lastDel < req.t ;18

19

consistent state with the other correct servers. As long as

there is only one leader coordinator, a single request will be

assigned a unique increasing sequence number.

On receiving a PROPOSE message from the current

leader, the servers produce a reply repl (lines 86–96). Sim-

ilar to [5, 14], new requests are only tentatively executed,

i.e., the changes to the service state are written in a tempo-

rary log before being committed. If the leader crashes the

new leader can change the order of some requests, and this

can cause tentative executions to roll back. Otherwise, ten-

tative executions are eventually and definitively committed.

Servers should only accept messages from the latest

leader. For this purpose, they store the highest pro-

posal number they have observed (lastProp). They also

store the sequence number of the last committed request

(lastCommit) and only execute the next request (with se-

quence number lastCommit + 1). Requests with higher

sequence number are buffered in bProp unless they have

been already buffered or if they come from a previous leader

(lines 97–99).

When servers process a request (line 89) they check if

this has already been committed (line 90) or tentatively ex-

ecuted (line 92), and retrieve the previous reply in these

cases. If not, then they obtain the reply by tentatively ex-

ecuting the request possibly after performing a rollback of

previous tentative executions (lines 93–95). Servers attach

the reply, together with the proposal, in an EXECUTED

message sent to all the coordinators.

The coordinators ignore proposals from previous leaders

(line 27). They also filter out malicious and spurious replies

from servers by waiting for f + 1 equal EXECUTED mes-

sages (lines 28–30). This ensures that the reply was sent by

at least one correct server and that it is an actual reply to a

request proposed by the leader. In this case coordinators ac-

cept [17] the proposal by storing it in the variable accval[i]
(line 31) . It then notifies, through an ACCEPTED message,

all coordinators, servers and the client req.cl which issued

Algorithm 2: Coordinator - normal operations

upon request(req)20

if leader() ∧(req.cl 6∈ Ongoing) then21

Ongoing := Ongoing ∪ {req.cl};22

i := nextSequenceNumb() ;23

propval[i] := req;24

25

upon executed(i, req, prop, repl) from server se26

if prop ≥ endorse then27

exec[i, se] := (req, prop, repl);28

Executed := {se | exec[i, se] = (req, prop, repl)};29

if |Executed| ≥ f + 1 then30

accval[i] := (req, prop);31

send (ACCEPTED, i,req,prop,repl) to client req.cl;32

send (ACCEPTED, i,req,prop) to all coord. and servers;33

34

upon accepted(i, req, prop) from coordinator co35

acc[i, co] := (req, prop);36

Accepted := {co | acc[i, co] = (req, prop)};37

if |Accepted| ≥ ⌈(c + 1)/2⌉ then38

learntval[i] := (req, prop);39

send (LEARNT, i, req, prop) to all coordinators;40

41

upon learnt(i, req, prop) from coordinator co42

if learntval[i] = ⊥ then43

learntval[i] := (i, req, prop);44

send (LEARNT, i, req, prop) to all coordinators;45

Learnt[i] = Learnt[i] ∪ {co};46

if |Learnt[i]| ≥ g + 1 then47

Retr := Retr ∪ {i};48

Ongoing := Ongoing \ {req.cl};49

50

upon retrieve(i) from server se51

if (learntval[i] 6= ⊥) then send (LEARNT, learntval[i]) to se ;52

53

task sendPropose54

while leader() do55

foreach i 6∈ Retr do56

send (PROPOSE, i, propval[i], prop) to all servers;57

wait timeout;58

59

the request (lines 32–33). The ACCEPTED message sent to

the client also contains the correct reply.

When the client receives an ACCEPTED message

(line 6) for an ongoing request (line 7), it knows that the

reply to its request was tentatively executed by at least one

correct server. However, such a reply will only be delivered

after it is guaranteed that this tentative execution will not

roll back. As discussed in Section 3.4, the recovery proto-

col ensures that if a request is chosen for a sequence num-

ber [17], i.e., it is contained in a proposal that is accepted by

a majority of coordinators, then its execution will never be

rolled back even if the leader and other coordinators crash.

The client thus waits until it receives ACCEPTED messages

for the same proposal from a majority of coordinators be-

fore delivering the reply (line 11). Thus, after four commu-

nication steps a client can deliver the reply.

If confidentiality is not required, one communication

step can be saved by having servers send EXECUTED mes-

sages directly to the clients, which can thus filter out incor-

rect replies by waiting for f + 1 equal replies. In this case,

the leader sends PROPOSE messages to servers and coor-

dinators in the same communication step, and clients will

deliver a correct reply only after receiving ACCEPT mes-

Algorithm 3: Coordinator - recovery

upon elected()60

repeat61

prop := nextPropNumb();62

send (QUERY, prop, Retr) to all coordinators;63

wait timeout;64

until (receive (ENDORSE, prop, Accco, Retrco) from65

⌈(c + 1)/2⌉ coord co) or (¬ leader ()) ;

if ¬ leader () then return;66

Retr := Retr ∪co Retrco;67

maxRetr := max{i | (i ∈ Retr) ∧ (∀ j ≤ i, j ∈ Retr)};68

maxAcc := max{j | ∃accval, co : (j, accval) ∈ Accco};69

propval := ⊥;70

foreach j ∈ [max(Retr) + 1, maxAcc] : j 6∈ Retr do71

Proposals := {accval | ∃co : (j, accval) ∈ Accco};72

if Proposals 6= ∅ then73

propval[j] := req ∈74

Proposals with max{req.prop};

else propval[j] := no op;75

76

upon query(prop, Retrl) from coordinator l77

if prop > endorse then78

endorse := prop;79

Retr := Retr ∪ Retrl;80

Acc := ∅;81

foreach j : (j 6∈ Retr) ∧ (accval[j] 6= ⊥) do82

Acc := Acc ∪ {(j, accval[j])};83

send (ENDORSE, endorse, Acc, Retr);84

85

sages by a majority of coordinators.

Phase 2: Committing the reply. In order to ensure

progress, coordinators take additional steps to guarantee

that the servers can commit tentative executions. Coordi-

nators and servers try to determine if a request was chosen

for a sequence number and is therefore indissolubly bound

to it. Similar to clients, they do this by waiting for AC-

CEPTED messages by a majority of coordinators (lines 35–

40 and 101–104). When this happens, the request is learnt

for a sequence number [17]. Coordinators store learnt re-

quests for sequence number i in the variable learntval[i]
(line 39), and communicate this to all the other coordina-

tors (line 40). Coordinators can also learn that a request

was chosen by receiving a LEARNT message (line 42–45).

A server learns that a request was chosen (line 106) if

it has sequence number lastCommit + 1. Commits for

higher sequence numbers, as well as requests, are buffered

in bComm (line 107). If a chosen request has not al-

ready been committed (line 109) it is tentatively rollbacked

and executed as necessary and then committed (lines 110–

114). Subsequently, further buffered requests for the next

sequence numbers, which have been learnt or proposed, can

be processed (lines 116–120).

Phase 3: Handling slow servers and message losses.

Some servers might not learn that a request was chosen, ei-

ther because they are slow or due to message losses. This

prevents them from committing a tentative execution, and

thus from executing further requests they receive. In this

case the task fillGaps sends a RETRIEVE message to the

coordinators to learn the chosen request (lines 122–126

and 51–52). To guarantee that at least one coordinator will

Algorithm 4: Server

upon propose(i, req, prop) from coordinator86

if prop ≥ lastProp then87

lastProp := prop;88

if i = (lastComm + 1) then89

if commReply[req.cl].t ≥ req.t then90

repl := commReply[req.cl].repl;91

else if tEx.req = req then repl := tEx.repl;92

else93

if tEx.req 6= ⊥ then rollback(tEx.req);94

repl :=execute(req); tEx := (req, repl);95

send (EXECUTED, i, req, prop, repl) to all coordinators;96

if i > (lastComm + 1) then97

if prop > bProp[i].prop then98

bProp[i] := (req, prop);99

100

upon accepted(i, req, prop) from coordinator co101

acc[i, co] := (req, prop);102

Accepted := {co | acc[i, co] = (req, prop)};103

if |Accepted| ≥ ⌈(c + 1)/2⌉ then learnt(i, req, prop);104

105

upon learnt(i, req, prop) from coordinator106

if i > (lastComm + 1) then bComm[i] := (req, prop);107

if i = (lastComm + 1) then108

if commReply[req.cl].t < req.t then109

if tEx.req 6= req then110

if tEx.req 6= ⊥ then rollback(tEx.req);111

repl := execute(req);112

commReply[req.cl] := (req.t, repl);113

commit (req, i);114

tEx := (⊥,⊥); i := i + 1;115

lastComm := lastComm + 1;116

if bComm[i] 6= ⊥ then117

learnt(i, bComm[i].req, bComm[i].prop);118

else if bProp[i] 6= ⊥ then119

propose(i, bProp[i].req, bProp[i].prop);120

121

task fillGaps122

while true do123

wait timeout; endGap := min{j | (j >124

lastComm) ∧ ((bProp[j] 6= ⊥) ∨ (bComm[j] 6= ⊥))} ;

foreach j ∈ [lastComm + 1, endGap − 1] do125

send (RETRIEVE, j) to all coordinators ;126

127

be able to reply to RETRIEVE messages, the leader has to

keep sending PROPOSE messages and thus push protocol

messages until it receives g+1 LEARN messages from dif-

ferent coordinators (lines 46–48 and 56–58). This enables

correct servers to recover from message losses, but prevents

malicious servers from flooding the system by triggering

consensus instances for request retrieval. A request is thus

called retrievable if at least g+1 coordinators have learnt it.

After a leader knows that a request from a client is retriev-

able, it can also accept further requests from cl (lines 49 and

21).

3.4. Recovery

Due to system asynchrony and crashes, the leader elec-

tion protocol can output multiple coordinators as leaders,

possibly at the same time. It is then necessary to pre-

vent newly elected leaders from retracting decisions which

already caused irreversible evolutions of the system state,

such as the delivery of a reply to a client or the commit of

an execution done by a server. In particular, if a request is

chosen, i.e., it is accepted by a majority of coordinators, it is

R
E
Q

U
E
S
T

P
R

O
P

O
S

E

E
X

E
C

U
T

E
D

deliver

A
C

C
E

P
T

E
D

The client has delivered the reply,

which cannot be retracted

The leader crashes

after having learnt

the value, before it

is retrievable

The servers cannot

establish whether to

commit or abort

(should commit as

the client delivered

the reply). The new

leader takes care of

proposing the

delivered request

P
R

O
P

O
S

E

E
X

E
C

U
T

E
D

Correct servers ignore messages

from the old leader, but not the

Byzantine server

The new leader is endorsed by the other

coordinator (necessary to send proposals)

The Byzantine server lets the old leader accept

different replies and forward them to the client,

to the servers and to other acceptors

A new leader is

always endorsed

by a majority

of coordinators.

Messages from

the old leader

cannot thus induce

clients and servers

to irretrievable

decisions

servers

client

coordinators

I - Leader crash II - Two leaders + Byzantine server

old

new

A
C

C
E

P
T

E
D

Figure 3: Two fail-prone scenarios

necessary to prevent new leaders from proposing different

requests and having them accepted. Consider for example

scenario (I) of Fig. 3. In this case, the new leaders must

ensure that servers will commit the (chosen) request used to

compute the reply delivered by the client. To guarantee this,

the protocol adopts a recovery procedure (Alg. 3) which is

similar to the one used by the Paxos protocol [16]. The sim-

ilarity is given by the fact that only fail-crash participants

(i.e. the coordinators) are involved.

Upon being elected, a leader selects a new proposal num-

ber and sends a QUERY message asking all other coordi-

nators to endorse it (lines 60–65). It also asks them if (a)

they have accepted some request accval[j] for the sequence

numbers that are not yet bound to a retrievable request in

its local view (i.e., they are not in Retr), or (b) they know

that there is a retrievable request for these numbers. Un-

less the other coordinators have already endorsed another

leader with higher sequence number (line 78), they endorse

the new leader (line 79) and form their set of accepted re-

quests Acc and retrievable requests Retr (which do not re-

quire further operations). They then send both sets to the

new leader (lines 80–84).

Upon receiving ENDORSE messages from a majority

of coordinators, the leader can start proposing requests

(lines 67–75. For sequence numbers with an associated

retrievable request, no operation is needed. For other se-

quence numbers where some accepted request is reported,

the new leader must send its proposals without contradict-

ing previously chosen requests. This is done by selecting

the proposal from the latest previous leader, i.e., the one

with the highest proposal number (lines 74). Gaps are filled

with special no op requests (line 75). If a request proposed

from a certain leader is accepted by a majority of coordina-

tors, each subsequent leader will receive notification of it in

at least one ENDORSE message and select it for proposal.

This guarantees that chosen requests are not overwritten.

It is surprising how efficiently a Paxos-like recovery pro-

tocol under the fail-heterogeneous model tolerates the effect

of Byzantine faults at the servers, even using tentative ex-

ecutions. For example, in scenario (II) of Fig. 3, two lead-

ers are simultaneously present and a Byzantine server sends

them inconsistent information. Each leader waits for an en-

dorsement from a majority of coordinators before issuing

proposals, and Byzantine servers are not involved in this

decision. Although servers can forward messages from an

old leader to a minority of coordinators and have them ac-

cepted, these coordinators cannot induce correct clients and

servers to take wrong delivery or commit actions.

3.5. Garbage collection

Servers can discard all data regarding sequence num-

bers of committed requests. Coordinators could as well

garbage-collect the data structures of sequence numbers of

retrievable request, but they need to indefinitely keep them

in learntval[i] to reply to RETRIEVE messages from slow

servers. To avoid this, a simple checkpointing protocol is

used. This is not included in the previous algorithms, but

we describe it briefly.

When the commit procedure is required to commit a re-

quest with sequence number i such that (i mod k) = 0
for a given checkpoint frequency k, it produces a tentative

checkpoint of local service state, calculates a digest of it and

sends a (CHECKPOINT, i, cpd) message with the MAC of

the digest cpd to all coordinators. After receiving f +1 such

equal messages from different servers, coordinators know

that at least one correct server has an available checkpoint

of the service state up to sequence number i. They then

send an (ACKCP, i) message to all servers. When a server

receives g + 1 such messages, it can delete the previous

checkpoints, complete the commit procedure, and start pro-

cessing the next executable requests.

A coordinator receiving a checkpoint digest from f + 1
servers for sequence number i knows that it can garbage col-

lect entries previous to learntval[i] as, if necessary, slow

servers trying to retrieve old chosen requests can be sent a

complete checkpoint. However, to minimize state transfers,

it tries to reply with simple requests when possible. There-

fore, it only deletes entries of learnt requests in the array

learntval for sequence numbers preceding the prior check-

point, i.e., prior to i − k + 1. A slow server receives the

checkpoint state for sequence number i only if it tries to re-

trieve a request for a sequence number j ≤ i − k. In this

case, coordinators obtain the checkpoint state by sending a

(QUERYCP, i) message to all servers until they receive at

least one correct checkpoint, which is recognized using the

digest. They then store the checkpoint state (at most one at

a time) for further requests, and send it to the slow server.

4. Proof of correctness

In this section, we prove that HeterTrust satisfies the

specified properties of a trustworthy replicated service. As

mentioned in Section 3, we follow the terminology of [17].

A request req is proposed if it is issued by a leader with pro-

posal number prop. A proposal is the tuple (req, prop). A

proposal, and therefore the associated request and the cor-

responding reply, is accepted if one coordinator accepts it.

This happens if the proposal comes from a leader that the

coordinator currently endorses, or a following one with a

higher proposal number. As coordinators receive propos-

als through f + 1 servers, Lemmas 1 and 2 guarantee that

accepted proposals have been sent by a leader coordinator

and replied by at least one correct server. If the request is

issued by a correct client, it is accepted together with the

corresponding correct reply (Lemma 3). A proposal (and

the relative request) is chosen if a majority of coordinators

accepted it. Only a single chosen proposal is indissolubly

bound to a sequence number (Lemma 4). Based on this

property, clients and servers can take irreversible actions on

requests (i.e., deliver them and commit them) if they re-

ceive a majority of ACCEPTED messages and thus learn

that the request was chosen (Lemma 5). A request is re-

trievable if it is chosen for a sequence number i and g + 1
coordinators have learnt it. As leaders continue sending re-

quests for a sequence number until they become retrievable,

eventual progress is guaranteed even if correct servers are

temporarily disconnected and do not commit old requests

(Lemma 6). Finally, we prove the required properties of the

protocol in Theorem 1.

Lemma 1 Only a request req that has been proposed by a

coordinator is accepted for a sequence number i, together

with a reply repl obtained from at least one correct server.

Proof By definition, a request is accepted for a sequence

number i only if it is contained in a proposal (req, prop)
that is accepted by any coordinator (line 31). A coordi-

nator accepts a proposal (req, prop) for i only after it re-

ceives f + 1 equal (EXECUTED,req, i, prop, repl) mes-

sages from different servers (lines 28–30). Among these

servers, at least one must be correct. This has thus sent the

EXECUTED message (line 96) containing values i, req and

prop as from the message proposed by a leader coordinator

and the reply repl.

Lemma 2 Only a request req that has been proposed by

a coordinator is chosen for a sequence number i, together

with a reply repl obtained from at least one correct server.

Proof This follows directly from Lemma 1 as a chosen re-

quest must be accepted.

Lemma 3 If a request req is issued by a correct client and

accepted, it is accepted together with a reply repl which

has been computed by at least one correct server calling

execute(req).

Proof If a request req is accepted together with a re-

ply repl, at least one correct server has sent a message

(EXECUTED,req, i, prop, repl) (line 96) after receiving a

proposal from a coordinator (Lemma 1). If the request is

issued by a correct client req.cl, which sends only one re-

quest at a time with growing timestamp req.t (lines 1–4),

no correct server can have seen a request from the same

client with higher timestamp. Therefore, no correct server

has stored a reply such that commReply[req.cl].t ≥ req.t
(line 90). The reply is thus obtained from a tentative exe-

cution of the same request possibly having rolled back any

previous tentative execution (lines 92–95).

Lemma 4 Only a single request is chosen for a sequence

number i.

Proof A request req is chosen for i when a proposal

(req, prop) is chosen, i.e., accepted by a majority of co-

ordinators. By definition, only one proposal can be chosen

at a time. Assume that p1 = (req1, prop1) is the first pro-

posal chosen for i and that it is proposed by the leader l1.

In order for any another proposal p2 = (req2, prop2) with

req1 6= req2 to be chosen, it is necessary that at least one of

the coordinators that accepted p1 accepts p2 afterwards.

From Lemma 1, any accepted value has been proposed

by a leader. As leaders never change their proposals un-

til demoted and re-elected, p2 must have been issued with

proposal number prop2 6= prop1. Therefore, a coordi-

nator accepts the new proposal p2 after having accepted

p1 = accval[i] only if p2 has a higher proposal number

prop2 > prop1 (line 27). We show that any chosen pro-

posal p2 issued after p1 is such that req2 = req1. Let us as-

sume, by contradiction, that p2 is the issued proposal with

the minimum proposal number prop2 > prop1 such that

req2 6= req1.

When l2 is elected, it sends a QUERY message to all

coordinators and sends new proposals only after it receives

ENDORSE messages from a majority of them (lines 60–

65). At least one of the coordinators member of the major-

ity which accepted p1 = accval[i] must have sent an EN-

DORSE message reporting either that (a) req1 is retriev-

able (i ∈ Retrco) or (b) p1 was accepted (p1 ∈ Accco)

(lines 80–83). In the first case l2 does not send any new pro-

posal for i (line 71). Therefore, if l2 proposes proposal =
(req2, i, prop2) with req2 6= req1, there must exist a coor-

dinator which reports to have accepted req2 from a leader

l3 6= l2 with a proposal number prop3 > prop1 (lines 71–

74). To accept the proposal of l3 and to report it through

an ENDORSE message to l2, this coordinator must have

endorsed first l3 then l2 (lines 79 and 27), and this im-

plies prop2 > prop3. Therefore, p2 is not the accepted

proposal with the minimum proposal number greater than

prop1, which is a contradiction.

Lemma 5 Only a reply to a chosen request for sequence

number i can be delivered by a client, and only a chosen re-

quest for sequence number i can be learnt by a coordinator

or committed by a server.

Proof Coordinators send an ACCEPTED message contain-

ing a proposal only after accepting it (lines 31–33). Re-

ceiving ACCEPTED messages from a majority of coordi-

nators is a necessary condition for clients to deliver a reply

(line 10). Coordinators and servers learn that a request is

chosen either by the same condition (lines 38 and 104), or

by receiving a LEARNT message (lines 42 and 106), which

is sent only after some coordinator has learnt that the re-

quest was chosen (line 40). When a server learns that a

request was chosen, it commits it, executing it unless it has

already been tentatively executed (lines 104 and 109–114).

Lemma 6 Some proposed request for a sequence number i
is eventually chosen and becomes retrievable.

Proof The proof is by induction on the sequence numbers,

assuming that a no op request with sequence number 0 is

trivially chosen and retrievable. Assume that requests for

sequence numbers j < i have been chosen and are re-

trievable. From the property of the leader election proto-

col, eventually a single correct leader is elected. By defi-

nition, only chosen proposals can be retrievable. If a pro-

posal for i is already chosen but not retrievable, the leader

proposes it to the servers (Lemma 4) until it becomes re-

trievable (lines 54–58). If no request for i is chosen but the

leader has received a request to serve, such request is as-

sociated to i and proposed to the servers (lines 20–24). As

all requests with sequence numbers j < i are retrievable,

correct servers can eventually obtain them from at least one

correct coordinator (lines 122–126 and 51–52) and commit

them (lines 106 and 109–114). After that the s−f ≥ f +1
correct servers can process request i (lines 89–95) and send

the corresponding EXECUTED message to the coordina-

tors (line 96), which then accept the proposal (line 31). The

c− g ≥ ⌈(c+1)/2⌉ correct coordinators forward ACCEPT

messages to each other, until eventually all of them will

learn the request (line 38–39) and make it eventually re-

trievable, by exchanging LEARNT messages (lines 40, 42

and 46).

Theorem 1 The HeterTrust protocol satisfies the properties

of Termination, Uniform Agreed Order, Update Integrity

and Response Integrity.

Proof The service properties specify how servers should

compute requests. These requirements refer, in the context

of this protocol, to committed executions of requests. In the

following we prove that each required property is met.

Termination: By repeatedly sending its request (line 14–

18), a client can ensure that each request is eventually re-

ceived by all coordinators. A correct client sends a request

only after previous requests are delivered. Therefore, a

leader will eventually propose it. From Lemma 6, some pro-

posed request is eventually chosen for each sequence num-

ber, and becomes retrievable. If there are no message losses,

the client receives ACCEPT messages from a majority of

coordinators and delivers a reply. In case of message losses

the client re-issues the same request until it eventually re-

ceives enough ACCEPT messages (possibly with another

sequence number).

Uniform Agreed Order: A correct server commits only

chosen requests (Lemma 5). If the request req is commit-

ted, and thus chosen, as the ith request, Lemma 4 ensures

that any other correct server that commits the ith request

will commit req.

Update Integrity: Each request req is uniquely identi-

fied by its sender req.cl and its timestamp req.t. Servers

keep an array commReply with the timestamps of the last

committed requests replied to each client, together with

the corresponding reply (line 113). A request req from a

client cl is executed only if it has a higher timestamp than

lastReply[cl], else the cached reply is resent (lines 93–90).

Therefore, a committed request is never executed again.

Furthermore, each committed request req with req.op 6=
no op is issued by a client. In fact, only chosen values

are committed (Lemma 5), only proposed values are cho-

sen (Lemma 2) and a request req with req.op 6= no op is

proposed by a leader coordinator only if it is received from

a client (line 54).

Response Integrity: As coordinators are physically in-

terposed between servers and clients, clients can receive

replies rep (as well as any other data) from servers only

through ACCEPTED messages sent by coordinators. These

are sent only for accepted requests, which are obtained by at

least one correct server (Lemma 2). If the client is correct,

from Lemma 3 it follows that the reply repl is obtained by

the correct server as execute(req).

5. Further applications of the proposed model

HeterTrust represents only one example of possible

problems which can be efficiently solved using the fail-

heterogeneous architectural model. In this section, we dis-

cuss two other possible applications of the model, namely,

liveness under DoS attacks and group membership.

5.1. DoS-attacks and consensus liveness

HeterTrust is safe in periods of asynchrony but relies on

additional synchrony for liveness [12]. If we can expect that

these properties are generally met by the network in a be-

nign (i.e., crash-only) environment, they cannot be in gen-

eral preserved if an attacker is able to introduce “malicious

asynchrony” and make communication unreliable by means

of Denial of Service (DoS) attacks. Therefore, unless spe-

cific countermeasures are taken, trustworthy service repli-

cation systems can easily be made unavailable by simple

DoS attacks. Dedicated coordination nodes can be used as

active participants in consensus protocols to filter malicious

traffic and improve liveness in presence of DoS attacks.

By definition, DoS attacks aim at denying access to

shared computational and network resources by correct pro-

cesses [13]. They can address different levels of the proto-

col stack [23]. If an attacker is able to deny access to the ser-

vices on a certain level, no upper level protocols will be able

to provide the desired services. For example, if an attacker

is able to flood the network at the physical level, any OS-

or application-level policy aimed at guaranteeing fair access

to the resources of the host will be vain. Therefore, the ab-

sence of DoS attacks at the lower level of the stack is neces-

sary for successful handling of higher level attacks. Further-

more, higher level functionalities are in general more com-

plex and require more host resources than lower level ones,

e.g., a complex database query requires more resources than

a opening TCP connection. The amount of traffic an at-

tacker needs to generate to launch DoS attacks using higher

level functionalities is generally lower. These attacks can

often be prevented by design, for example by authenticat-

ing the clients and fairly partitioning the local resources.

In a fail-heterogeneous architecture, crash-only coordi-

nators can participate to the consensus protocol as filtering

elements to accurately recognize and handle malicious traf-

fic in a end-to-end manner on all the protocol stack up to

the state machine replication level. This overcomes the ma-

jor limitation of network level detection mechanism, i.e.,

the lack of information on the expected communication pat-

terns. In HeterTrust, coordinators ensure that clients send at

most one request at a time, while servers are prevented from

any interaction with other servers for retrieving chosen re-

quest, as in previous approaches [21, 29]. The use of crash-

only, trusted filtering nodes (such as routers and firewalls)

to mitigate DoS attacks is consistent with the network level

defences proposed in literature [24], as well as with current

commercial solutions. In fact, if such filtering nodes could

fail-Byzantine, they could collude with malicious parties to

allow (and possibly generate) malicious traffic. However,

this does not constitute a complete defence against DoS at-

tacks, as service specific DoS attacks can still be launched,

and as any filtering could be invalidated by brute force at-

tacks which deplete network resources by flooding.

In closed and controlled networks, such as LANs, brute

force attacks could be prevented by eliminating network-

level shared resources (e.g., network links and interfaces)

and by instead establishing dedicated links between proto-

col participants, possibly including clients and coordinators.

Furthermore, replication and design diversity can guaran-

tee that only a subset of the server replicas have vulnera-

bilities to service-level attacks. In this case, if at most d
correct servers can be indefinitely delayed by semantic ser-

vice level attacks, HeterTrust can still achieve liveness un-

der DoS attacks as long as coordinators can receive EX-

ECUTED messages from at least f + 1 correct servers,

i.e., s − d > 2f + 1. In general, other fail-Byzantine

state machine protocols which do not rely on fail-crash co-

ordinators for safety and efficiency can take advantage of

them for liveness under DoS attacks. According to the

lower bound of [18], liveness would be possible in a fail-

Byzantine model in presence of up to f malicious process

and d correct but indefinitely delayed process (which are

equivalent to crashed) if n > 3f + 2d.

5.2. Group Membership

Group membership protocols provide a consistent view

of the set of processes of the systems that are operational

and fully connected (the so-called stable component [7]).

They allow designers or distributed protocols to abstract

failure detection mechanisms, relying on notifications of

view updates to guarantee liveness in presence of node fail-

ures or network partitioning. If a process detects that a link

to another process is down, either due to network failures or

due to process crashes, it initiates a view change to elimi-

nate that process and maintain full connectivity.

As many other fail-crash tolerant protocols, group mem-

bership has been adapted to operate in Byzantine environ-

ments (as in [10]). However, in order to prevent malicious

nodes from triggering isolations of correct nodes it is nec-

essary that a process is accused by at least f + 1 other pro-

cesses, where f is the number of Byzantine nodes, before a

view change is initiated. Therefore, up to f correct nodes

could be prevented, by network faults, from communicating

with up to f other correct parties still without ever updating

the view of the stable component. Such faults are gener-

ally masked as malicious faults by expensive fail-Byzantine

broadcast primitives, although they represent a much more

trivial and common connectivity problem.

A membership service using a fail-heterogeneous archi-

tecture could rely on a subset of dedicated coordinators to

keep the updated consistent membership view. If a node

A cannot receive messages from B and thus suspects it, it

can ask the coordinators to act as relay and to route mes-

sages among A and B, using protocol-level knowledge to

detect faulty nodes in a trustworthy manner. This ensures

that either communication between A and B takes place as

specified, or consistent isolation of nodes without full con-

nectivity is carried out by the coordination nodes.

6. Conclusions

In this paper we have introduced a new fail-

heterogeneous architectural model, which represents an in-

termediate step between benign fail-crash models and con-

servative fail-Byzantine models. It is based on a separation

of concerns between unconstrained execution nodes and

lightweight coordination nodes, with reduced functionali-

ties and thus restricted failure mode. Taking the trustworthy

state machine replication problem as an example, we have

shown how new solutions under the new model can be de-

veloped that keep many advantages of fail-crash protocols,

while tolerating more severe failures at the server nodes pro-

viding the service of interest. For example, our HeterTrust

protocol allows an efficient communication pattern similar

to a crash-only protocol, but still ensures properties, such as

confidentiality, that are extremely expensive to provide in a

homogeneous fail-Byzantine model. Last but not least, Het-

erTrust reduces the number of required replicas with diver-

sified design. Overall, we believe that the model opens up

new possibilities for practical protocols and architectures,

addressing multiple problems, that are both efficient and re-

sistant to severe failure modes.

References

[1] M.K. Aguilera et. al., “On Implementing Omega with

Weak Reliability and Synchrony Assumptions (Extended Ab-

stract),” ACM PODC’03, pp. 306–314, 2003.

[2] Y. Amir et. al., “Customizable Fault Tolerance for Wide-Area

Byzantine Replication,” Tech. Rep. CNDS-2006-3, Johns

Hopkins Univ., 2006.

[3] G. Bracha and S. Toueg, “ Asynchronous Consensus and

Broadcast Protocols,” J. of the ACM, 32(4), pp. 824-840,

Oct. 1985

[4] F.V. Brasileiro et. al., “Implementing Fail-Silent Nodes for

Distributed Systems,” IEEE TOC, 45(11), pp. 1226–1238,

Nov. 1996.

[5] M. Castro and B. Liskov, “Practical Byzantine Fault Toler-

ance and Proactive Recovery,” ACM TOCS, 20(4), pp. 398–

461, Nov. 2002.

[6] M. Castro et. al., “BASE: Using Abstraction to Improve Fault

Tolerance,” ACM TOCS, 21(3), pp. 236–269, Aug. 2003.

[7] G. Chockler et. al., “Group Communication Specifications:

A Comprehensive Study,” ACM Comp. Surv., 33(4), pp. 427–

469, Dec. 2001.
[8] M. Correia et. al., “The Design of a COTS Real-Time Dis-

tributed Security Kernel,” EDCC 4, pp. 234–252, 2004.
[9] M. Correia et. al., “ How to Tolerate Half Less One Byzan-

tine Nodes in Practical Distributed Systems,” IEEE SRDS,

pp. 174–183, 2004.
[10] V. Drabkin et. al., “ Practical Byzantine Group Communica-

tion,” IEEE ICDCS, pp. 36–46, 2006.
[11] C. Dwork et. al., “Consensus in the Presence of Partial Syn-

chrony,” J. of the ACM, 35(2), Apr. 1988.
[12] M. Fisher et.al., “Impossibility of Distributed Consensus

with One Faulty Process,” J. of the ACM, 32(2), pp. 374–382,

Apr. 1985.
[13] V.D. Gilgor, “A Note on Denial-of-Service in Operating Sys-

tems,” IEEE TSE, 10(3), pp. 320–324, May 1984.
[14] B. Kemme et.al., “Using Optimistic Atomic Broadcast

in Transaction Processing Systems,” IEEE TKDE, 15(4),

pp. 1018–1032, Jul. 2003.
[15] L. Lamport, “The Byzantine Generals Problem,” ACM TPLS,

4(3), pp. 382–401, Jul. 1982.
[16] L. Lamport, “The Part-Time Parliament,” ACM TOCS, 16(2),

pp. 133-169, May 1998.
[17] L. Lamport, “Paxos Made Simple,” ACM SIGACT News,

32(4), pp. 18–25, Dec. 2001.
[18] L. Lamport, “Lower Bounds for Asynchronous Consensus,”

FuDiCo workshop, pp. 22-23, 2003.
[19] B. Littlewood et. al., “Modelling Software Design Diversity:

A Review,” ACM Comp. Surv., 33(2), pp. 177–208, Jun. 2001.
[20] C. Marchetti et. al., “Fully Distributed Three-Tier Active

Software Replication,” IEEE TPDS, 17(7), pp. 633-645,

Jul. 2006.
[21] J-P. Martin and L. Alvisi, “Fast Byzantine Consensus,” IEEE

TDSC, 3(3), pp. 202–215, Jul. 2006.
[22] F.J. Meyer and D.K. Pradahan, “Consensus with Dual Failure

Models,” IEEE TPDS, 2(2), pp. 214–222, Apr. 1991.
[23] J. Mirkovic and P. Reiher, “A Taxonomy of DDoS Attack

and DDoS Defense Mechanisms,” ACM SIGCOMM Comp.

Comm. Review, 34(2), pp. 39–53, Apr. 2004.
[24] T. Peng et.al., “ Survey of Network-based Defense Mecha-

nisms Countering the DoS and DDoS Problems,” ACM Comp.

Surv., 30(1), Apr. 2007.
[25] F. Schneider, “Byzantine Generals in Action: Implement-

ing Fail-Stop Processors,” ACM TOCS, 2(2), pp. 145–154,

May 1984.
[26] F. Schneider, “Implementing Fault-Tolerant Services Using

the State Machine Approach: A Tutorial,” ACM Comp. Surv.,

22(4), pp. 299–319, Dec. 1990.
[27] P. Verissimo, “Travelling through Wormholes: a New Look

at Distributed Systems Models,” ACM SIGACT News, 37(1),

pp. 66–81, 2006.
[28] C. Walter et. al., “Continual On-line Diagnosis of Hybrid

Faults,” DCCA-4, pp. 233–249, 1995.
[29] J. Yin et.al., “Separating Agreement from Execution for

Byzantine Fault Tolerant Services,” ACM SOSP, pp. 253–267,

2003.

