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Abstract

We present a novel approach for analysing the propaga-
tion of data errors in software. The concept of error per-
meability is introduced as a basic measure upon which we
define a set of related measures. These measures guide us
in the process of analysing the vulnerability of software to
find the modules that are most likely exposed to propagating
errors. Based on the analysis performed with error perme-
ability and its related measures, we describe how to select
suitable locations for error detection mechanisms (EDM’s)
and error recovery mechanisms (ERM’s). A method for ex-
perimental estimation of error permeability, based on fault
injection, is described and the software of a real embed-
ded control system analysed to show the type of results ob-
tainable by the analysis framework. The results show that
the developed framework is very useful for analysing er-
ror propagation and software vulnerability, and for decid-
ing where to place EDM’s and ERM’s.

1. Introduction

As software based functionality becomes pervasive in
embedded control systems, software usually comprises nu-
merous discrete modules interacting with each other in or-
der to provide a specific task or service. With an error (as
defined in [10]) present in a software module, there is a like-
lihood that this error can propagate to other modules with
which it interacts. Knowing where errors propagate in a sys-
tem is of particular importance for a number of development
activities. Propagation analysis may be used to find the most
vulnerable modules in a system, and to ascertain how dif-
ferent modules affect each other in the presence of errors.
Furthermore, error propagation analysis also gives an in-
sight on locations in the system that would be best suited
for placement of error detection mechanisms (EDM’s) and
associated error recovery mechanisms (ERM’s).
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Apart from the technical issues that can be addressed us-
ing propagation analysis, there are also issues pertaining to
project and resource management. Error propagation anal-
ysis may be used as a means of obtaining information for
use in decisions on where additional resources for depend-
ability development are necessary and to determine where
they would be most cost effective. Software is common
not only in applications such as aircraft or other high-cost
systems, but also in consumer-based cost-sensitive systems,
such as cars. These systems often require both develop-
ment costs and production costs to be kept low. Analysing
error propagation can also complement other analysis activ-
ities, for instance FMECA (Failure Mode Effect and Criti-
cality Analysis). Consequently, modules and signals found
to be vulnerable and/or critical during propagation analy-
sis might be given more attention during design activities.
Thus, error propagation analysis, as a means of both system
analysis and resource management, may be a very useful
design-stage tool in such systems.

In this paper we present an approach for analysing er-
ror propagation in software based systems. Our basic in-
tent is software level error propagation, thus we consider
distributed software functions resident on either single or
distributed hardware nodes. In our approach, we introduce
the measureerror permeability as well as a set of related
measures, and subsequently define a methodology for us-
ing these measures to obtain information on error propa-
gation and candidate locations for detection and recovery
mechanisms. The basic definition of error permeability is
the probability of an error in an input signal permeating to
one of the output signals (there is one permeability value
assigned between each pair of input/output signals).

Paper organisation: We review related work on error
propagation analysis in Section 2. In Section 3 we define
the system model used in our proposed approach. The defi-
nition of error permeability, and a method for analysing er-
ror propagation paths, is the subject of Section 4. How the
permeability values relate to the locations of EDM’s and
ERM’s is discussed in Section 5. In Section 6 we describe
a method for estimating the error permeability of software



modules. An example study and experiment is presented in
Section 7, and the results are discussed in Section 8. Sum-
mary and conclusions are found in Section 9.

2. Related Work

Error propagation analysis for logic circuits has been in
use for over 30 years. Numerous algorithms and techniques
have been proposed, e.g., the D-algorithm [15], the PODEM-
algorithm [6] and the FAN-algorithm [5] (which improves
on the PODEM-algorithm).

Propagation analysis in software has been described for
debugging use in [20]. Here the propagation analysis aimed
at finding probabilities of source level locations propagating
data-state errors if they were executed with erroneous initial
data-states. The framework was further extended in [13, 21]
for analysing source code under test in order to determine
test cases that would reveal the largest amount of defects.
In [22], the framework was used for determining locations
for placing assertions during software testing, i.e., aiming
to place simple assertions where normal testing would have
difficulties finding defects.

An investigation in [12] reported that there was evidence
of uniform propagation of data errors. That is, a data error
occurring at a locationl in a program would, to a high de-
gree, exhibit uniform propagation, meaning that for location
l either all data errors would propagate to the system output
or none of them would. Our findings do not corroborate this
assertion of uniform propagation.

Finding optimal combinations of hardware EDM’s based
on experimental results was described in [18]. They used
coverage and latency estimates for a given set of EDM’s to
form subsets which minimised overlapping between differ-
ent EDM’s, thereby giving the best cost-performance ratio.

3. Software System Model

In our studies, we consider modular software, i.e., dis-
crete software functions interacting to deliver the requisite
functionality. A module is a generalised black-box having
multiple inputs and outputs. Modules communicate with
each other in some specified way using varied forms of sig-
naling, e.g., shared memory, messaging, parameter passing
etc., as pertinent to the chosen communication model.

A software module performs computations using the pro-
vided inputs to generate the outputs. At the lowest level,
such a black-box module may be a procedure or a func-
tion but could also conceptually be a basic block or par-
ticular code fragment within a procedure or function (at a
finer level of software abstraction). A number of such mod-
ules constitute a system and they are inter-linked via signals,
much like for hardware components on a circuit board. Of

course, this system may be seen as a larger component or
module in an even larger system. Signals can originate in-
ternally from a module, e.g., as a calculation result, or ex-
ternally from the hardware itself, e.g., a sensor reading from
a register. The destination of a signal may also be internal,
being part of the input set of a module, or external, for ex-
ample the value placed in a hardware register.

Software constructed as such is found in numerous em-
bedded systems. For example, most applications control-
ling physical events such as in automotive systems are tradi-
tionally built up as such. Our studies mainly focus on soft-
ware developed for embedded systems in consumer prod-
ucts (high-volume and low-production-cost systems).

4. Propagation Analysis: Conceptual Basis

In our study we aim to chart the propagation of errors,
i.e., how errors propagate and their effect on system opera-
tions. Our focus here is on data errors – erroneous values in
the internal variables and signals of a system.

A data error has a probability of affecting the system
such that further errors are generated during operation. If
one could obtain knowledge of the error propagation char-
acteristics of a particular system, this would aid the develop-
ment of techniques and mechanisms for detecting and even-
tually correcting the error. Such knowledge can translate
to improved effectiveness of error detection and handling
and the consequent cost/performance-ratio of these mech-
anisms, as the efforts can be concentrated to those areas
of the system to where errors tend to propagate. In prop-
agation analysis, the results are useful even with minimal
knowledge of the distribution of the occurring errors, i.e., if
one does not know which errors are most likely to appear.
Having such knowledge would certainly improve the value
of the results, but performing the analysis without it still
provides qualitative insights on system error susceptibility.

4.1. Error Permeability

In our approach, we introduce the measure oferror per-
meability, and based on it we define a set of related mea-
sures that cumulatively give an insight on the propagation
characteristics and vulnerabilities of a system.
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Figure 1. A basic black-box software module
with m inputs and n outputs



Consider the software module in Fig. 1. We start with
a simple definition of error permeability and refine it suc-
cessively. For each pair of input and output signals, we can
define error permeability as the conditional probability of
an error occurring on the output given that there is an error
on the input. Thus, for input i and output k of a module M
we define the error permeability, PM

i;k , as follows:

0 � P
M
i;k = Prferr in o/p kjerr in i/p ig � 1 (1)

This measure indicates how permeable an input/output
pair of a software module is to errors occurring on the in-
puts. One major advantage of this definition of error per-
meability is that it is independent of the probability of error
occurrence on the input. This reduces the need for having a
detailed model of error occurrence. On the other hand, error
permeability is still dependent on the workload of the mod-
ule as well as the type of the errors that can occur on the
inputs. It should be noted that if the error permeability of
an input/output pair is zero, this does not necessarily mean
that the incoming error did not cause any damage. The er-
ror may have caused a latent error in the internal state of the
module that for some reason is not visible on the outputs.
In Section 6, we describe an approach for experimentally
estimating values for this measure.

Error permeability is the basic measure for characteris-
ing error propagation, upon which we develop related re-
fined measures. Accordingly, we define the relative perme-
ability, PM , of a module M to be:

0 � P
M =

�
1

m
�
1

n

�X
i

X
k

P
M
i;k � 1 (2)

Note that this does not necessarily reflect the overall prob-
ability that an error is permeated from the input of the mod-
ule to the output. Rather, it is an abstract measure that can
be used to obtain a relative ordering across modules.

At this stage, one potential weakness of this measure is
that it is not possible to distinguish modules with a large
number of input and output signals from those with a small
number of input and output signals. This distinction is use-
ful to ascertain as modules with many input and output sig-
nals are likely to be central parts (almost like hubs) of the
system thereby attracting errors from different parts of the
system. In order to be able to make this distinction, we
remove the weighting factor in Eq. 2, thereby “punishing”
modules with a large number of input and output signals.
Thus, we can define the non-weighted relative permeabil-
ity, P̂M , for module M as follows:

0 � P̂
M =

X
i

X
k

P
M
i;k � m � n (3)

Similar to the relative permeability, this measure does
not have a straightforward real-world interpretation but is

a measure that can be used during development to obtain
a relative ordering across modules. The larger this value
is for a particular module the more effort has to be spent
in order to increase the error containment capability of that
module (which is the same as decreasing the error perme-
ability of the module), for instance by using wrappers as in
[17]. Note that, as the maximum value of each individual
permeability value is 1, the upper bound for this measure is
the product of the number of inputs (m) and outputs (n).

The two measures defined in Eqs. 2 and 3 are both nec-
essary for analysing the modules of a system. For instance,
consider the case where two modules, G and H, are to be
compared. G has few inputs and outputs, and H has many.
Then, if PG = PH , then P̂G < P̂H . And vice versa, if
P̂G = P̂H , then PG > PH .

4.2. Ascertaining Propagation Paths in Inter-Linked
Software Modules

So far, we have obtained error permeability factors for
each discrete software module in a system. Considering ev-
ery module individually does have limitations; this analysis
will give insights on which modules are likely (relatively) to
transfer incoming errors, but will not reveal modules likely
to be exposed to propagating errors in the system. In or-
der to gain knowledge about the exposure of the modules
to propagating errors in the system we define the following
process which now considers interactions across modules.
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Figure 2. A 5-module example SW system

Consider the example software system shown in Fig. 2.
Here we have five modules, A through E, connected to each
other with a number of signals. The i th input of module M is
designated IMi and the kth output of module M is designated
OMk . External input to the system is received at IA

1
, IC

2
and

IC
3

. The output produced by the system is OE
1

.
Once we have obtained values for the error permeabil-

ity for each input/output pair of each module, we can con-
struct a permeability graph as illustrated in Fig. 3. Each
node in the graph corresponds to a particular module and
has a number of incoming arcs and a number of outgoing
arcs. Each arc has a weight associated with it, namely the
error permeability value. Hence, there may be more arcs
between two nodes than there are signals between the cor-
responding modules (each input/output pair of a module has
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Figure 3. Permeability graph for Fig. 2

an error permeabilit value). Arcs with a zero weight (repre-
senting non-permeability from an input to an output) can be
omitted. With this permeability graph we can perform two
different propagation analyses, namely:

A Backtrack from system o/p to find paths with highest
probability of propagation (Output Error Tracing), or

B Trace errors from system i/p to find paths these errors
will likely propagate along (Input Error Tracing).

Output Error Tracing is easily accomplished by construct-
ing a set of backtrack trees, one for each system output.
These backtrack trees can be constructed quite simply based
on the following steps on the permeability graph, namely:

A1. Select a system output signal as the root node of the backtrack tree.
A2. For each error permeability value associated with the signal, gen-

erate a child node that will be associated with an input signal.
A3. For each child node, if the corresponding signal is not a system

input signal, backtrack to the generating module and determine the
corresponding output signal. Use this signal and construct the sub-
tree for the child node from A2. If the corresponding signal is a
system input signal it will be a leaf in the tree. If the corresponding
signal is an input signal to the same module it will be a leaf in the
tree having a special relation to its parent node. We do not follow
the recursion that is generated by the feedback.

A4. If there are more system output signals, go back to A1.

This will, for each system output, give us a backtrack
tree where the root corresponds to the system output, the
intermediate nodes correspond to internal outputs and the
leaves correspond to system inputs (or module inputs re-
ceiving feedback from its own module). Also, all vertices
in the tree have a weight corresponding to an error perme-
ability value. Once we have obtained this tree, finding the
propagation paths with the highest propagation probability
is simply a matter of finding which paths from the root to
the leaves have the highest weight.

Input error tracing is achieved similarly. However, in-
stead of constructing a backtrack tree for each system out-
put, we construct a trace tree for each system input:

B1. Select a system input signal and mark as root node of the trace tree.
B2. Determine the receiving module of the signal and for each output

of that module, generate a child node. This way, each child node
will be associated with an output signal.

B3. For each child node, if the corresponding signal is not a system
output signal, trace the signal to the receiving module and deter-
mine the corresponding input signal. Use this signal and construct
the sub-tree of the child node from B2. If the corresponding signal
is a system output signal it will be a leaf in the tree. If the input
signal is the same module that generated the output signal (i.e. we
have a module feedback) then follow this feedback once and gen-
erate the sub-trees for the remaining outputs. We do not follow the
recursion generated by this feedback.

B4. If there are more system input signals, go back to B1.

This procedure results in a set of trace trees – one for
each system input. In a trace tree, the root will represent a
system input, the leaves will represent system outputs, and
the intermediate branch nodes will represent internal inputs.
Thus, all vertices will be associated with an error perme-
ability value. From the trace trees we find the propagation
pathways that errors on system inputs would most likely
take by finding the paths from the root to the leaves having
the highest weights.

The case when an output of a module is connected to an
input of the same module is handled in the way described in
step A3 of the backtrack tree generation script. If we would
use recursive sub-tree generation we would get an infinite
number of sub-trees with diminishing probabilities. As all
permeability values are � 1, the sub-tree with the highest
probability is the one which only goes one pass through the
feedback loop and this path is included in the permeabil-
ity tree. [5, 6, 15] have also utilised similar techniques for
hardware error propagation analysis.

The backtrack tree for system outputOE
1

of the example
system is shown in Fig. 4. Here we observe the double line
between IB

1
and OB

1
. This notation implies that we have a

local feedback in module B (OB
1

is connected to IB
1

) and
represents breaking up of the propagation recursion.

The weight for each path is the product of the error per-
meability values along the path. For example, in Fig. 4, the
path from O

E
1

to IA
1

going straight from O
A
1

(connected to
IB
2

) to OB
2

(the leftmost path in the tree) has the probability
P = PA

1;1 � P
B
2;2 � P

E
1;1. This is the conditional probability

that, given an error in OE
1

and the error originated from IA
1

,
it propagated directly throughOB

2
which is connected to IE

1

and then to OE
1

.
If the probability of an error appearing on I A

1
is Pr(A1),

then the P can be adjusted with this factor, giving us P 0 =

Pr(A1) �PA
1;1 �P

B
2;2 �P

E
1;1. This is the probability of an error

appearing on system input IA
1

, propagating through module
B directly via OB

2
to system output OE

1
.

The trace tree for system input IA
1

is shown in Fig. 5.
Here we can see which propagation path from system in-
put to system output has the highest probability. As for
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backtrack trees, the probability of a path is obtained by
multiplying the error permeability values along the path.
For example, in Fig. 5, the probability of an error in I A

1

propagating to module C and via its output OC
2

to mod-
ule D and from there via module E to system output OE

1
is

P = PA
1;2 � P

C
1;2 � P

D
3;1 � P

E
1;1.

Again, if we know that Pr(A1) is the probability of an
error appearing on IA

1
, then we can adjust P to get P 0 =

Pr(A1) � PA
1;2 � P

C
1;2 � P

D
3;1 � P

E
1;1.

5. Relating Error Permeability to Locations for
EDM’s and ERM’s

Using the backtrack and trace trees enables determining
two specific aspects: (a) the paths in the system that errors
will most likely propagate along to get to certain output sig-
nals, and (b) which output signals are most likely affected
by errors occurring on the input signals. With this knowl-
edge we can start selecting locations for the EDM’s and
ERM’s that we may want to incorporate into our system
based on system reliability/safety requirements.

One problem remains though: once we have the most
probable propagation paths, we still have to find the mod-
ules along that path that are the best to target with EDM’s
and ERM’s. Earlier, in Eqs. 2 and 3, we had defined two
measures, relative permeability and non-weighted relative
permeability, that can guide us in this search.

These measures only consider the permeability values
of discrete modules – couplings across modules are disre-
garded. Using the permeability graph, we now define a set
of measures that explicitly consider coupling and aid deter-
mining locations for EDM’s and ERM’s. To find modules
most likely to be exposed to propagating errors, we want to
have some knowledge of the amount of errors that a module
may be subjected to. For this we define the error exposure,

XM , of a module M as:

X
M =

1

N

X
weight of all incoming arcs of M (4)

where N is number of incoming arcs and M is the node in
the permeability graph, representing software module M.
This measure does not consider any correlation that may
exists between two or more incoming arcs. Since we use
this as a relative measure, this is not a concern for us. The
error exposure is the mean of the weights of all incoming
arcs of a node and is bounded as 1

N
. Analogous to the non-

weighted relative permeability, we can also define the non-
weighted error exposure, X̂M , of a module M as:

X̂
M =

X
weight of all incoming arcs of M (5)

This measure does not have a real-world interpretation
either – it is used only during system analysis to obtain
a relative ordering between modules. The two exposure
measures (Eqs. 4 and 5) along with the previously defined
permeability measures (Eqs. 2 and 3) will be the basis for
the analysis performed to obtain information upon which
to base a decision about locating EDM’s and ERM’s. As
was the case for the two relative permeability measures, the
two exposure measures are used for distinguishing between
nodes with a small number of incoming arcs and those with
a large number.

The error exposure measure indicates which modules will
most probably be the ones exposed to errors propagating
through the system. If we want to analyse the system at the
signal level and get indications on which signals might be
the ones that errors most likely will propagate through, we
can define a measure which is the equivalent of the error ex-
posure defined in Eq. 4, but is only calculated for one signal
at a time. In the backtrack trees we can easily see which
error permeability values are directly associated with a sig-
nal S. We define the set Sp as composed of all unique arcs



going to the child nodes of all nodes generated by the sig-
nal S. A signal may generate multiple nodes in a backtrack
tree (see for instance signal B1 in the backtrack tree in Fig.
4). However, in the set Sp, the permeability values associ-
ated with the arcs emanating from those nodes will only be
counted once. The signal error exposure,X S

s , of signal S is
then calculated as:

X
S
s =

X
all permeability values in Sp (6)

The interpretation for the signal error exposure is the
same as for the error exposure of a module, but at a signal
level. That is, the higher a signal error exposure value, the
higher the probability of errors in the system being propa-
gated through that signal.

It may be difficult to give strict rules for selecting the
EDM and ERM locations. However, some rules of thumb
or recommendations can still be made:

� The higher the error exposure values of a module, the
higher the probability that it will be subjected to er-
rors propagating through the system if errors are in-
deed present. Thus, it may be more cost effective
to place EDM’s in those modules than in those with
lower error exposure. An analogous way of reasoning
is valid also for the signal error exposure.

� The higher the error permeability values of a mod-
ule, the higher the probability of subsequent modules
being subjected to propagating errors if errors should
pass through the module. Thus, it may be more cost
effective to place ERM’s in those modules than in
those with lower error permeability.

We have now defined a basic analytical framework for
ascertaining measures pertaining to error propagation and
software vulnerability. Next, we describe how to obtain ex-
perimental estimates of the measures and use of our frame-
work on actual software of an embedded control system.

6. Estimating Error Permeability: An Experi-
mental Approach

Our method for experimentally estimating the error per-
meability values of software modules is based on fault in-
jection (FI). FI artificially introduces faults and/or errors
into a system and has been used for evaluation and assess-
ment of dependability for several years, see for example
[1, 2, 4]. A comprehensive survey of experimental analy-
sis of dependability appears in [9].

For analysis of raw experimental data, we make use of
so-called Golden Run Comparisons (GRC). A Golden Run
(GR) is a trace of the system executing without any injec-
tions being made, hence, this trace is used as reference and

is stated to be “correct” . All traces obtained from the injec-
tion runs (IR’s, where injections are conducted), are com-
pared to the GR, and any difference indicates that an error
has occurred. The main advantage of this approach is that it
does not require any a priori knowledge of how the various
signals are supposed to behave, which makes this approach
less application specific.

For this study, we used the Propagation Analysis Envi-
ronment (PROPANE [8]). This tool enables fault and error
injection, using SWIFI (SoftWare Implemented Fault Injec-
tion), in software running on a desktop (currently for Win-
dows NT4/2000). The tool is also capable of creating traces
of individual variables and different pre-defined events dur-
ing the execution. Each trace of a variable from an injection
experiment is compared to the corresponding trace in the
Golden Run. Any discrepancy is recorded as an error.

Experimentally estimating values for error permeability
of a module is done by injecting errors in the input signals
of the module and logging its output signals. We only inject
one error in one input signal at a time. Suppose, for module
M, we inject ninj distinct errors in input i, and at output
k observe nerr differences compared to the GR’s, then we
can directly estimate the error permeability P M

i;k to be nerr
ninj

(see more on experimental estimation in [3] and [14]).
Since the propagation of errors may differ based on the

system workload, it is generally preferred to have realistic
input distributions than randomly generated inputs. This
generates permeability estimates that are closer to the “ real”
values than randomly chosen inputs would.

The type of injected errors can also effect the estimates.
Ideally, one would inject errors from a realistic set, with
a realistic distribution. However, as in our framework the
measures are mainly used as relative measures, the rele-
vance of the realism provided by the error model is de-
creased, assuming that the relative order of the modules and
signals when analysing permeability is maintained.

7. Experimental Analysis: An Example Em-
bedded System

For an actual application of our proposed methodology
on an embedded control system, we have conducted an ex-
ample study. This study illustrates the results obtained using
experimental estimates for error permeability values.

7.1. Target Software System

The target system is a medium sized embedded control
system used for arresting aircraft on short runways and air-
craft carriers. The system aids incoming aircraft to reduce
their velocity, eventually bringing them to a complete stop.
The system is constructed according to specifications found
in [19]. The system is illustrated in Fig. 6.
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In our study, we used actual software of the system mas-
ter and ported it to run on a Windows-based computer. The
scheduling is slot-based and non-preemptive. Thus, from
the software viewpoint, there is no difference in running
on the actual hardware or running on a desktop computer.
Glue software was developed to simulate registers for A/D-
conversion, timers, counter registers etc., accessed by the
application. An environment simulator used in experiments
conducted on the real system was also ported, so the en-
vironment experienced by the real system and the desktop
system was identical. The simulator handles the rotating
drum and the incoming aircraft (as illustrated in Fig. 7).

In the real system, there are two nodes; a master node
calculating the desired pressure to be applied, and a slave
node receiving the desired pressure from the master. Each
node controls one of the rotating drums. In our setup, the
slave was removed and the retracting force applied by the
master was also applied on the slave-end of the cable.

The structure of the software is illustrated in Fig. 8. The
numbers shown at the inputs and outputs are used for num-
bering the signals. For instance, PACNT is input #1 of
DIST S, and SetValue is output #2 of CALC.

The software is composed of six modules of varying size
and input/output signal count. The module specifics are:

CLOCK provides a millisecond-clock, mscnt. The system operates in
seven 1-ms-slots. In each slot, one or more modules (except for CALC)
are invoked. The signal ms slot nbr tells the module scheduler the current
execution slot. Period = 1 ms.
DIST S receives PACNT and TIC1 from the rotation sensor and TCNT
from the hardware counter modules. The rotation sensor reads the number
of pulses generated by a tooth wheel on the drum. The module provides a
total count of the pulses, pulscnt, generated during the arrestment. It also
provides two boolean values, slow speed and stopped, i.e., if the velocity
is below a certain threshold or if it has stopped. Period = 1 ms.
CALC uses mscnt, pulscnt, slow speed and stopped to calculate a set point
value for the pressure valves, SetValue, at six predefined checkpoints along
the runway. The checkpoints are detected by comparing the current pulscnt
with pre-defined pulscnt-values corresponding to the various checkpoints.
The current checkpoint is stored in i. Period = n/a (background task, runs
when other modules are dormant).
PRES S reads the the pressure that is actually being applied by the pres-
sure valves, using ADC from the internal A/D-converter. This value is
provided in IsValue. Period = 7 ms.
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Figure 9. Permeability graph of target

V REG uses SetValue and IsValue to control OutValue, the output value
to the pressure valve. OutValue is based on SetValue and then modified to
compensate for the difference between SetValue and IsValue. This module
contains a software-implemented PID-regulator. Period = 7 ms.
PRES A uses OutValue to set the pressure valve via the hardware register
TOC2. Period = 7 ms.

7.2. System Analysis

Prior to running the experiments we generated the per-
meability graph and the backtrack trees and trace trees for
the target system as per the process described in Sections 4
and 5. The permeability graph is shown in Fig. 9.

In the graph (Fig. 9) we can see the various permeability
values (labels on the arcs) that will have to be calculated.
The numbers used in the notation refer to the numbers of
the input signals and output signals respectively, as shown
in Fig. 8. For instance, P CALC

2;1 is the error permeability
from input 2 (mscnt) to output 1 (i) of module CALC. From
the permeability graph in Fig. 9 we can now generate the
backtrack tree for the system output signal TOC2, using the
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steps described in Section 4. This tree is shown in Fig. 10.
As illustrated in the backtrack tree (Fig. 10), we have a

special relation between the leaves for ms slot nbr and for i
and their respective parent. This is because the parent node
is also either ms slot nbr or i. Thus, we have an output
signal which is connected back to the originating module
giving us a recursive relation. In those cases where errors
only can enter a system via its main inputs, these branches
of the backtrack-trees can be disregarded.

In Figs. 11 and 12, we have the trace trees for system
input ADC and system input PACNT, respectively.The trees
for inputs TIC1 and TCNT are very similar to the tree for
PACNT so they will not be shown here.

As described in Section 4, we do not follow the recursion
generated by a feedback from a module to itself. In module
CALC we have a feedback in signal i, and as can be seen in
Fig. 12, we do not have a child node from i that is i itself.

7.3. Experimental Setup

For logging and injection, the target system was instru-
mented with high-level software traps. As a trap is reached
during execution, an error is injected and/or data logged.
The traces obtained during execution have millisecond res-
olution for every logged variable. Also, we ported the soft-
ware to run on a desktop system, so the intrusion of the traps
is non-existent in our setup as it runs in simulated time.

In this study, the aim was to produce an estimate of the
error permeability of the modules of the target system. As
described in Section 6 we produced a Golden Run (GR) for
each test case. Then, we injected errors in the input signals
of the modules and monitored the produced output signals.
For each injection run (IR) only one error was injected at
one time, i.e., no multiple errors were injected.

The input signals signals were all 16 bits wide. We in-
jected bit-flips in each bit position at 10 different time in-

SDISTP _
1,1

SDISTP _
2,1

SDISTP _
3,1

CALCP 2,3
CALCP 2,4

CALCP 2,5

CALCP 2,1

CALCP 1,3
CALCP 1,4

CALCP 1,5

REGVP _
1,1

APRESP _
1,1

pulscnt

i

slow_speed stopped

SetValue

OutValue

TOC2

SetValue

OutValue

TOC2

i

SetValue

OutValue

TOC2

SetValue

OutValue

TOC2

i

SetValue

OutValue

TOC2

SetValue

OutValue

TOC2

PACNT

REGVP _
1,1

APRESP _
1,1

APRESP _
1,1

APRESP _
1,1

APRESP _
1,1

APRESP _
1,1

REGVP _
1,1

REGVP _
1,1

REGVP _
1,1

REGVP _
1,1

CALCP 2,1
CALCP 2,1

Figure 12. Trace tree for input PACNT

stances distributed in half-second intervals between 0.5 s
and 5.0 s from start of arrestment (although only at one time
in each IR). In order to get a realistic load on the system and
the modules, we subjected the system to 25 test cases: 5
masses and 5 velocities of the incoming aircraft uniformly
distributed between 8,000-20,000 kg, and between 40-80
m/s, respectively. Thus, for each input signal, we conducted
16�10�25 = 4,000 injections.

The raw data obtained in the IR’s was used in a Golden
Run Comparison where the trace of each signal (input and
output) was compared to its corresponding GR trace. The
comparison stopped as soon as the first difference between
the GR trace and the IR trace was encountered. In our ex-
perimental setup – real software running in simulated time,
in a simulated environment, and on simulated hardware –
this is a valid way of comparing traces even for continuous
signals where fluctuations between similar runs in a real en-
vironment may be normal.

We only took into account the direct errors on the out-
puts. We did not count errors originating from errors that
propagated via one of the other outputs and then came back
to the original input producing an error in the first output.



8. Overall Expt. Results and Interpretations

In the target system, we have 25 input/output pairs for
which we produced an estimate of the error permeability
measure (see Eq. 1) using the method from Section 6. These
values (Table 1) form the basis for subsequent results, which
are calculated as described in Sections 4 and 5.

Input ! Output Name Value

ms slot nbr ! ms slot nbr PCLOCK
1;1

1.000
ms slot nbr ! mscnt PCLOCK

1;2
0.000

PACNT! pulscnt PDIST S

1;1
0.480

TIC1 ! pulscnt PDIST S

2;1
0.004

TCNT! pulscnt PDIST S

3;1
0.004

PACNT! slow speed PDIST S

1;2
0.082

TIC1 ! slow speed PDIST S

2;2
0.126

TCNT! slow speed PDIST S

3;2
0.017

PACNT! stopped PDIST S

1;3
0.000

TIC1 ! stopped PDIST S

2;3
0.000

TCNT! stopped PDIST S

3;3
0.000

ADC ! IsValue PPRES S

1;1
0.000

i ! i PCALC
1;1

1.000
mscnt ! i PCALC

2;1
0.336

pulscnt ! i PCALC
3;1

0.791
slow speed! i PCALC

4;1
0.079

stopped ! i PCALC
5;1

0.209
i ! SetValue PCALC

1;2
0.457

mscnt ! SetValue PCALC
2;2

0.666

pulscnt ! SetValue PCALC
3;2

0.477
slow speed! SetValue PCALC

4;2
0.844

stopped ! SetValue PCALC
5;2

0.371
SetValue ! OutValue PV REG

1;1
0.884

IsValue! OutValue PV REG

2;1
0.920

OutValue! TOC2 PPRES A

1;1
0.860

Table 1. Estimated error permeability values
of the input/output pairs

Module PM P̂M XM X̂M

CLOCK 0.500 1.000 0.500 1.000
DIST S 0.079 0.715 - -
PRES S 0.000 0.000 - -
CALC 0.523 5.229 0.313 3.130
V REG 0.902 1.804 1.408 2.815
PRES A 0.860 0.860 1.804 1.804

Table 2. Estimated relative permeability and
error exposure values of the modules

In Table 2, we obtain weighted and non-weighted rela-
tive permeability values (PM and P̂M , respectively) as well
as weighted and non-weighted error exposure values (XM

and X̂M ) for each module. The signal error exposure (X S
s )

for each signal is shown in Table 3. The signal error ex-
posure values give us better granularity for deciding which
signals we should equip with EDM’s or ERM’s.

From the backtrack tree in Fig. 10, we can generate 22
propagation paths from the system output signal to an in-
put signal. Each of these paths has a total weight, which

Signal XS

s

SetValue 2.815
i 2.415
OutValue 1.804
ms slot nbr 1.000
TOC2 0.860
pulscnt 0.488
slow speed 0.225
IsValue 0.000
mscnt 0.000
stopped 0.000

Table 3. Estimated signal error exposures

is the product of the permeability values of the arcs in the
path. Ordering the paths according to their total weight
gives us some knowledge of the more probable paths for
error propagation. Table 4 depicts the thirteen paths that
acquired weights greater than zero (the paths along which
errors might propagate).

Path/Product Weight

PCALC
1;1

PCALC
1;2

PV REG

1;1
PPRES A

1;1
0.34743

PDIST S

1;1
PCALC
3;2

PV REG

1;1
PPRES A

1;1
0.17406

PDIST S

1;1
PCALC
3;1

PCALC
1;2

PV REG

1;1
PPRES A

1;1
0.13191

PDIST S

2;2
PCALC
4;2

PV REG

1;1
PPRES A

1;1
0.08085

PDIST S

1;2
PCALC
4;2

PV REG

1;1
PPRES A

1;1
0.05261

PDIST S

2;3
PCALC
4;2

PV REG

1;1
PPRES A

1;1
0.01091

PDIST S

2;2
PCALC
4;1

PCALC
1;2

PV REG

1;1
PPRES A

1;1
0.00346

PDIST S

1;2
PCALC
4;1

PCALC
1;2

PV REG

1;1
PPRES A

1;1
0.00225

PDIST S

2;1
PCALC
3;2

PCALC
1;1

PV REG

1;1
PPRES A

1;1
0.00145

PDIST S

3;1
PCALC
3;2

PV REG

1;1
PPRES A

1;1
0.00145

PDIST S

2;1
PCALC
3;1

PCALC
1;2

PV REG

1;1
PPRES A

1;1
0.00110

PDIST S

3;1
PCALC
3;1

PCALC
1;2

PV REG

1;1
PPRES A

1;1
0.00110

PDIST S

3;2
PCALC
4;1

PCALC
1;2

PV REG

1;1
PPRES A

1;1
0.00047

Table 4. The thirteen non-zero propagation
paths and their weights

Comparing the propagation paths from Table 4 with the
signal error exposure values from Table 3, we note that the
signals with highest exposure values (SetValue, i, and Out-
Value) are also part of the non-zero propagation paths. From
the results obtained by system analysis and the experiments,
we can make the following salient observations:

OB1. The modules DIST S and PRES S have no error exposure values
as they only receive system input signals, i.e., from external sources. This
does not mean that these modules will never be exposed to errors on their
inputs, but rather that the error exposure is dependent on the probability
of errors occurring in the various external data sources. The modules with
the highest non-weighted error exposure are the CALC module and the
V REG module. This would indicate that these two modules are central in
the system and that they would be good candidates for EDM’s and ERM’s.
OB2. Note that permeability estimates for errors going from the inputs of
DIST S to its output stopped are all zero. It seems as though DIST S has a
built-in resiliency against errors making it non-permeable to errors in that
particular output. The reason for this may be that although injected errors
can alter the perceived velocity, it is hard to make it zero.
OB3. The permeability of PRES S (which has only one input/output-pair)
is also zero. In previous experiments [7] we investigated the efficiency



of a number of error detection mechanisms based on the concept of exe-
cutable assertions, e.g., [11, 16]. These results showed that we could devise
a detection mechanism that, with a very high probability, detected errors
in the signal IsValue. Taking into account the knowledge gained by the
propagation analysis performed here, we can now say that even though the
detection probability for that mechanism was high, it would not be cost
effective to incorporate it into the system since the signal it monitors has
a very low error exposure. So, although the permeability of errors on the
IsValue signal to the OutValue signal is quite high (0.920), it may be wiser
to spend resources on a mechanism that has a higher probability of actually
being used, even though it may not detect errors as well. This clearly illus-
trates that not only are the detection capabilities of EDM’s important, the
locations are equally important. This is an important sensitivity to deter-
mine for each target system. Thus, it should be preferred to put a detection
mechanism with a slightly lower detection probability at a location where
errors very likely pass by during propagation rather than placing a mecha-
nism with a very high detection probability at a location which seldom is
exposed to propagating errors.
OB4. Based on the results obtained here, we would select the following
signals as locations for ERM’s: SetValue, i, OutValue, and pulscnt. The
first three are selected since they had the highest signal error exposure and
were part of the propagation paths with the highest weights, and the last
one as this is the signal which is most likely to be affected by errors in sys-
tem input. We would not select ms slot nbr as this signal is independent of
all signals, thus, errors will not show up in this signal unless they originate
here. We would not select TOC2 either, as this is a hardware register and
any errors here would most probably come from the OutValue signal.
OB5. SetValue and OutValue are part of all propagation paths in Table 4.
Therefore they are strong candidates for locations of ERM’s, since if errors
can be eliminated here, the system output will not be affected (given total
success for the recovery mechanisms). Given that CALC has the highest
relative permeability it would probably be a very strong candidate for re-
covery mechanisms in order to avoid incoming errors to propagate through
the module to other modules.
OB6. Even though DIST S has a lower relative permeability than V REG,
one should consider placing recovery mechanisms in DIST S as they would
form a barrier to errors coming in from external data sources, thereby de-
creasing the probability of errors entering the system in the first place.

9. Summary and Conclusions

Overall, we have presented a generalised framework for
analysing the propagation of data errors in software systems
and the vulnerability of software modules. The framework
introduces the basic measure error permeability from which
a set of related measures can be calculated. The measures
calculated from the error permeability allow for an assess-
ment of the vulnerability of software and its modules.

The framework also contains methods for obtaining prop-
agation paths and ordering them according to their likeli-
hood. Furthermore, the measures and analysis results are
shown to be useful input to the process of selecting loca-
tions in the software would be suitable for error detection
mechanisms and error recovery mechanisms. These meth-
ods can also pinpoint critical signals and paths in a system.

We conducted an FI driven experimental assessment on
the software of a medium-sized embedded control system.
The results clearly show that using the presented framework
generates knowledge on error propagation and software vul-
nerability that is very useful when designing dependable
systems. The results also illustrate that by incorporating

less efficient detection and recovery mechanisms in loca-
tions which have high error exposure instead of very effi-
cient mechanisms which are seldom exposed to errors one
would most likely get a better cost-performance ratio.

Future work includes analysing the effect of workload as
well as error models on the permeability estimates for var-
ied embedded software based systems to further investigate
the applicability and scope of the framework.
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