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Abstract—We present an approach for analyzing the propagation and effect of data errors in modular software enabling the profiling of

the vulnerabilities of software to find 1) the modules and signals most likely exposed to propagating errors and 2) the modules and

signals which, when subjected to error, tend to cause more damage than others from a systems operation point-of-view. We discuss

how to use the obtained profiles to identify where dependability structures and mechanisms will likely be the most effective, i.e., how to

perform a cost-benefit analysis for dependability. A fault-injection-based method for estimation of the various measures is described

and the software of a real embedded control system is profiled to show the type of results obtainable by the analysis framework.

Index Terms—Data error propagation, data error effect, software profiling, fault injection, dependability assessment.
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1 INTRODUCTION

THE advent of computerized consumer products, such as
automobiles, mobile systems, etc., has produced a large

increase in the need for dependable (or robust) systems. As
cost is a relevant issue for such systems, the cost of
dependability has to be kept low. Furthermore, as the
process of producing multiple copies of software is virtually
free compared to producing multiple copies of hardware,
the trend is to implement more and more functions in
software. Thus, an integral part of developing low-cost
robust systems is to equip software with structures and
mechanisms providing dependability (e.g., masking fault
tolerance, fail safety, or fail silence). The necessary
prerequisites for developing and providing the relevant
dependability in software are:

1. The type of errors the system is supposed to handle;
their nature, frequency, duration, etc. Without
knowledge of what kind of threats the system is
subject to, it is hard to know how to obtain any
dependability. This would make both development
as well as assessment/analysis of the system
difficult (if not impossible).

2. The available structures and mechanisms for de-
pendability. When developing dependable software,
it is important to know the characteristics and
properties of the means at one’s disposal, including
their strengths and weaknesses. The overall archi-
tecture of the software is likely to be affected by
these properties.

3. The vulnerabilities of the software. In order to be
able to incorporate dependability structures and
mechanisms where they are the most effective, it is
important to know where errors tend to propagate
and where errors tend to do the most damage. This
will aid in utilizing the available resources where
they are likely to be of most use.

This paper has a focus on the last issue above and
presents a framework for profiling modular software with
regard to error propagation and error effect. The framework
is called EPIC after the four groups of measures it
introduces (Exposure, Permeability, Impact, and Criticality).

Propagation analysis may be used to find the modules
and signals which are most exposed to errors in a system
and to ascertain how different modules affect each other in
the presence of errors. In addition to knowing error
propagation characteristics, it is also important to know
where errors are likely to do the most damage. Note that
those errors which are most likely to propagate are not
always those that are most likely to cause great damage.
Thus, it is important to do an analysis of both notions to
identify the most vulnerable parts of a system. In this paper,
we will show an example of how the obtained software
profiles can be used to select locations for error detection
mechanisms (EDMs).

Analyzing error propagation and error effects can also
complement other analysis activities, for instance, FMECA
(Failure Mode Effect and Criticality Analysis). In an
iterative development process, profiling the software in
each iteration may indicate which modules and signals may
require more attention during that iteration. Thus, error
propagation and effect analysis, as a means of both system
analysis and resource management, may be a very useful
development-stage tool in such systems.

The focus of EPIC is on handling data errors and we
consider logically distributed software functions resident
on either single or distributed hardware nodes. In our
approach, we adopt a black-box view of modular software
and introduce the measure error permeability as well as a set
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of related measures. Subsequently, we define a methodol-
ogy for using these measures to obtain software profiles
providing information on error propagation and error effect
and also aid in identifying hot-spots and vulnerabilities in
the software. As such, parts of the calculations and
techniques used in the framework resemble those used for
reliability diagrams and fault trees.

EPIC provides a consolidated and comprehensive soft-
ware profiling framework building upon and extending the
individual framework components introduced in [12], [13].

Paper organization. Section 2 reviews related work
and Section 3 describes the assumed system model. The
EPIC framework is described in Section 4 and methods
for estimating numerical values of the introduced metrics
are discussed in Section 5. In Section 6, we illustrate the
framework on an example target system and produce
estimates for the various metrics. In Section 7, we use the
obtained profiles to guide the selection of locations for
error detection mechanisms called Executable Assertions,
which are then evaluated with regard to detection
coverage in Section 8. Some limitations and caveats of
the proposed framework are discussed in Section 9.
Finally, Section 10 contains a summary and conclusions.

2 RELATED WORK

Error propagation analysis for logic circuits has been in use
for many decades. Numerous algorithms and techniques
have been proposed, e.g., the D-algorithm [26], the PODEM-
algorithm [9], and the FAN-algorithm [7] (which improves
on the PODEM-algorithm).

In [30], the authors analyze fault/error propagation and
data flow diagrams in VHDL-models in order to select a
fault list for fault injection which will fully exercise the fault
detection and processing aspects of the model.

Error propagation in hardware is also addressed in [29],
where a stochastic propagation model based on error
propagation times is described. However, the authors do
not target identification of locations for dependability
structures and mechanisms as is done in this paper. Also,
the model is defined at the module level, i.e., if there are
several signals linking two modules together, these will not
be considered individually, but as a group.

An approach for dependability analysis, including error
propagation, based on data flow analysis in HW-SW
codesign is presented in [4]. Here, a data flow model of
the system (including only functional requirements) is
extended with information regarding fault occurrence, fault
latency, and detection probabilities such that a depend-
ability analysis can be performed. This approach works on a
high-level model of a system which is not yet divided into
hardware and software.

Propagation analysis in software has been described for
debugging use in [33]. Here, the propagation analysis
aimed at finding probabilities of source level locations
propagating data-state errors if they were executed with
erroneous initial data-states. The framework was further
extended in [22], [34] for analyzing source code under test
in order to determine test cases that would reveal the
largest amount of defects. In [35], the same framework was
used for determining locations for placing assertions during

software testing, i.e., aiming to place simple assertions
where normal testing would have difficulties finding
defects.

A method based on control flow analysis is described in
[8]. Here, a software system is analyzed with regard to
control flow and, based on the results of this analysis, flow
checks are placed in order to detect errors dynamically. As
this approach only deals with control flow errors, it is very
different from ours as we deal with data errors. The control
flow approach will not handle detection of data errors
unless these change the control flow such that it can be
detected by the obtained detectors.

An investigation in [21] reported that there was evidence
of uniform propagation of data errors. That is, a data error
occurring at a location l in a program would, to a high
degree, exhibit uniform propagation, meaning that, for
location l, either all data errors would propagate to the
system output or none of them would.

Finding optimal combinations of hardware mechanisms
for error detection based on experimental results was
described in [31]. The authors used coverage and latency
estimates for a given set of error detection mechanisms
(EDMs) to form subsets which minimized overlapping
between different EDMs, thereby giving the best cost-
performance ratio.

In [18], a study on the use of self-checks and voting for
software error detection concludes, among other things,
that placement of self-checks seemed to cause problems, i.e.,
self-checks that might have been effective failed on account
of being badly placed. In our work, we provide means for a
rigorous placement process.

3 SOFTWARE AND SYSTEM MODEL

In our studies, we consider modular software, i.e., discrete
software functions interacting to deliver the requisite
functionality. A module is viewed as a generalized black-
box with multiple inputs and outputs. Modules commu-
nicate with each other in some specified way using varied
forms of signaling, e.g., shared memory, messaging,
parameter passing, etc., as pertinent to the chosen commu-
nication model. We will use the term signal in an abstract
manner, representing a software channel for data commu-
nication between modules.

A software module performs computations using the
provided inputs to generate the outputs. At the lowest level,
such a black-box module may be a procedure or a function
but could also conceptually be a basic block or particular
code fragment within a procedure or function (at a finer
level of software abstraction). A number of such modules
constitute a system and they are inter-linked via signals. Of
course, this system may be seen as a larger component or
module in an even larger system. Signals can originate
internally from a module, e.g., as a calculation result, or
externally from the hardware itself, e.g., a sensor reading
from a register. The destination of a signal may also be
internal, being part of the input set of a module, or external,
for example, the value placed in a hardware register.

Software constructed as such is found in numerous
embedded systems. For example, most applications con-
trolling physical events such as in automotive systems are
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traditionally built up as such. Our studies mainly focus on

software developed for embedded systems in consumer

products (high-volume and low-production-cost systems).
In this paper, we perform experiments on an example

target system designed according to the described system
model. The system is used for arresting aircraft and is

described in Section 6.
The fault model which EPIC is aimed at is that of data

errors. That is, errors in variables and signals. However, we

do not explicitly consider data errors which may result in

control error errors.

4 EPIC: GENERATING SOFTWARE PROFILES

The EPIC framework aims at providing a means of profiling

software such that weaknesses and hot-spots in modular

software can be identified. To achieve this, EPIC can be

used to generate two distinct profiles of a software system:

1) error propagation profile and 2) error effect profile. These

chart how data errors propagate through a software system
and their effect on system operations, respectively. When

performing a cost/benefit analysis, both profiles are used.
A data error has a probability of affecting the system

such that further errors are generated during operation. If

one could obtain knowledge of the error propagation

characteristics of a particular system, this would aid the

development of techniques and mechanisms for detecting

and eventually correcting the error.
Such knowledge can translate into improved effective-

ness of dependability structures and mechanisms and the
consequent cost/performance-ratio of these, as the efforts

can be concentrated to where errors tend to propagate

and/or do the most damage. In particular, if an erroneous

signal or module has a very detrimental effect on system

output, knowing how errors propagate from that signal or

module will help in using resources for dependability in an

efficient way.
The results obtained using EPIC are useful even with

minimal knowledge of the distribution of the occurring data

errors (within our assumed fault model), i.e., if one does not

know which errors are most likely to appear, since we are

only interested in a partial ordering which is achieved by

profiling. Knowledge on error distribution will surely

improve the value of the results, but performing the

analysis without it still provides qualitative insights on
system error susceptibility.

4.1 Error Permeability—Letting Errors Pass

In our approach, we introduce the measure of error

permeability and, based on it, we define a set of related

measures that cumulatively provide an insight on the error

propagation and effect characteristics and vulnerabilities of

a system.

Consider the software module in Fig. 1 (at this point only
discrete software modules are considered). Starting with a
simple definition of error permeability, refinements will
follow successively. For each pair of input and output
signals, the error permeability is defined as the conditional
probability of an error occurring on the output given that
there is an error on the input. Thus, for input i and output k of
a module M, the error permeability, PM

i;k , is defined as follows:

0 � PM
i;k ¼ Prferror in output kjerror in input ig � 1: ð1Þ

This measure indicates how permeable an input/output
pair of a software module is to errors occurring on that
particular input. One characteristic of this definition of error
permeability is that it is independent of the probability of
error occurrence on the input (as it is a conditional
probability). On the other hand, error permeability is still
dependent on the workload of the module as well as the
type of the errors that can occur on the inputs. It should be
noted that if the error permeability of an input/output pair
is zero, this does not necessarily mean that the incoming
error did not cause any damage. The error may have caused
a latent error in the internal state of the module that, for
some reason, is not visible on the outputs. In Section 5, we
describe an approach for experimentally estimating values
for this measure.

Error permeability is defined at the signal level, i.e., an
error permeability value characterizes the error propagation
from one input signal to one output signal in a given
module. Going to the module level (Fig. 1), we define the
module error permeability, PM , of a module M with m input
signals and n output signals, to be:

0 � PM ¼ 1

m
� 1
n

� �X
i

X
k

PM
i;k � 1: ð2Þ

Note that this does not necessarily reflect the overall
probability that an error is permeated from the input of the
module to the output. Rather, it is an abstract measure that
can be used to obtain a relative ordering across modules. If
all inputs are assumed to be independent of each other and
errors on one input signal can only generate errors on one
output signal at a time, then this measure is the actual
probability of an error on the input permeating to the
output. However, this is seldom the case in most practical
applications.

One potential limitation of this measure is that it is not
possible to distinguish modules with a large I/O count
(i.e., a large number of input and output signals) from
those with a small I/O count. This distinction is useful to
ascertain as modules with large I/O count are likely to be
central parts (almost like hubs) of the system, thereby
attracting errors from different parts of the system. In
order to be able to make this distinction, we remove the
weighting factor in (2), thereby, in a sense, “punishing”
modules with a large I/O count. Thus, for a module M
with m input signals and n output signals, we can define
the nonnormalized module error permeability, P̂PM as follows:

0 � P̂PM ¼
X
i

X
k

PM
i;k � m � n: ð3Þ
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Similarly to the module error permeability, this measure
does not have a straightforward real-world interpretation
but is a measure that can be used during development to
obtain a relative ordering across modules. The larger this
value is for a particular module, the more effort has to be
spent in order to increase the error containment capability
of that module (which is the same as decreasing the error
permeability of the module), for instance, by using
wrappers as in [28]. Note that, as the maximum value of
each individual permeability value is 1, the upper bound
for this measure is the product of the number of inputs (m)
and outputs (n).

The two measures defined in (2) and (3) are both
necessary for analyzing the modules of a system. For
instance, consider the case where two modules, G and H,
are to be compared. G has few inputs and outputs and H
has many. Then, if PG ¼ PH , then P̂PG < P̂PH . And vice
versa, if P̂PG ¼ P̂PH , then PG > PH .

4.2 Ascertaining Propagation Paths

So far, we have obtained error permeability factors for each
discrete software module in a system. Considering every
module individually does have limitations; this analysis
will give insights on which modules are likely (relatively) to
transfer incoming errors, but will not reveal modules likely
to be exposed to propagating errors in the system. In order
to gain knowledge about the exposure of the modules to
propagating errors in the system, we define the following
process which considers interactions across modules.

Consider the example software system shown in Fig. 2.
Here, we have five modules, A through E, connected to
each other with a number of signals. The ith input of
module M is designated IMi and the kth output of module
M is designated OM

k . External input to the system is
received at IA1 , IC2 , and IC3 . The output produced by the
system is OE

1 .
Once we have obtained values for the error permeability

for each input/output pair of each module, we can construct
a permeability graph, as illustrated in Fig. 3. Each node in the
graph corresponds to a particular module and has a number
of incoming arcs and a number of outgoing arcs. Each arc
has a weight associated with it, namely, the error perme-
ability value. Hence, there may be more arcs between two
nodes than there are signals between the corresponding
modules. Actually, the maximum number of outgoing arcs
for a node is the product of the number of incoming signals
and the number of outgoing signals for the corresponding
software module (each input/output pair of a module has
an error permeability value). Arcs with a zero weight
(representing nonpermeability from an input to an output)
can be omitted. With the permeability graph, we can:

. Backtrack from system output signals to system
input signals in order to find those paths which have
the highest probability of error propagation (Output
Error Tracing) or

. Trace errors from system input signals to system
output signals in order to find which path these
errors will most likely propagate along (Input Error
Tracing).

Output Error Tracing is easily accomplished by construct-

ing a set of backtrack trees, one for each system output. These

backtrack trees can be constructed quite simply based on

the following steps on the permeability graph, namely:

. Step A1. Select a system output signal and let it be
the root node of the backtrack tree.

. Step A2. For each error permeability value asso-
ciated with the signal, generate a child node that will
be associated with an input signal.

. Step A3. For each child node, if the corresponding
signal is not a system input signal, backtrack to the
generating module and determine the correspond-
ing output signal. Use this signal and construct the
subtree for the child node from Step A2. If the
corresponding signal is a system input signal, it will
be a leaf in the tree. If the corresponding signal is an
input signal to the same module, it will be a leaf in
the tree (as opposed to other leaves which are system
input signals). We do not follow the recursion that is
generated by the feedback.

. Step A4. If there are more system output signals, go
back to Step A1.

This will, for each system output, give us a backtrack tree

where the root corresponds to the system output, the

intermediate nodes correspond to internal outputs, and the

leaves correspond to system inputs (or module inputs

receiving feedback from its own module). Also, all vertices

in the tree have a weight corresponding to an error

permeability value. Once we have obtained this tree,

finding the propagation paths with the highest propagation

probability is simply a matter of finding which paths from

the root to the leaves have the highest weight.
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Input error tracing is achieved similarly. However, instead

of constructing a backtrack tree for each system output, we

construct a trace tree for each system input, as follows:

. Step B1. Select a system input signal and let it be the
root node of the trace tree.

. Step B2. Determine the receiving module of the
signal and, for each output of that module, generate
a child node. This way, each child node will be
associated with an output signal.

. Step B3. For each child node, if the corresponding
signal is not a system output signal, trace the signal
to the receiving module and determine the corre-
sponding input signal. Use this signal and construct
the subtree of the child node from Step B2. If the
corresponding signal is a system output signal, it
will be a leaf in the tree. If the input signal is the
same module that generated the output signal (i.e.,
we have a module feedback), then follow this
feedback once and generate the subtrees for the
remaining outputs. We do not follow the recursion
generated by this feedback.

. Step B4. If there are more system input signals, go
back to Step B1.

This procedure results in a set of trace trees—one for

each system input. In a trace tree, the root will represent a

system input, the leaves will represent system outputs, and

the intermediate branch nodes will represent internal

inputs. Thus, all vertices will be associated with an error

permeability value. From the trace trees, we find the

propagation pathways that errors on system inputs would

most likely take by finding the paths from the root to the

leaves having the highest weights.
The case when an output of a module is connected to an

input of the same module is handled in the way described

in Step A3 of the backtrack tree generation script. If we use

recursive subtree generation we would get an infinite

number of subtrees with diminishing probabilities. As all

permeability values are � 1, the subtree with the highest

probability is the one which only goes one pass through the

feedback loop and this path is included in the permeability

tree. In [7], [9], [26], similar techniques are used for

hardware error propagation analysis.

The backtrack tree for system output OE
1 of the example

system is shown in Fig. 4. Here, we observe the double line

between IB1 and OB
1 . This notation implies that we have a

local feedback in module B (OB
1 is connected to IB1 ) and

represents breaking up of the propagation recursion.
The weight for each path is the product of the error

permeability values along the path. For example, in Fig. 4,

the path from OE
1 to IA1 going straight from OA

1 (connected to

IB2 ) to OB
2 (the leftmost path in the tree) has the probability

P ¼ PA
1;1 � PB

2;2 � PE
1;1. This is the conditional probability that,

given an error in OE
1 and the error originated from IA1 , it

propagated directly through OB
2 which is connected to IE1

and then to OE
1 .

If we have knowledge regarding the probability of
errors appearing on the input signals, we can use these

probabilities as additional weights on the paths. For
example, if the probability of an error appearing on IA1 is

PrðIA1 Þ, then the P can be adjusted with this factor, giving
us P 0 ¼ PrðIA1 Þ � PA

1;1 � PB
2;2 � PE

1;1. This is the probability of

an error appearing on system input IA1 , propagating

through module B directly via OB
2 to system output OE

1 .
The trace tree for system input IA1 is shown in Fig. 5.

Here, we can see which propagation path from system

input to system output has the highest probability. As for
backtrack trees, the probability of a path is obtained by

multiplying the error permeability values along the path.
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Fig. 4. Backtrack tree of system output OE
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Fig. 5. Trace tree for system input IA1 of example system.



For example, in Fig. 5, the probability of an error in IA1
propagating to module C and via its output OC

2 to module
D and from there via module E to system output OE

1 is
P ¼ PA

1;2 � PC
1;2 � PD

3;1 � PE
2;1. Again, if we know that PrðIA1 Þ is

the probability of an error appearing on IA1 , then we can
adjust P to get P 0 ¼ PrðIA1 Þ � PA

1;2 � PC
1;2 � PD

3;1 � PE
2;1.

4.3 Assessing the Error Exposure of Modules and
Signals

Using the backtrack and trace trees enables determining
two specific aspects: 1) the paths in the system that errors
will most likely propagate along to get to certain output
signals and 2) which output signals are most likely affected
by errors occurring on the input signals. With this knowl-
edge, we can start building a propagation profile of the
software in order to identify its weaknesses.

However, once we have the most probable propagation
paths, we still have to find the modules along that path that
are the best (in some sense) to target for dependability
efforts. Earlier, in (2) and (3), we had defined two measures,
module error permeability and nonnormalized module error

permeability, that can guide us in this search.
These measures only consider the permeability values of

discrete modules—couplings across modules are disre-
garded. Using the permeability graph, we now define a set
of measures that explicitly consider coupling and aid
determining the weak spots and vulnerabilities of the
software. To find modules most likely to be exposed to
propagating errors, we want to have some knowledge of
the “amount” of errors that a module may be subjected to.
For this we define the module error exposure, XM , of a
module M as:

0 � XM ¼ 1

N

X
weight of all incoming arcs of M � 1; ð4Þ

where N is the number of incoming arcs and M is the
node in the permeability graph, representing software
module M. This measure does not consider any correla-
tion that may exist between two or more incoming arcs.
Remember that we do profiling to get a partial ordering
and, thus, this is not a hindrance for us. The module error

exposure is the mean of the weights of all incoming arcs of
a node. Analogous to the nonnormalized module error

permeability, we can also define the nonnormalized module

error exposure, X̂XM , of a module M as:

0 � X̂XM ¼
X

weight of all incoming arcs of M � N: ð5Þ

This measure does not have a real-world interpretation
either—it is used only during system analysis to obtain a
relative ordering between modules. The two exposure
measures ((4) and (5)) along with the previously defined
permeability measures ((2) and (3)) will be the basis for the
analysis performed to obtain a profile showing the error
propagation characteristics of the software. As was the case
for the two module permeability measures, the two
exposure measures, module error exposure and nonnormalized

module error exposure, are used for distinguishing between
nodes with a small number of incoming arcs and those with
a large number.

The error exposure measures defined in (4) and (5)
indicate which modules will most probably be the ones
exposed to errors propagating through the system. If we
want to analyze the system at the signal level and get
indications on which signals might be the ones that errors
most likely will reach and propagate through, we can define
a measure which is analogous to the error exposure defined
in (4), but is only calculated for one signal at a time. In the
backtrack trees, we can easily see which error permeability
values are directly associated with a signal s. We define the
set Sp as composed of all unique arcs going to the child
nodes of all nodes generated by the signal s. A signal may
generate multiple nodes in a backtrack tree (see, for
instance, signal OB

1 in the backtrack tree in Fig. 4). However,
in the set Sp, the permeability values associated with the
arcs emanating from those nodes will only be counted once.
The signal error exposure, XS

s , of signal s is then calculated as:

XS
s ¼

X
all permeability values in Sp: ð6Þ

The interpretation for the signal error exposure is
analogous to the module error exposure. That is, the higher
a signal error exposure value, the higher the probability of
errors in the system being propagated through that signal.

We have now defined a basic analytical framework for
ascertaining measures pertaining to error propagation and
software vulnerability. In the following sections, we
augment the framework with measures for analyzing the
effect of errors on the final output of the system as well as
for obtaining a measure of criticality of signals. The
knowledge gained in the propagation analysis combined
with the knowledge gained in the effect analysis will help in
profiling the software such that weaknesses and vulner-
abilities can be identified.

4.4 Analyzing the Effect of Errors on System Output

It may be insufficient to only take into account the
propagation characteristics of data errors for a given
software system in order to identify weaknesses. Errors
that have a low probability of propagating may still cause
severe damage should propagation occur. Taking this into
account, we now define measures which let us analyze to
what extent errors in a signal (system input signal or
intermediate signal) affect the system output, i.e., what the
impact of errors on the system output signals is.

As errors in a source signal can propagate along many
different paths to the (destination) system output signal, we
must consider this in our definition of impact. In order to
calculate the impact of errors in a signal s on a system
output signal OSys, we must first generate an impact tree,
which is a generalization of the trace tree described in
Section 4.2. Instead of generating a trace tree with a system
input as root node, we use the signal of interest in our
analysis as the root, in this case s. The steps for generating
an impact tree are otherwise the same as for generating a
trace tree.

Once we have generated the impact tree for a given
signal s, we generate all the propagation paths from the root
to the leaves containing system output signal OSys (there
may be leaves which are generated by other system output
signals). Each path has a weight associated with it, which is
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the product of all permeability values along that path. We

define s e> OSys, the impact of (errors in) s on OSys, as:

0 � s e> OSys ¼ 1�
Y
i

ð1� wkÞ � 1; ð7Þ

where wk is the weight of path k from s to OSys. If one could

assume independence over all paths, the impact measure

would be the conditional probability of an error in s

propagating all the way to OSys. However, as independence

can rarely be assumed, we will treat this as a relative

measure by which different signals can be ranked. The

general interpretation of this measure is that the higher the

impact, the higher the risk of an error in the source signal

generating an error in the output of the system. Thus, when

deciding where dependability structures and mechanisms

have to be incorporated, one may consider signals which

have a high impact even though they may have a low error

exposure (meaning that errors in this signal are relatively

rare but, should they occur, are likely to be costly).
In (7), the measure only considers one system output

signal. If a system has multiple output signals, the

corresponding impact value which considers all output

signals can be defined as:

0 � s e> OSys ¼ 1�
Y
i

ð1� ðs e> OSys
i ÞÞ � 1; ð8Þ

where s e> OSys
i is the impact of signal s on system output

signal OSys
i , i.e., the ith system output signal.

To further illustrate the concept of impact, again

consider the example shown in Fig. 2. Suppose that we

would like to calculate the impact of errors in signal IB2 on

system output OE
1 . First, we will generate an impact tree,

as shown in in Fig. 6.
The impact tree shown in Fig. 6 is actually the left

subtree of the trace tree for system input signal IA1 shown

in Fig. 5. In order to calculate the impact of errors in IB2
on system output OE

1 , we generate all the propagation

paths from the root to the leaves. In this case, with only

one system output, all leaves are considered. This gives

us four paths, as shown in Fig. 6. Using the weights of

the paths, we can now calculate IB2 e> OE
1 , i.e., the impact

of (errors in) IB2 on OE
1 , as:

IB2 e> OE
1 ¼ 1�

Y4

i¼1

ð1� wiÞ

¼ 1� ð1� w1Þð1� w2Þð1� w3Þð1� w4Þ;

where wi are the weights listed in Fig. 6.
The concept of impact as described above considers the

impact on system output generated by errors in system
input signals and intermediate signals. However, when a
system has multiple output signals, these are not necessa-
rily all equally important for the operation of the system,
i.e., some output signals may be more critical than others.
For cost-efficiency, one may wish to concentrate resources
for dependability on the most critical system output signals
and, therefore, needs to know which signals in the system
that are “best” (in a loose sense) to monitor/protect.

Each system output signal OSys
i is assigned a criticality

C
OSys
i

, which is a value between 0 and 1, where 0 denotes not
at all critical and 1 denotes highest possible criticality. These
criticality values are assigned by the system designer, for
example, from the specifications of the system or from
results from experimental vulnerability analyses.

The criticality of system input signals and intermediate
signals is calculated using the assigned criticality values of
the system output signals and the various impact values
calculated for the various signals. Each signal s has a certain
impact, s e> OSys

i , on system output OSys
i , as calculated

according to (7). The criticality of s as experienced by
system output OSys

i , Cs;i, is calculated as:

0 � Cs;i ¼ COSys
i
� ðs e> OSys

i Þ � 1: ð9Þ

Once we have the criticality of s with regard to each
system output signal OSys

i , we can subsequently compute an
overall criticality value. We define the criticality Cs of signal
s as:

0 � Cs ¼ 1�
Y
i

ð1� Cs;iÞ

¼ 1�
Y
i

ð1� C
OSys
i
� ðs e> OSys

i ÞÞ � 1:
ð10Þ

For each signal, the criticality measure indicates how
“expensive” errors are with regard to the total system
operation, i.e., the higher the criticality value, the higher the
likelihood of the system not being able to deliver its
intended service should an error occur in the signal. The
notion of criticality as defined here also takes into account
the “cost” associated with errors in system outputs as
defined by the system designer. Thus, while the impact
measures are independent of the project policies regarding
dependability, the criticality values may change when the
project policies for software development change.

Note that, if the system only has one output signal, then
the obtained criticality will only function as a constant
scaling factor of the impact values, i.e., the relative order
among the signals of the system will not change. Thus,
calculating criticality values is essential only when there are
multiple output signals in a system and these are of
different “importance.” At this point, we have only defined
impact and criticality at the signal level. Going up in
abstraction levels, we can now define equivalent measures
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which are based on the signal level measures, but consider
entire modules instead. If we consider a module M in a
system with i output signals, we can define the impact of M

on a given system output signal OSys
i , M e> OSys

i , as follows:

0 �M e> OSys
i ¼ 1�

Y
j

ð1� ðOM
j e> OSys

i ÞÞ � 1; ð11Þ

where OM
j e> OSys

i is the impact of (errors in) the output

signal OM
j of M on system output signal OSys

i . For each

output signal of M, there is one such impact value. In order

to get a measure for the impact of M on the system output

as a whole, we can define M e> OSys, the module impact of M

on system output, as follows:

M e> OSys ¼ 1�
Y
i

ð1� ðM e> OSys
i ÞÞ

¼ 1�
Y
i

ð1� ð1�
Y
j

ð1� ðOM
j e> OSys

i ÞÞÞÞ

¼ 1�
Y
i

Y
j

ð1� ðOM
j e> OSys

i ÞÞ � 1:

ð12Þ

Going from impact to criticality is not a big step. Instead of
using the individual impact values of the outputs of a
module, the corresponding criticality values for the chosen
system output signal are used. The criticality of module M,
with regard to system output OSys

i can thus be defined as:

0 � CM
i ¼ 1�

Y
j

ð1� COM
j ;i
Þ � 1; ð13Þ

where COM
j ;i

is the criticality of output OM
j with regard to

system output signal OSys
i . A total measure regarding all

system output signals is then referred to as the module
criticality, CM , of M and is defined as:

0 � CM ¼ 1�
Y
j

ð1� COM
j
Þ

¼ 1�
Y
j

ð1� ð1�
Y
i

ð1� COM
j ;i
ÞÞÞ

¼ 1�
Y
j

ð1� ð1�
Y
i

ð1� C
OSys
i
� ðOM

j e> So;iÞÞÞÞ
¼ 1�

Y
i

Y
j

ð1� COSys
i
� ðOM

j e> OSys
i ÞÞ � 1:

ð14Þ

Note that the difference between impact and criticality
(see (8) and (10) for signals and (12) and (14) for modules) is
the criticality factor C

OSys
i

of system output signal OSys
i

which is defined by the system designer. Thus, criticality is
a biased version of impact.

We have now defined a number of measures for
analyzing the propagation of errors and the effect of errors
on system output. In the following section, the introduced
measures and their interpretations are summerized.

4.5 Identifying Hot-Spots and Vulnerabilities

The EPIC framework introduced in Section 4 contains a
number of metrics for analyzing the propagation and effect
of errors in software, namely:

. error permeability for input/output pairs (PM
i;k , (1)),

. error permeability for modules (normalized, PM ,
and nonnormalized, P̂PM , (2) and (3), respectively),

. error exposure for modules (normalized, XM , and
nonnormalized, X̂XM , (4) and (5), respectively),

. error exposure for signals (XS
s , (6)),

. impact for signals (s e> OSys, (7) and (8)),

. criticality for signals (Cs, (10)),

. impact for modules (M e> OSys, (12)) and, finally,

. criticality for modules (CM , (14)).

In this section, we will discuss how to identify hot-spots

and vulnerable locations in the analyzed software using the

obtained error propagation and error effect profiles.

4.5.1 Interpreting the Metrics

It is hard to develop a generalized heuristic for identifica-

tion hot-spots and vulnerabilities. However, the following

rules of thumb or recommendations for interpretation of the

metrics can be made:

. The higher the error exposure values of a module,
the higher the probability that it will be subjected to
errors propagating through the system if errors are
indeed present. Thus, it may be more cost effective
to focus error detection efforts in those modules than
in those with lower error exposure. An analogous
way of reasoning is valid also for the signal error
exposure.

. The higher the error permeability values of a
module, the lower its ability to contain (as in
“confine”) errors. Thus, there is an increase in the
probability of subsequent modules being subjected
to propagating errors if errors should pass through
the module. Therefore, it may be more cost effective
to increase the error confinement abilities of those
modules than of those with lower error permeability.

. The higher the criticality (or impact if the system
only has one output signal) of a signal, the higher the
probability of an error in that signal causing damage
from a system point-of-view. Thus, it may be more
cost effective to equip those signals with error
detection and recovery mechanisms which have
the highest criticality (impact). An analogous way
of reasoning is valid also for the module criticality
(impact).

4.5.2 Trade Offs and Project Policies

When selecting which parts of the software to improve with

dependability structures and mechanisms, these rules may

not individually yield the same result. Consider the case

where a module or signal has a low exposure but a high

criticality. The low exposure means that there is a low

probability of errors propagating to that module/signal.

However, the high criticality means that, should an error

find its way into that module/signal, there is a high

probability of that error causing damage which propagates

beyond the system barrier into the environment. Thus, one

may select modules/signals with low exposure and high

criticality for further dependability efforts. For example, a

signal with high criticality may be equipped with error
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detection and recovery mechanisms, or a module with high
criticality may be duplicated or triplicated.

From a pure dependability viewpoint, it may be
sufficient to only consider the criticality of modules and
signals as these indicate the amount of damage an error
may cause. However, from a cost viewpoint, taking care of
high criticality events may not be worthwhile if these events
have a very low probability of occurring. Using both the
propagation and the effect profiles, a cost-benefit analysis
can be performed. In this case, project policies will
determine whether a low-probability event with high
criticality will be taken care of or not.

One way of having a more manageable approach in a
project may be to set up certain conditions which must be
met by the software. For example, one may wish to set a
minimum level of error containment for all modules, which
can be accomplished by setting a maximum level on error
permeability values and/or error exposure values. Thus, if
a module or signal exceeds these limits, this indicates that
more resources have to be allocated to that module to
increase its error handling capabilities. A similar approach
can be used for criticality (or impact).

The obtained software profiles may also aid in the design
of structures for dependability. For example, a situation
with low error exposure and high criticality (impact)
indicates that any error detection mechanism in that
location would have to be highly specialized as errors are
infrequent and likely to be hard to detect. The opposite
situation, i.e., high exposure and low criticality (impact)
indicates that a coarser error detection mechanism in that
location may suffice.

Next, we describe how to obtain experimental estimates
of the measures and use of our framework on actual
software of an embedded control system.

5 OBTAINING NUMERICAL ESTIMATES OF ERROR

PERMEABILITY

Obtaining numerical values for the error permeability may
prove to be quite difficult, given that many factors, such as
error type, operational profiles, etc., have to be taken into
account. This may render it impossible to get the “real”
value of the error permeability values of a software system.
Thus, a method of estimating these values is needed. In this
section, we describe an experimental method based on
fault/error injection for obtaining estimates of error
permeability values. However, other approaches, such as
data flow analysis and other static compiler-assisted
approaches, might be investigated in the future.

Our method for experimentally estimating the error
permeability values of software modules is based on fault
injection (FI). FI artificially introduces faults and/or errors
into a system and has been used for evaluation and
assessment of dependability for several years (see, e.g.,
[1], [2], [6]). A comprehensive survey of experimental
analysis of dependability appears in [15].

For analysis of raw experimental data, we make use of
so-called Golden Run Comparisons (GRC). A Golden Run
(GR) is a trace of the system executing without any
injections being made; hence, this trace is used as reference

and is stated to be “correct.” All traces obtained from the
injection runs (IRs, where injections are conducted) are
compared to the GR and any difference indicates that an
error has occurred. The main advantage of comparing an
injection run with a reference run to detect perturbations is
that this does not require any a priori knowledge of how the
various signals are supposed to behave, which makes this
approach less application specific.

Experimentally estimating values for error permeability
of a module is done by injecting errors in the input signals of
the module and logging its output signals. We only inject one
error in one input signal at a time. Suppose, for module M,
we inject ninj distinct errors in input i and at output k observe
nerr differences compared to the GRs, then we can directly
estimate the error permeability PM

i;k to be nerr
ninj

(see more on
experimental estimation in [5] and [23]).

Since the propagation of errors may differ based on the
system workload, it is generally preferred to have realistic
input distributions over randomly generated inputs. This
generates error permeability estimates that are closer to the
“real” values.

The type of injected errors may also affect the estimates.
Recall that, in order to develop dependable software, one
needs to know what type of faults and errors the software
shall be able to handle. When generating estimates of the
permeability values of the software, one should use an error
set which resembles these faults and errors as closely as
possible (choosing sets of artificial faults and errors for fault
injection which resemble real faults and errors is a large
area of research in itself, see, e.g., [10], [16], [20]).

6 EXPERIMENTAL ANALYSIS: AN EXAMPLE

EMBEDDED SYSTEM

In order to illustrate the proposed methodology of profiling
error propagation and effect in software, we have con-
ducted an example study on an embedded control system.
This study illustrates the results obtained using the EPIC
framework and experimental estimates for error perme-
ability values.

6.1 Target Software System

The target system is an embedded control system used for
arresting aircraft on short runways and aircraft carriers. The
system aids incoming aircraft to reduce their velocity,
eventually bringing them to a complete stop. The system is
constructed according to specifications found in [32]. The
system is illustrated in Fig. 7.

In our study, we used actual software of the system
master and ported it to run on a Windows-based
computer. The scheduling is slot-based and nonpreemp-
tive. Thus, from the software viewpoint, there is no
difference in running on the actual hardware or running
on a desktop computer. Glue software was developed to
simulate registers for A/D-conversion, timers, counter
registers, etc., accessed by the application. An environment
simulator used in experiments conducted on the real
system was also ported, so the environment experienced
by the real system and the desktop system was identical.
The simulator handles the rotating drum and the incoming
aircraft (see Fig. 8).
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In the real system, there are two nodes: a master node

calculating the desired pressure to be applied and a slave

node receiving the desired pressure from the master. Each

node controls one of the rotating drums. In our setup, the

slave was removed and the retracting force applied by the

master was also applied on the slave-end of the cable.
The structure of the software is illustrated in Fig. 9. The

numbers shown at the inputs and outputs are used for

numbering the signals. For instance, PACNT is input #1 of

DIST_S and SetValue is output #2 of CALC.
The software is composed of six modules of varying size

and input/output signal count:

CLOCK provides a millisecond-clock, mscnt. The system

operates in seven 1ms-slots. In each slot, one or more

modules (except for CALC) are invoked. The signal

ms_slot_nbr tells the module scheduler the current

execution slot. Period = 1 ms.

DIST_S receives PACNT and TIC1 from the rotation sensor

and TCNT from the hardware counter modules. The

rotation sensor reads the number of pulses generated by

a tooth wheel on the drum. The module provides a total

count of the pulses, pulscnt, generated during the arrest-

ment. It also provides two Boolean values, slow_speed and

stopped, i.e., if the velocity is below a certain threshold or

if it has stopped. Period = 1 ms.

CALC uses mscnt, pulscnt, slow_speed, and stopped to

calculate a set point value for the pressure valves,
SetValue, at six predefined checkpoints along the run-
way. The checkpoints are detected by comparing the
current pulscnt with predefined pulscnt-values corre-
sponding to the various checkpoints. The current
checkpoint is stored in i. Period = n/a (background
task, runs when other modules are dormant).

PRES_S reads the pressure that is actually being applied by
the pressure valves, using ADC from the internal A/D-
converter. This value is provided in IsValue. Period = 7
ms.

V_REG uses SetValue and IsValue to control OutValue, the
output value to the pressure valve. OutValue is based
on SetValue and then modified to compensate for the
difference between SetValue and IsValue. This module
contains a software-implemented PID-regulator. Period
= 7 ms.

PRES_A uses OutValue to set the pressure valve via the
hardware register TOC2. Period = 7 ms.

6.2 System Analysis

Prior to running the experiments, we generated the
permeability graph and the backtrack trees and trace
trees for the target system as per the process described in

Section 4. The permeability graph is shown in Fig. 10.
In the graph (Fig. 10), we can see the various perme-

ability values (labels on the arcs) that will have to be
calculated. The numbers used in the notation refer to the
numbers of the input signals and output signals, respec-
tively, as shown in Fig. 9. For instance, PCALC

2;1 is the error
permeability from input 2 (mscnt) to output 1 (i) of module

CALC. From the permeability graph in Fig. 10, we can now
generate the backtrack tree for the system output signal
TOC2, using the steps described in Section 4.2. This tree is
shown in Fig. 11.

As illustrated in the backtrack tree (Fig. 11), we have a
special relation between the leaves for ms_slot_nbr and for i
and their respective parent. This is because the parent node
is also either ms_slot_nbr or i. Thus, we have an output

signal which is connected back to the originating module
giving us a recursive relation. In those cases, where errors
only can enter a system via its main inputs, these branches
of the backtrack-trees can be disregarded.
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In Figs. 12 and 13, we have the trace trees for system

input ADC and system input PACNT, respectively, as
obtained by the processes defined in Section 4.2. The trees

for inputs TIC1 and TCNT are very similar to the tree for

PACNT so they will not be shown here.
As described in Section 4.2, we do not follow the

recursion generated by a feedback from a module to itself.

In module CALC, we have a feedback in signal i and, as can
be seen in Fig. 13, we do not have a child node from i that is

i itself.
In order to calculate impact values for the various

signals, we generated their respective impact trees. De-

picted in Fig. 14, we have the impact tree of the signal
pulscnt (other impact trees have been left out, but are easily

generated by the interested reader).
The impact tree shown in Fig. 14 is actually the left

subtree of the trace tree for system input signal PACNT

shown in Fig. 13. In order to calculate the impact of errors in

pulscnt on system output TOC2, we generate all the

propagation paths from the root to the leaves. Here, with

only one system output, all leaves are considered.
At this point, we have generated all trees and graphs

required for our analysis of the software. The next step is to

estimate numerical values for the individual permeability

values such that we can use the analysis results to identify

the modules and signals, which may prove to be weak-

nesses or hot-spots in the system.

6.3 Experimental Setup

For estimating error permeability values, we used the

Propagation Analysis Environment (PROPANE [14]). This

tool enables fault and error injection, using SWIFI (SoftWare

Implemented Fault Injection), in software running on a

desktop (currently for the Win32 platform). The tool is also

capable of creating traces of individual variables and

different predefined events during the execution. Each

trace of a variable from an injection experiment is compared

to the corresponding trace in the Golden Run. Any

discrepancy is recorded as an error.
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For logging and injection, the target system was

instrumented with high-level software traps. As a trap is

reached during execution, an error is injected and/or data

logged. The traces obtained during execution have milli-

second resolution for every logged variable. Also, we

ported the software to run on a desktop system, so the

intrusion of the traps is nonexistent in our setup as it runs in

simulated time.
In this study, the aim was to produce an estimate of the

error permeability of the modules of the target system. As

described in Section 5, we produced a Golden Run (GR) for

each test case. Then, we injected errors in the input signals

of the modules and monitored the produced output signals.

For each injection run (IR), only one error was injected at

one time, i.e., no multiple errors were injected.

Let us assume that we wish the software to be able to

handle single event upsets (SEUs) caused by, e.g., radiation.

Thus, when producing the estimated error permeability

values, we use single bit-flips as our error model as these

have been found to emulate SEUs well [25]. The input

signals are all 16-bit wide, except PACNT, which is 8-bit

wide. We injected bit-flips in each bit position (one position

at a time) at 10 different time instances distributed in half-

second intervals between 0.5s and 5.0s from start of

arrestment (although only at one time in each IR). In order

to get a varied load on the system and the modules, we

subjected the system to 25 test cases: five masses and five

velocities of the incoming aircraft uniformly distributed

between 8,000-20,000kg and between 40-80m/s, respec-

tively. Thus, for each input signal, we conducted 16 � 10 �
25 ¼ 4; 000 injections (2,000 for PACNT).

The raw data obtained in the IRs was used in a Golden
Run Comparison where the trace of each signal (input and
output) was compared to its corresponding GR trace. The
comparison stopped as soon as the first difference between
the GR trace and the IR trace was encountered. In our
experimental setup—real software running in simulated
time, in a simulated environment, and on simulated
hardware—this is a valid way of comparing traces even
for continuous signals where fluctuations between similar
runs in a real environment may be normal.

When performing the GRC, we only considered direct
propagation. That is, once errors in an IR had propagated
beyond the system boundary (via the system output signal)
and affected the environment such that the inputs to the
system change (compared to the corresponding GR), the
GRC was stopped.

6.4 Experimental Results and Obtained Profiles

In the target system, we have 25 input/output pairs for
which we produced an estimate of the error permeability
measure (see (1)) using the method from Section 5. These
values (Table 1) form the basis for subsequent results,
which are calculated as described in Section 4.

In Table 2, we obtain normalized and nonnormalized
module error permeability values (PM and P̂PM , respec-
tively), normalized and nonnormalized module error
exposure values (XM and X̂XM ) and module impact values
(M e> TOC2) for each module.

The modules DIST_S and PRES_S have no error
exposure values as they only receive system input signals,
i.e., from external sources. This does not mean that these
modules will never be exposed to errors on their inputs, but
rather that the error exposure is dependent on the
probability of errors occurring in the various external data
sources. The modules with the highest nonweighted error
exposure are the CALC module and the V_REG module.
This indicates that these two modules are central in the
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system and that they are good candidates for error detection
and recovery mechanisms.

The module PRES_A has no impact value since the

impact is calculated with regard to its output. One could
perhaps say that this module has an impact of 1.0, as an

error in its output signal (TOC2) is guaranteed to generate
an error in the system output signal (also TOC2). When
calculating module impact, one may also view the environ-

ment as a module and calculate its impact on system
output. In this case, the system input signals are viewed as

the outputs of the environment and calculations are
performed as described in (12). The system only has one

output signal. Thus, no criticality values are calculated as
these would only be scaled impact values.

From the backtrack tree in Fig. 11, we can generate

22 propagation paths from the system output signal to an
input signal. Each of these paths has a total weight, which is

the product of the permeability values of the arcs in the
path. Ordering the paths according to their total weight
gives us some knowledge of the more probable paths for

error propagation. Table 3 depicts the three paths that
acquired weights greater than zero (the paths along which
errors might propagate).

In Table 4, we have both exposure values, XS
s , and

impact values, s e> TOC2, of the various signals of the
target system. Signal TOC2 has no impact value associated
with it as this is the system output signal (one could say that
the impact is 1.0 in this case).

The same information as in Table 4 is depicted
graphically in Figs. 15 and 16. Here, we can clearly see
the difference between the two profiles of the system. The
thickness of a line now depicts the value of the respective
measure—the thicker the line, the higher the value. A
dashed line indicates a zero value and a dashed-dotted line
indicates that no value is assigned to that signal (because it
is either a system input or a system output).

In Figs. 15 and 16, an example of how the rules-of-thumb
for identification of weaknesses and hot spots can be in
conflict with each other is highlighted. Consider the signal
IsValue going from PRES_S to V_REG. With the propagation
analysis, we obtained a zero error exposure value (see
Fig. 15) indicating that errors never (or at least rarely)
propagate into this signal. This suggests that IsValue may
not be a weak part of the software. On the other hand, with
the effect analysis, we obtained a very high error impact
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value. This means that an error in IsValue could have a high
impact should it occur and may cause severe system failure,
which would suggest that IsValue may be a location which
should be considered as a weak spot of the software. Thus,
the propagation analysis and the effect analysis may
identify different weaknesses of the software and corre-
sponding input to system designers regarding cost/benefit
trade offs and implications of placement and design of
structures and mechanisms for dependability.

Next, we show a small example of how the information
provided by the obtained profiles can be used in the
development of dependable software, more specifically, in
the placement of error detection mechanisms (EDMs).

7 SELECTING LOCATIONS FOR EDMs:
AN EXAMPLE OF HOW TO USE THE

OBTAINED PROFILES

In this section, we will select locations for error detection
mechanisms (EDMs) based on the profiles obtained in the
analysis of our target system. We will select two sets of
locations, one based on the propagation profile only and
one based on the propagation and effect profiles.

The mechanisms we have chosen to use for this study are
so called Executable Assertions (henceforth, called EAs)
and are commonly used in embedded software (see, e.g.,
[19], [24], [27]). EAs are usually small snippets of code
which are executed online to check that certain constraints
on the values of variables are not violated, such as
minimum and maximum values and change rate limita-
tions. The specific EAs used in this paper are generic
parameterized mechanisms aimed at individual signals and
are described in [11]. The mechanisms we have at our
disposal are aimed at individual signals, i.e., one mechan-
ism monitors one signal. The mechanisms can monitor

continuous signals with regard to minimum and maximum
values as well as minimum and maximum rates of change.
Discrete signals are monitored with regard to their valid

domain and the transition between the values in that
domain. The mechanisms have difficulties monitoring
Boolean signals as these cannot be modeled very well
given the characteristics of the EAs.

As the chosen mechanisms operate at the signal level, we

will concentrate on the profiles of the system at signal level.
If one were able to replicate entire modules, then the
module level profiles may be useful as well.

7.1 Selection 1: Propagation-Based Selection of
Locations

We start out by basing our selection on the propagation
profile of the system. In the analysis of the profiles of the
system, we only need to take into account those signals
which are along the direct propagation paths from the input

signals to the output signal.
As the EAs we have chosen for our system are aimed at

individual signals, we take a closer look at individual

permeability values and the signal error exposure values

(see Tables 1 and 4, respectively) in order to select the

signals to equip with EAs.
The experimentally ascertained exposure of IsValue is

zero, meaning that errors in ADC are unlikely to propagate
through PRES_S. Thus, although the permeability of errors
from IsValue to OutValue is quite high (0.896), we do not

select IsValue as a location for an EA.
We do not select ms_slot_nbr as errors in this signal do

not propagate into mscnt. We do not select TOC2 either, as
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TABLE 4
Estimated Signal Error Exposures and Impacts on TOC2

Fig. 15. Propagation analysis: Exposure profile.

Fig. 16. Effect analysis: Impact profile.



this is a hardware register and any errors here would most

probably come from the OutValue signal. We do not select

mscnt as this signal has a zero error exposure. We do not

select slow_speed as this signal has a low error exposure and

the mechanisms we have chosen are not particularly geared

at detecting errors in Boolean values.
Based on the results obtained here, we select the

following signals as locations for EAs: SetValue, i, OutValue,

and pulscnt. The first three are selected based on their high

signal error exposure values and the last one as this is the

signal which is most likely to be affected by errors in system

input. We will call this selection the P set.

7.2 Selection 2: Adding the Effect Profile to the
Selection Process

In this section, we will, in addition to the profile provided

by the propagation analysis, also make use of the profile

provided by the error effect analysis of the software system.

Thus, we will now consider not only where errors tend to

propagate but also what effect errors have (regardless of

whether these errors are likely to occur or not). Previously,

we had ascertained that signals SetValue, i, pulscnt, and

OutValue were to be guarded by EAs because of their high

exposure to propagating errors. If we now take into account

the impact of the signals on system output, we see that

signals IsValue, mscnt, and slow_speed may be considered for

being guarded by EAs as well as these have very high

impact values (see Table 4). The mechanisms we have

chosen are implemented in such a way that it is difficult to

detect errors in a Boolean value, thus setting an EA on the

signal slow_speed is not efficient in this case. Therefore,

when taking into account the impact values of the signals,

we can decide to place EAs on IsValue and mscnt as well.

Also, as the permeability value of ms_slot_nbr is 1 and the

assumed error model now introduces errors in the entire

memory space of the system (as opposed to only system

input signals as was the case before), we also select that

signal. We will call this selection the P&E set.

8 COMPARING THE DETECTION COVERAGE OF THE

TWO LOCATION SELECTIONS

In this section, we compare error detection coverage
provided by the two sets of EAs using two distinct error
models: 1) errors are introduced at the system input signals
only and 2) errors are introduced in random locations in
memory. It is important to remember at this point that the
obtained coverage for any set of error detection mechanisms
does not depend on the selected locations alone, but also on
the characteristics of the mechanisms. Thus, in this
comparison, the main interest is the difference in the
number of mechanisms and in coverage rather than actual
absolute coverage values.

8.1 Comparison 1: Errors in System Input Signals

We start with an error model where errors are introduced
only through the system input signals and are transients,
i.e., after one calculation round they are likely to be
overwritten with correct values. This may happen if the
memory and code of the system is protected or shielded in
some way such that external disturbances (e.g., radiation)
do not affect those parts. Sensor values may still be
perturbed, however.

After having added the EAs to the system, we performed
a set of injection experiments. In these experiments, we
used the same tool (PROPANE) and setup as we used for
obtaining the estimates of the individual error permeability
values (as described in Section 6.3), i.e., we injected
transient single-bit errors in system input signals.

In Table 5, we summarize the results from the injection
experiments. The results are shown for each input signal
that was targeted during the experiments. The nerr column
shows how many errors that were active after injection
(e.g., we injected a total of 2,000 errors in PACNT and of
those 1,856 were injected before the arrestment of an
aircraft was completed). The various EAx columns show
the obtained coverage for each individual EA (a dash
indicates zero coverage), calculated as ndet

nerr
. The Total

column is the combined coverage considering all EAs.
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TABLE 5
Obtained Detection Coverage for Errors Injected in System Input



Each row contains the data for errors injected into one
signal/module except. The All row shows the coverage
obtained considering all signals/modules. The rows con-
taining tick-marks indicate which EAs were part of the P set
and/or P&E set, respectively (a tick-mark,

p
, indicates

membership).
In Table 5, we can see that only those errors that were

injected into PACNT were detected. This is on par with the
results obtained in the propagation analysis which indi-
cated that errors in TIC1, TCNT, and ADC propagated with
a very low probability (zero probability for ADC) into any
of the signals selected to be guarded with an EA. Those
errors that propagate are likely to be hard to detect by the
selected mechanisms. However, 97.5 percent of the errors
injected into PACNT were detected. All errors detected by
EA1 (SetValue), EA2 (IsValue), or EA7 (OutValue) were also
detected by EA4 (pulscnt). Here, we can also see that both
sets obtain the same coverage.

It may seem odd that EA2, which guards IsValue, has a
nonzero coverage for errors in PACNT, while no errors
injected into ADC could propagate into IsValue. This,
however, is a result of errors in PACNT propagating all
the way through the system and out beyond the system
barrier where they eventually affect the environment to
such a degree that ADC is affected in a way the PRES_S
module cannot fully mask or contain and the errors are then
detected by the EA guarding IsValue.

From this, we can conclude that if errors can only enter a
system via its input signals, making a selection of EA
locations based on the propagation profile only is sufficient
from an error detection point of view. As fewer mechanisms
are needed, this will also reduce the resource requirements.

8.2 Comparison 2: Errors in Random Locations in
Memory

Here, we use a more severe error model. We still use single
bit flips to generate data errors, but now the target will not
only be system input signals but also intermediate signals
and module state (a total of 150 locations in RAM and
50 locations in the stack) of the system. The errors are
injected not only at one point in time but periodically with a
period of 20 milliseconds. The same 25 test cases were used,
giving us a total of 200 � 25 ¼ 5; 000 runs with injections. An
error is said to be detected if it is detected at least once
during the arrestment. These experiments were performed
on a real setup of the arrestment system (real hardware, real
software, simulated environment—not a simulation run on
a desktop computer) using the FIC3-tool (see [3] for details).

The results are summarized in Table 6. The RAM-column
contains the coverage values for errors injected into the
RAM areas of the modules, and the Stack-column the

coverage values for errors injected into the stack area. The
Total-column contains the coverage for all errors. The
measure ctot is the total coverage of the EA set.

In the columns marked with P&E in Table 6, we can see
the coverage values obtained for the EAs selected by
utilizing both the propagation profile and the effect profile.
The coverage values for the system equipped with the EAs
selected using only the propagation profile are shown in the
columns marked P .

The first observation we make when comparing the
results for the two sets is that the coverage for the P set of
EAs is lower than the coverage obtained using the P&E set
of EAs. For errors injected into RAM, the coverage is just
over half that obtained using the full set of EAs and for
errors in stack the decrease is even greater. This indicates
that using only the propagation profile may prove a
weakness if errors are introduced not only via the inputs
of a system, but also via internal variables and structures.

The results illustrate the important distinction between
permeability/exposure and impact/criticality, where the
former is used for profiling software with regard to its
error propagation characteristics and the latter to profile
software with regard to the effect errors would have if they
were present in different parts of the system. This fact is
also highlighted and discussed in conjunction with Figs. 15
and 16.

From these results, we can conclude that if errors are
introduced not only via the system input signals, selecting
locations for EDMs based on the propagation profile alone
may prove insufficient. The effect profile must also be
considered. This finding in itself may not be very surprising
as the error model used here short-circuits the propagation
process and introduces errors directly in locations where
errors are unlikely to appear if they were to propagate from
system input only. However, using the profiles of the
system enables the developer to make a more educated
identification of the most critical parts of the software.

Even though the profiles have been generated with an
error model that introduces errors only in the inputs of the
modules, the combination of the propagation profiles and
the effect profile lessens the impact of this. Thus, even
though the fault/error model used for profiling the soft-
ware should be the same as the model which the system
should tolerate, the profiles may be useful even in situations
where the system under consideration is subjected to an
error model which is different from the one used for
profiling.

8.3 Discussion on the Comparison

From the comparison made of the two sets of mechanisms,
we can see that, in the first comparison, where errors were
assumed to be introduced only at system inputs, they both
rendered the same detection coverage. However, as the P set
requires fewer resources, it is to be preferred over the P&E
set. In the second comparison, where errors were assumed
to be introduced at random locations in memory, the P&E
set renders a higher coverage than the P set and, therefore,
it should be preferred. From these results, we can see that
the assumed error model has an impact on which profiles
one should use when identifying weaknesses and hot spots.
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To generalize the results, we can say that the profiles
provided by EPIC cover a layered fault model, an onion
model, where we have errors in system input signals at the
core and then add errors in intermediate signals as a layer
around the core. For the core, the propagation profile will
be sufficient, whereas, for the outer layer (which combines
the core with errors in intermediate signals), the propaga-
tion profile is used in combination with the effect profile.
Thus, EPIC provides a composite profiling framework
which is able to accommodate this onion model.

9 DISCUSSION ON FRAMEWORK LIMITATIONS AND

CAVEATS

In this paper, we have presented an analysis framework for
error propagation and effect analysis. We have also used it
in an example study illustrating its ability to indicate
weaknesses and hot spots in a software system. However,
there are limitations to the framework which we highlight
in this section.

One limitation is that, when defining the basic error
permeability measure, we have only considered direct
influence between one input signal and one output signal
of a module. It may be (and, in most practical cases,
probably is) the case that the probability of an error
propagating from a given input signal to a given output
signal of a module is not independent of errors on other
input signals. Thus, the error permeability values may differ
when multiple input signals are erroneous as compared to
when only one input signal is erroneous.

Related to that, we also do not take into account covert
channels through which errors may propagate, i.e., links
between modules which are not explicitly known. A fault
may occur which creates a link such that an error can be
passed from one module to another through an otherwise
nonexistent channel. However, it could be argued that this
pertains to the assumed fault model instead of the
presented analysis framework.

Moreover, the framework currently only considers error
propagation and error effect in a “direct” manner, i.e., we
only take into account errors that propagate from their
original locations to system output directly. This means that
we do not consider errors which might, at one point,
propagate out of the system, affect the environment (the
controlled entity), and then get fed back into the system via
the system input signals. It could be argued that, if the
controlled environment has an inherent inertia (i.e., minor
perturbations on the output signals of the control system do
not affect the environment very much), the probability for
this is small. Thus, this may not present a serious problem;
however, one should bear this possibility in mind.

Also, at this point, we have in our experiments only
considered the basic error model transient bit flips, i.e., an
error was introduced by flipping the value of one bit in one
calculation round. Should other error models be used, the
results obtained by propagation and effect analysis may
need to be reestimated using the basic approach outlined in
EPIC. Even though the use of two distinct profiles lessens
the impact of varying error models (as discussed in [14]),
one should aim at using an error model as close as possible

to the assumed error model for the “real” environment in
which the system is designed to operate.

Another issue to discuss here is the cost of performing an
analysis using EPIC and whether the approach scales with
increasing system size. A module with m inputs and
n outputs generates m � n error permeability values. Thus,
for a large number of modules, the total amount of data
required to produce estimates may be large, depending on
the tools used and the format in which results are stored.
On the other hand, as the approach is modular, i.e.,
estimates for modules are produced individually, experi-
ments may run in parallel, which reduces the total amount
of calendar time required. In the example shown in this
paper, we ran experiments for 60 hours in parallel on up to
four PCs equipped with Intel Pentium 166 MHz processors.

It should be noted here that, as we have discussed in the
comparison (Section 8), we can adopt an onion model for
faults, i.e., we have a core model which is extended with
layers. The framework described in this paper accommo-
dates for a core model where errors are introduced in the
system inputs only and a layer where we add errors in
intermediate signals and locations. Addressing the limita-
tions noted here may result in the addition of more layers to
this fault model. For instance, the covert channels men-
tioned above may be added as a layer outside of the errors
in intermediate signals and locations and outside of that
layer we might add control flow errors. Thus, one may in
the future extend the profiling framework such that it is
able to also consider these new layers while still maintain-
ing the current abilities for the core layers.

10 SUMMARY AND CONCLUSIONS

This paper presents the EPIC framework for analysis of the
propagation and effect of data errors in software. The
system model assumed in this framework is that software is
composed of a set of modules which take in data as signals
and produce output, also as signals. Specifically, the main
contributions of this paper are:

Software Profiling. The EPIC framework is able to
produce distinct profiles of a given modular software
system allowing the assessment of the vulnerability of
software modules and signals to upcoming data errors.
These profiles are 1) an error propagation-based profile and
2) an error effect-based profile. We introduced the basic
measure error permeability defined on an input/output
signal pair basis from which a set of related measures
(both at the signal level and the module level) can be
calculated. The framework has four basic measures all
related to data errors:

1. exposure,
2. permeability,
3. impact, and
4. criticality.

The first two measures relate to the analysis of error
propagation, whereas the last two measures relate to the
analysis of error effect. Thus, the framework is capable of
providing a software designer with two distinct profiles
regarding the software system at hand, upon which design
decisions regarding error detection and recovery can be
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based. As the framework assumes a black-box view of the
software, its applicability is not limited to software
developed in-house, i.e., it can also be used for software
which is provided in libraries where only interface
specifications are provided (e.g., COTS components).

Identifying Weaknesses and Hot Spots. Using the
profiles obtained by using the EPIC framework, we have
shown how one may interpret the results using a set of
guidelines in order to indicate weaknesses and hot spots in
the analyzed software. We have discussed how to identify
those parts of the system which may be a target for
dependability efforts. These methods can also pinpoint
critical signals and paths in a system. Trade offs regarding
these guidelines that might have to be considered are also
discussed.

Experimental Estimation Method. We have described
an experimental method based on fault injection for
obtaining estimates for the error permeability values. This
method is based on transient bit-flips occurring at single
input signals of the various software modules of the
software system. Propagation to the output signals of the
given module is detected by doing a comparison with
“error-free” reference runs (Golden Run Comparisons).

Example Study. We have conducted an experimental
assessment on the software of an embedded control system
for aircraft arrestment. The results illustrate that using the
presented framework generates knowledge on error propa-
gation and error effect, giving insights into software
vulnerabilities that are very useful when designing depend-
able systems. We also show an example of how the obtained
profiles may be used in the selection of locations for error
detection mechanisms.

Discussion on limitations. We have identified and
discussed some limitations and caveats of the EPIC frame-
work. This discussion also suggests directions for future
work regarding the EPIC framework.

Concluding this paper, we state that the presented
analysis framework, EPIC, provides a means for software
profiling which may provide knowledge pertinent to
dependability engineering in software systems.
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Sweden, in 1996 and 2002, respectively. He is
currently with the Volvo Technology Corpora-
tion, Gothenburg, Sweden, and is also a part

time postdoctoral researcher with the Department of Computer Science
at TU Darmstadt, Germany. His research interests include design and
assessment of dependable software, fault injection, error detection, and
recovery mechanisms, mainly aimed at embedded systems. He
received the 2001 William C. Carter Award at DSN for his work on
error propagation analysis, and has been coauthor on other award
winning publications. He is a member of the IEEE and the IEEE
Computer Society.

Arshad Jhumka received the BA and MA
degrees in computer science from the University
of Cambridge, England. He is currently a PhD
candidate at the DEEDS group in the Depart-
ment of Computer Science at TU Darmstadt,
Germany. His research interests and publica-
tions have spanned formal verification, robust
software design, and validation issues. He is a
coauthor of the DSN 2001 Conference Carter
Award paper and also received the “Young

Researcher” award for his paper at the 2002 International Conference
on High Assurance Systems Engineering (HASE). He is a student
member of the IEEE.

Neeraj Suri received the PhD degree from the
University of Massachusetts at Amherst. He
currently holds the TU Darmstadt Chair Profes-
sorship in “Dependable Embedded Systems and
Software” at TU Darmstadt, Germany, and is
also affiliated with the University of Texas at
Austin. His earlier academic appointments in-
clude the Saab Professorship at Chalmers
University of Techniology, Sweden, and earlier
at Boston University. His research interests

focus on design, analysis, and assessment of dependable embedded
systems and software. His current research is emphasizing 1) robust-
ness hardening of software and 2) verification along with experimental
validation of protocols, embedded software, and operating systems. His
group’s research activities have garnered support from US DARPA, US
National Science Foundation, ONR, European Commission, NASA,
Boeing, Microsoft, Intel, Saab, Volvo, and Daimler Chrysler among
others. He is also a recipient of the US NSF CAREER award. He serves
as an editor for ACM Computing Surveys covering embedded systems
and real-time and has been an editor for the IEEE Transactions on
Parallel and Distributed Systems. He is a member of IFIP WG 10.4 on
Dependability, a senior member of the IEEE, and also on the board for
Microsoft’s Trustworthy Computing Academic Advisory Board. More
research and professional details are available at http://www.deeds.in-
formatik.tu-darmstadt.de/.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HILLER ET AL.: EPIC: PROFILING THE PROPAGATION AND EFFECT OF DATA ERRORS IN SOFTWARE 19


