
Error Recovery Using Forced Validity Assisted by Executable Assertions for
Error Detection: An Experimental Evaluation*

Martin Hiller
Department of Computer Engineering
Chalmers University of Technology

SE-412 96, Göteborg, SWEDEN
hiller@ce.chalmers.se

* This research was supported by Volvo and by NUTEK under contract 1P21-97-4745.

Abstract

This paper proposes and evaluates error detection and
recovery mechanisms suitable for embedded systems. The
purpose of these mechanisms is to provide detection of
and recovery from data errors in internal variables. A
classification scheme for variables enables us to construct
a parameterised detection and recovery mechanism for
each variable. Error detection is handled by executable
assertions and recovery is attempted by forcing an
erroneous variable into the valid domain of that variable.
The effect on failure probability from some of the
proposed mechanisms is evaluated in an error injection
experiment targeting an embedded system. Errors were
injected into the original system without mechanisms as
well as into an instrumented system. Results show that the
failure probability decreased most for errors in monitored
variables and very little for errors in variables that were
not directly monitored. For errors in the stack and CPU
registers, no significant change was observed.

1. Introduction

In the last decade or two, computers have found their
way into systems aimed mainly at the consumer market.
For instance, modern cars have a large number of
embedded control systems handling many of the electrical
functions in the car. More and more safety-related
functions are controlled by software, thereby making
software reliability crucial in these systems. In addition,
the high-volume production series of consumer systems
demands low production cost as well as low maintenance
cost. This, together with the requirements on high
reliability, motivates the search for inexpensive, yet
effective, techniques to improve the ability of software to

cope with faults and errors.
A common way of coping with faults and errors using

software is to deploy multiple, diverse versions of the
software. These versions may be organised in a variety of
structures such as, for example, N-version programming
[1] or recovery blocks [2]. However, systems using such
structures will, in most cases, be high-cost systems since
multiple, functionally equivalent versions must be
developed. Also, more powerful hardware is often needed,
increasing the production cost. Therefore, such structures
are most commonly found in systems that can carry a high
cost level – e.g. the systems controlling aircraft, spacecraft
or nuclear power plants. Also, Randell and Xu [3] state
that “the overall success of recovery block schemes rests
to a great extent on the effectiveness of the error detection
mechanism used – especially on the acceptance tests”.
This makes the search for inexpensive error detection
techniques valid also for structures like recovery blocks.

Error detection may be provided using on-line tests of
internal data in the form of executable assertions [4].
Executable assertions test the validity of the value of a
variable using predefined rules and can be used both
during software development to aid developers in finding
faults in the system [5] and when the system is operational
as part of fault-tolerance mechanisms [6]. The main
drawback of executable assertions is that they are highly
application specific, meaning that in order to construct
effective assertions, developers must have extensive
knowledge of the target system. Studies have shown that
the ability to develop effective assertions is highly
individual among software developers [7]. By making the
development of executable assertions a part of the normal
system design process rather than a task that is performed
when the system enters a test phase, or even worse, after
the system has been made operational, may decrease the
effect of differences between individuals.

Rabéjac presented a development method for
executable assertions [6]. Unfortunately, no in-depth
description of this method was provided. Stroph and
Clarke presented dynamic acceptance tests [8], which are
executable assertions with dynamic constraints. However,
their proposed scheme applies only to linear, causal, time-
invariant systems. Many systems, though, may not be
time-invariant, and therefore require other measures.

This paper proposes a method for systematically
classifying the internal data signals in an embedded
control system. A specific set of validity constraints is
assigned to each signal class in this classification. These
constraints are used to detect errors and to recover the
signal from these errors. The proposed recovery
mechanism is called forced validity, as it maintains the
validity of the internal data by forcing erroneous signals
into their respective valid domain.

In order to evaluate the detection and recovery
capability of the proposed mechanisms, a case study on an
embedded control system used for arresting aircraft was
carried out. The case study aimed at assessing the impact
of the proposed mechanisms on failure behaviour induced
by internal data errors. Although both hardware faults and
software faults may induce such errors, the case study
concentrates on errors induced by hardware faults.

Section 2 contains a description of the proposed
classification scheme and the executable assertions and
forced validity recovery mechanisms. Section 3 describes
the case study. The results of the experiments are shown
in section 4. Section 5 consists of a discussion of the
obtained results and section 6 summarises the study and
proposes future work.

2. Error detection and recovery

Error detection in the form of executable assertions can
potentially detect any error in internal data caused by
either software faults or hardware faults [7]. When input
data arrive at a functional block (e.g. a function or
procedure), they are subjected to executable assertions
determining whether they are acceptable. Output data
from calculations may also be tested to see if the results
seem acceptable. Should an error be detected, measures
can be taken to recover from the error, and the signal can
be returned to a valid state.

2.1. Signal classification

Constructing executable assertions and recovery
mechanisms is very application specific. A rigorous way
of classifying the data that are to be tested will help to
determine the valid domain for the signals. This paper
proposes a classification scheme to systemise the

construction of executable assertions and recovery
mechanisms (shown in Figure 1).

The two main categories in the classification scheme
are continuous and discrete signals. These categories have
subcategories that further classify the signal. Details are
found below.

All signals in an embedded control system may be
classified according to the proposed scheme. For every
signal class we can set up a specific set of constraints,
such as boundary values and rate limitations, which are
then used in the executable assertions and recovery
mechanisms. In order to enable a signal to have different
behaviours during different modes of operation in the
system, a signal may have one set of constraints for each
such mode. Which constraints are to be used is defined by
the current mode of the signal.

Figure 1. Signal classification scheme.

Error detection is performed as a test of the constraints.
A violation of a constraint is interpreted as the detection
of an error. Error recovery is achieved by forcing validity
onto the erroneous signal. That is, the erroneous signal is
set to a valid “best-effort” value based on the constraints
of that particular signal and the previous (valid) value.
The recovery mechanisms are separate from the
classification scheme, meaning that other recovery
mechanisms may be devised using the same classification.

Continuous signals. The continuous signals are often
used to model signals in the environment that are of
continuous nature. Such signals are typically
representations of physical signals such as temperatures,
pressures or velocities.

The continuous signals can be divided into monotonic
and random continuous signals. Monotonic signals must
either increase or decrease their value monotonically and
cannot, for example, increase between the first and the
second test and then decrease between the second and the
third test. However, they may be allowed to remain
unchanged between tests. The monotonic signals can have
either a static rate or a dynamic rate. A signal with static
rate must either increase or decrease its value with a given
constant rate. A signal with dynamic rate, however, can
change at any rate that is within the specified range. The
random continuous signals may decrease or increase (or

Random

Signals

Static

Continuous

Discrete

Monotonic

Random

Sequential

Dynamic

Linear

Non-linear

remain unchanged) between tests (that is, they may
randomly increase or decrease between tests).

Also, a signal may be allowed to wrap around, i.e.
when it has reached its maximum or minimum value, it
may continue “on the other side”. This is visualised in
Figure 2, which shows examples of the three types of
continuous signals.

Figure 2. Continuous signals: (a) random,
(b) static monotonic (with wrap-around), (c)
dynamic monotonic

For the proposed error detection and recovery
mechanisms (see section 2.2), we assign to each
continuous signal a set Pcont containing seven different
parameters: smax (maximum value), smin (minimum value),
rmin,incr (minimum increase rate), rmax,incr (maximum
increase rate), rmin,decr (minimum decrease rate), rmax,decr

(maximum decrease rate), and w (wrap-around
allowed/not allowed). Each of these signal classes
imposes certain constraints on the parameters, as shown in
Table 1.

Signal class Parameters
All smax > smin, w = allowed/not allowed

Static monotonic
(rmax,incr = rmin,incr = 0, rmax,decr = rmin,decr > 0) or
(rmax,decr = rmin,decr = 0, rmax,incr = rmin,incr > 0)

Dynamic monotonic
(rmax,incr = rmin,incr = 0, rmax,decr > rmin,decr ≥ 0) or
(rmax,decr = rmin,decr = 0, rmax,incr > rmin,incr ≥ 0)

Random rmax,incr ≥ rmin,incr ≥ 0, rmax,decr ≥ rmin,decr ≥ 0

Table 1. Parameters for continuous signal
classes.

For statically increasing monotonic signals the change
rate limits for decrease are set to zero (i.e. rmin,decr =
rmax,decr = 0) and the change rate limits for increase are set
to the same value (i.e. rmin,incr = rmax,incr > 0). For a
statically decreasing signal, instead the increase rate limits
are set to zero and the increase rates are both set to the
same value. For random continuous signals we have
different values for the change rate limits (i.e. rmin,incr ≠
rmax,incr and/or rmin,decr ≠ rmax,decr). These parameters are
static, but dynamic constraints as in [9] may also be
considered.

Discrete signals. Discrete signals are allowed to take on a
set of discrete values. They often contain information on
the settings on an operator panel or the operation mode of
the system. Actually, all signals containing some kind of
state information internal or external to the system may be

classified as discrete signals. For instance, execution
sequences that must be followed in a certain order, or state
machines with a number of states and a number of
transitions between the states, may be modelled as
discrete signals. The discrete signals are divided into
sequential and random signals.

A sequential signal has constraints on how it may
change its value from any given other value, i.e. the order
of change is restricted. They are divided into linear and
non-linear signals. Linear signals must traverse their valid
domain in a fixed predefined order, one value after
another. For instance, the execution sequence mentioned
above could be modelled as a linear signal. Non-linear
signals traverse their valid domain in predefined ways.
The random signals are allowed to make any transition
from one value to another within the valid domain of the
signal.

For the proposed error detection and recovery
mechanisms (see section 2.2) we assign to each signal a
set Pdisc containing these parameters: D (the set of valid
values), T(d) (the set of valid transitions from element d in
D; there is one set for each element in D), ddef (the default
value of the signal).

Signal modes. The behaviour of a signal may differ
between the different phases of operation of the system.
Therefore, a signal can have different modes. A specific
set of constraints is generated for each such mode, i.e. a
signal with several modes has one parameter set Pcont or
Pdisc for each mode. The set used in a certain mode m is
Pcont(m) or Pdisc(m). Mode variables (m in this case) can be
classified as discrete signals in themselves, so that error
detection and recovery may also be implemented for them.

Modes may also be used to model certain dependencies
between signals. That is, if the behaviour of signal A is
limited due to the operational mode of signal B, these two
signals can be grouped by means of signal modes
representing this dependency. Furthermore, using different
modes may increase the possibility of detecting errors.

An example of a signal that may have at least two
different operational modes is battery charge. During
normal operation it may be that the charge is only allowed
to decrease or remain unchanged, whereas in a reloading
mode the charge may only increase or remain unchanged.
This would make error detection even more efficient than
if the signal were modelled using only one mode allowing
both behaviours.

2.2. Executable assertions and forced validity

Error detection is performed using the configuration
parameters of the signals to build executable assertions.
An error in a signal is detected as soon as the signal
violates any of the constraints given by the configuration

(a) (b) (c)

parameters. The recovery mechanism is a rather intuitive
scheme called forced validity, which assigns a recovery
value within the valid domain of the signal (either as close
as possible to the erroneous value or a default value). The
validity constraints and recovery mechanisms for
continuous and discrete signals are shown in Tables 2 and
3, respectively. In these tables, s is the current signal
value, s’ is the previous signal value, sr is the recovered
signal, and the symbol Ç denotes “is assigned”. Note that
error detection and recovery for continuous signals is only
dependent on the parameters, not the signal class.

For continuous signals, there are different validity
constraints depending on the relationship between s and s',
as indicated by the Signal status column. Each set of tests

is performed in the order given by the
Test No. column. A validity constraint is
used when the conditions in the
Conditions for test column are true. If a
constraint is violated, the corresponding
recovery mechanism is used immediately,
before any further tests are performed.
This means that if for example a signal is
above its maximum limit it will be set to
smax in test 1 and will therefore no longer
be above its maximum for the remaining
tests. The constraint in 5c is violated only
if the signal is not allowed to remain
unchanged (unless it already is at its
extreme values and is not allowed to wrap
around). Therefore, the recovery
mechanism in test 5c, “always increase”,
is a matter of choice. One may also
choose recovery according to 5c', “always
decrease”. In our case study, we
implemented mechanism 5c.

For discrete signals, the validity
constraints are always tested. If a
constraint is violated, the corresponding
recovery mechanism is used and the test
is terminated.

Since the mechanisms for error
detection and recovery are parameterised,
it is possible to formally verify the
algorithms used in the mechanism. This
can totally eliminate the probability of
faults in the mechanisms.

2.3. Location and parameters

A number of different methods may be used to
determine where the assertions and recovery mechanisms
should be placed. From system design, the software
should already be divided into functional blocks. In
safety-critical systems, FMECA (Failure Mode Effect and
Criticality Analysis) is widely used as a method for
identifying the safety critical parts of the system and
assessing the consequences of failures in these parts.

Parameter information may be obtained by the
characteristics of the system itself. For instance, sensors
naturally have a time constant dictating the maximum rate
of change for the data provided by that sensor. Properties
of the physical surroundings of the systems are also a
source of parameter values. For discrete signals, typical
sources of information are allowed settings on user panels,
or internal state machines.

The process of gathering information for parameter
values for executable assertions forces developers to
review the system they have developed. This may assist in

Signal class Validity constraint Recovery
Random s ∈ D sr Ç ddef

s ∈ D
Linear sequential

s ∈ T(s´)
sr Ç T(s´)

s ∈ D
Non-linear sequential

s ∈ T(s´)
sr Ç ddef

Table 3. Error detection and recovery
for discrete signals.

Signal
status

Test
No.

Conditions for test Validity constraint Recovery

1 Always s ≤ smax sr Ç smax
–

2 Always s ≥ smin sr Ç smin

3a w = not allowed s – s' ≤ rmax,incr sr Ç s' + rmax,incr

4a
s – s' > rmax,incr and
w = allowed

(s' – smin) + (smax – s) ≤ rmax,decr sr Ç (smax – rmax,decr) + (s' – smin)

s > s'

5a
s – s' ≤ rmax,incr and
(s < smax or
w = allowed)

s – s' ≥ rmin,incr

if smax – s' ≥ rmin,incr then
sr Ç s' + rmin,incr

else if w = allowed then
sr Ç (smin + rmin,incr) – (smax – s')

else
sr Ç smax

3b w = not allowed s' – s ≤ rmax,decr sr Ç s' – rmax,decr

4b
s' – s > rmax,decr and
w = allowed

(smax – s') + (s – smin) ≤ rmax,incr sr Ç (smin + rmax,incr) – (smax – s')

s < s'

5b
s' – s ≤ rmax,incr and
(s > smin or
w = allowed)

s'– s ≥ rmin,decr

if s' – smin ≥ rmin,decr then
sr Ç s' – rmin,decr

else if w = allowed
sr Ç (smax – rmin,decr) + (s' – smin)

else
sr Ç smin

3c

rmin,incr = 0 and
rmax,incr = 0 and
(s > smin or
w = allowed)

rmin,decr = 0

if s' – smin ≥ rmin,decr then
sr Ç s' – rmin,decr

else if w = allowed
sr Ç (smax – rmin,decr) + (s' – smin)

else
sr Ç smin

4c

rmin,decr = 0 and
rmax,decr = 0 and
(s < smax or
w = allowed)

rmin,incr = 0

if smax – s' ≥ rmin,incr then
sr Ç s' + rmin,incr

else if w = allowed then
sr Ç (smin + rmin,incr) – (smax – s')

else
sr Ç smax

5c

not (rmin,decr = 0 and
rmax,decr = 0) and not
(rmin,incr = 0 and
rmax,incr = 0) and
(s < smax or
w = allowed)

rmin,incr = 0 or rmin,decr = 0

if smax – s' ≥ rmin,incr then
sr Ç s' + rmin,incr

else if w = allowed then
sr Ç (smin + rmin,incr) – (smax – s')

else
sr Ç smax

s = s'

5c'

not (rmin,decr = 0 and
rmax,decr = 0) and not
(rmin,incr = 0 and
rmax,incr = 0) and
(s > smin or
w = allowed)

rmin,incr = 0 or rmin,decr = 0

if s' – smin ≥ rmin,decr then
sr Ç s' – rmin,decr

else if w = allowed
sr Ç (smax – rmin,decr) + (s' – smin)

else
sr Ç smin

Table 2. Error detection and recovery for continuous signals.

identifying contradicting specifications and/or parts that
have not yet been properly analysed.

3. Case study

As an assessment of the effect of the proposed scheme
on the failure symptoms of an embedded control system,
we conducted an evaluation using error injection.

3.1. Target system

The target system is an aircraft-arresting system
resembling those found on runways and aircraft carriers.
The specifications of the system are based on
specifications found in [10]. It consists of a cable strapped
between two tape drums, one on each side of the runway
(see Figure 4). Two computer nodes control the drums:
one master node and one slave node. An incoming aircraft
catches the cable by means of a hook, and a rotation
sensor on the master drum periodically tells the master
node the length of the pulled out cable. The master node
calculates the set point pressure to be applied to the drums
by means of hydraulic pressure valves. The pressure slows
the rotation of the drums and brings the aircraft to a halt.
The slave node receives its set point pressure value from
the master node and applies this to its drum. Pressure
sensors on the valves give feedback to their respective
nodes about the pressure that is actually being applied so
that a software-implemented PID-regulator can keep the
actual pressure as close to the set point pressure as
possible.

Physical limitations put constraints on the system:
• Retardation (r). The retardation of the aircraft shall

not have a negative effect on the pilot. Constraint:
r < 2.8g

• Retardation force (Fret). The retarding force shall not
exceed the structural limitations of the aircraft.
Constraint: Fret < Fmax. The maximum allowed
forces (Fmax) are defined for several aircraft
masses and engaging velocities in [10].

• Stopping distance (d). The braking distance of the
aircraft shall not exceed the length of the runway.
Constraint: d < 335 m

A violation of one or more of these constraints is
defined as a failure.

3.2. Software instrumentation

The software of the system consists of a number of
periodic processes and one main background process. An
overview of the basic architecture is shown in Figure 3.

DIST_S monitors the rotation sensor and provides a
total count of the pulses, pulscnt, generated during the

arrestment. CLOCK provides a clock, mscnt, with one
millisecond resolution. CALC (which is the main
background process) uses those two signals to calculate a
set point value for the pressure valves, SetValue, at
predefined checkpoints along the runway. The number of
the current checkpoint is stored in the checkpoint counter,
i. The actual pressure applied by the valves, IsValue, is
provided by PRES_S, which monitors the pressure sensor.
V_REG uses the signals SetValue and IsValue to control
OutValue, the output value to the pressure valve. PRES_A
uses the OutValue signal to set the pressure valve. All
modules are periodic except for CALC, which runs when
the other modules are dormant. CLOCK and DIST_S both
have a period of 1 ms and the other modules have periods
of 8 ms.

Figure 3. The basic software architecture.

The signals in Figure 3 are service critical, i.e. they are
essential for the system to provide proper service and for
this experiment were selected as test signals. The
classifications and parameters of the signals are seen in
Table 4.

Signal Producer Consumer Test location Class

i CALC CALC CALC CMD
SetValue CALC V_REG V_REG CR
OutValue V_REG PRES_A PRES_A CR
mscnt CLOCK CALC CLOCK CMS
pulscnt DIST_S CALC DIST_S CMD
IsValue PRES_S V_REG V_REG CR

Table 4. Classification of the signals in the
target system.

In Table 4, the Producer is the originating module of a
signal, the Consumer is the receiving module, and the Test
Location is where the executable assertion and force
validity mechanism were placed. The Class is how the
signal was classified (C = continuous, R = random, M =
monotonic, S = static rate, D = dynamic rate).

Using these classifications, we constructed executable
assertions and recovery mechanisms as described in
section 2. The locations of these assertions are shown in
Figure 3 above (the small boxes with T’s inside).

Note that no signals were classified as discrete. In this
system there is only one signal which could have been
classified as discrete and that is the checkpoint counter, i,
since it dictates a sequence (the checkpoints must come in
a certain order).

pulscnt

mscnt

Rotation
sensor

Pressure
sensor

SetValue

IsValue OutValue
Pressure

valve

i

DIST_S

CLOCK
CALC

PRES_AV_REGPRES_S

T
T

T

T

T

T

3.3. Fault injection environment

As seen in Figure 4, the target system was hooked up to
the fault injection experiment system FIC3 (Fault Injection
Campaign Control Computer, see [11] for details).

The FIC3 is capable of injecting errors into the target
system. The injected errors consist of modifications of
processor registers and memory areas where variables of
the software modules are stored. Previous studies have
shown that injecting bit-flips into a system using software-
implemented fault-injection (SWIFI) closely resembles
the behaviour of hardware failures [12]. An environment
simulator acts as the barrier and as the incoming aircraft.

Figure 4. The FIC3 and the target system.

3.4. Experimental set-up

We created two error sets: E1 containing 160 errors,
and E2 containing 30 errors. Each error in E1 is configured
as a random bit-flip in either the stack area, the memory
areas of the software modules, or the internal registers of
the processor, modelling random hardware faults. The
distribution of errors in E1 is shown in Table 5.

Memory
area

Size
(bytes)

errors
(ne)

Error
numbers

injections
(ne⋅25)

Stack 1008 25 1-25 625
CALC 164 55 26-80 1375
CLOCK 12 15 81-95 375
PRES_A 12 10 96-105 250
PRES_S 2 5 106-110 125
DIST_S 13 15 111-125 375
V_REG 36 15 126-140 375
Registers 3 20 141-160 500
Total 1250 160 – 4000

Table 5. The distribution of errors in E1.

Signal
errors

(ne)
Error

numbers
injections

(ne⋅25)
i 5 S1-S5 125
SetValue 5 S6-S10 125
OutValue 5 S11-S15 125
mscnt 5 S16-S20 125
pulscnt 5 S21-S25 125
IsValue 5 S26-S30 125
Total 30 – 750

Table 6. The distribution of errors in E2.

The errors in E2 specifically target the signals for
which executable assertions and recovery mechanisms

have been constructed (see Figure 3), and model errors in
the monitored signals. The distribution of errors in E2 is
shown in Table 6.

All errors were injected in the master node. For each
error in the error sets, the system was subjected to 25 test
cases, i.e. incoming aircraft with velocity ranging from 40
m/s to 70 m/s, and mass ranging from 8000 kg to 20000
kg. The injections were made for the original system, i.e.
without the executable assertions and recovery
mechanisms, and for the instrumented system, i.e. with
executable assertions and recovery mechanisms, giving a
total of 9500 error injections.

The error sets were generated by random assignment of
errors to the various memory areas and signals, but the
same errors were used for both systems. The error
injections were time triggered and were injected with a
period of 10 ms (recall that most modules in the target
system have a period of 8 ms). Thus, errors may have
been injected during the execution of the executable
assertions or the execution of the recovery mechanisms.
The runs were recorded and compared.

4. Results

We injected errors in two embedded systems: the
original target system and an instrumented version.
Specifically, we injected two error sets, E1 and E2,
containing 160 errors and 30 errors respectively, for 25
test cases in each system. Table 7 shows a summary of the
results for E1. Table 8 shows a summary of the results for
E2. For each area or signal, we see the number of
injections and the number of resulting failures. The
success rate is the normalised fraction of successful runs
performed by the system. The number of failures and the
success rate are shown for both systems. The reduction is
a measure of how well the instrumented system handled
failures as compared to the original system, and is
calculated as 100%⋅(Fo-Fi)/Fo. A 100%-reduction means
that all failures in the original system were handled in the
instrumented system. A negative reduction means that the
number of failures increased in the instrumented system.

Table 9 shows the number of failed runs per test case
for error set E2. The Mass column contains the mass of the
incoming aircraft and the Velocity column contains the
engaging speed. All 30 errors in E2 were injected for each
test case. To determine the statistical significance of the
difference between the original and the instrumented
system we perform a t-test. Let the null hypothesis be: the
executable assertions and recovery mechanisms do not
reduce the number of failures. Data for error set E2 (Table
9) give t0 = 1.7093 with 48 degrees of freedom, and P(t >
t0) = 0.047. We can therefore reject the null hypothesis
with α < 0.05.

Master Slave

Rotation
sensor

Pressure
sensor

Pressure
valve

Pressure
sensor

Pressure
valve

Cable

Tape drum (Master) Tape drum (Slave)

Environment simulator

FIC3 Test case
information

Error
injection

Test
readouts

5. Discussion

We injected two sets of errors into our target system:
one modelling random hardware faults (E1), where each
error was a bit-flip in random areas of the system memory
and CPU registers, and one modelling data errors in
specific signals (E2), targeting the signals which were
fitted with our mechanisms.

The errors were injected periodically with a period of
10 milliseconds. The target system has a main period of 8
milliseconds. Therefore, the errors are likely to affect the
system in a manner that cannot be said to model software
faults, since such faults would most likely induce data
errors with a period matching that of the system.

The results from error set E1 show that errors injected
into the stack and the registers caused approximately the
same amount of failures in both systems. It may be argued
that these errors are more malicious than those injected
into the memory area of specific software modules and
would very likely lead to control flow errors. The
proposed mechanisms are not aimed at detecting or
recovering from such errors.

For the different software modules, the reduction in
failures induced by random hardware faults varies (error
set E1, see Table 7). The low overall reduction for errors
injected randomly in the memory areas of the modules is
mainly due to the following reasons:
1. Errors occurred with a period not matching that of the

system. This increased the probability of errors
occurring between the test of a signal and the usage
of that signal, thereby nullifying the effect of any
recovery that may have been performed.

2. Errors were injected into variables not covered by
assertions and recovery mechanisms. These errors are
likely to affect the system in a way that the executable
assertions cannot detect.

3. Errors were injected into variables belonging to the
executable assertions and recovery mechanisms.
Since these mechanisms were inactive in the original
system, those errors did not cause any failures,
whereas in the instrumented system, where the
executable assertions and recovery mechanisms were
active, they caused failures.

Point 1 highlights a fundamental difference between
software-based and hardware-based fault-tolerance
techniques. Whereas the hardware-based techniques are
always active and ready to handle errors, the software-
based techniques are active only at certain points in time.
If a data error occurs between the execution of a test on
the data and the usage that data, the software-based
techniques cannot detect the error, much less recover from
it.

Point 2 shows that error detection and recovery
mechanisms aimed at specific signals and data areas are
not effective against errors occurring in signals related to
the monitored ones.

Point 3 shows that it is very important to separate the
memory areas of error detection and recovery mechanisms
from the memory areas of the application. Preferably, the
mechanisms should also be located in other, more reliable,
memory circuits.

The results from error set E2 (Table 8) show that when
the errors directly affect variables monitored by the
mechanisms, the reduction in the number of resulting
failures is greater than if the errors affect randomly chosen

Memory
area

inj.
fails
(orig.)

Fo

Success
rate

fails
(instr.)

Fi

Success
rate

Reduction

Stack 625 52 0.9168 49 0.9216 5.77%
CALC 1375 57 0.9585 46 0.9665 19.30%
CLOCK 375 10 0.9733 21 0.9440 -110.10%
PRES_A 250 0 1.000 0 1.0000 N/A
PRES_S 125 3 0.9760 10 0.9200 -233.33%
DIST_S 375 65 0.8267 43 0.8853 33.85%
V_REG 375 5 0.9867 7 0.9813 -40.00%
Registers 500 277 0.4460 271 0.4580 2.17%
Total 4000 469 0.8828 447 0.8883 4,69%

Table 7. The results from the injection
experiments with error set E1.

Test
case #

Mass
(kg)

Velocity
(m/s)

fails
(orig.)

#fails
(instr.)

Diff.

1 8,000 40 1 1 0
2 8,000 48 1 1 0
3 8,000 55 4 2 -2
4 8,000 63 2 5 3
5 8,000 70 7 5 -2
6 11,000 40 1 0 -1
7 11,000 48 2 0 -2
8 11,000 55 2 0 -2
9 11,000 63 6 0 -6
10 11,000 70 8 4 -4
11 14,000 40 1 0 -1
12 14,000 48 2 1 -1
13 14,000 55 6 3 -3
14 14,000 63 6 6 0
15 14,000 70 9 6 -3
16 17,000 40 2 0 -2
17 17,000 48 6 1 -5
18 17,000 55 8 5 -3
19 17,000 63 8 7 -1
20 17,000 70 11 10 -1
21 20,000 40 1 0 -1
22 20,000 48 4 5 1
23 20,000 55 7 7 0
24 20,000 63 12 8 -4
25 20,000 70 12 10 -2

Total 129 87 -42

Table 9. Number of failures per test
case for error set E2.

Signal # inj.
fails
(orig.)

Fo

Success
rate

fails
(instr.)

Fi

Success
rate

Reduction

i 125 48 0.6160 36 0.7120 25.00%
SetValue 125 4 0.9680 3 0.9760 25.00%
OutValue 125 1 0.9920 0 1.0000 100.00%
mscnt 125 9 0.9280 7 0.9440 22.22%
pulscnt 125 63 0.4960 39 0.6880 38.10%
IsValue 125 4 0.9680 2 0.9840 50.00%
Total 750 129 0.8280 87 0.8883 32.56%

Table 8. The results from the injection
experiments with error set E2.

variables. These findings suggest that the locations of the
detection and recovery mechanisms largely influence the
degree of their success, which is consistent with findings
reported in [7]. Our results indicate that error detection
and recovery mechanisms should be located as close to
the receiver of a signal as possible or be performed when
the receiver of a signal accesses the value.

The system used in the case study did not contain any
signals we could classify as discrete signals, making the
evaluation valid only for continuous signals. This,
however, may indicate that the majority of signals in an
embedded system may be modelled as continuous signals.

6. Summary and future work

In this paper, we have proposed a classification method
for internal signals in embedded control systems, enabling
the construction of parameterised error detection and error
recovery mechanisms. For error detection, we set up
several formal constraints that have to be fulfilled by the
signals and that are tested in executable assertions. An
error is detected if any of these constraints is violated. The
proposed error recovery mechanism forces an erroneous
signal into its valid domain by assigning it a “best effort”
value according to the parameters determined by the
classification of the signal (forced validity).

A case study was performed to study the effect on the
failure behaviour of an embedded system. Two versions
of an aircraft arresting system – one without and one with
the proposed mechanisms – were compared. Both
versions were subjected to two error sets that modelled
intermittent hardware faults: one exercising random bit-
flips in memory areas and processor registers, and one
specifically targeting the monitored signals.

The results show that the location of executable
assertions and recovery mechanisms is of the utmost
importance to the effectiveness of the mechanisms. Errors
that occur in data not monitored by the error detection and
recovery mechanisms are poorly handled. Also, the
memory areas of the mechanisms should be separated
from the application memory or else the mechanisms will
be as vulnerable to errors as the variable they monitor.

Failures induced by random errors in stack and CPU
registers were not significantly affected. These errors
more likely lead to control flow errors, which the
proposed mechanisms cannot detect or recover from.

This study has not examined the capability of the
proposed error detection and recovery mechanisms on a
detailed level. Further studies will include a study of the
error detection coverage given that an error does exist in
the tested signal and the error recovery coverage given
that an error is detected. We will also study errors induced
by software faults using fault injection experiments, i.e.
altering the source code to emulate software faults.

Acknowledgement

We would like to thank Robert Feldt, Marcus Rimén
and Jörgen Christmansson for their comments on this
paper, and Christine Räisänen for language support. We
are also grateful for the comments of the reviewers, which
helped to increase the quality of this paper. This research
was financially supported by Volvo and by the National
Board for Industrial and Technical Development
(NUTEK), Sweden, under contract 1P21-97-4745.

References

[1] Avizienis A., “The N-Version Approach to Software Fault-
Tolerance”, IEEE Transactions on Software Engineering,
Vol. 11, No 12, pp. 1491-1501, 1985

[2] Randell B., “System Structure for Software Fault-
Tolerance”, IEEE Transactions on Software Engineering,
Vol. 1, No. 2, pp. 220-232, 1975

[3] Randell B., Xu J., “The evolution of the recovery block
concept”, Software Fault Tolerance, Lye M.R. (ed.),
Chapter 1, Willey, 1995

[4] Andrews D.M., “Using Executable Assertions for Testing
and Fault Tolerance”, Proceedings 9th International
Symposium on Fault-Tolerant Computing, pp. 102-
105,1979

[5] Mahmood A., Andrews D.M., McCluskey E.J.,
“Executable Assertions and Flight Software”, Proceedings
6th Digital Avionics Systems Conference, pp. 346-351,
Baltimore (MD), USA, AIAA/IEEE, 1984

[6] Rabéjac C., Blanquart J.-P., Queille J.-P., “Executable
Assertions and Timed Traces for On-Line Software Error
Detection”, Proceedings 26th International Symposium on
Fault-Tolerant Computing, pp.138-147, 1996

[7] Leveson N.G., Cha S.S., Knight J.C., Shimeall T.J., “The
Use of Self Checks and Voting in Software Error
Detection: An Empirical Study”, IEEE Transactions on
Software Engineering, Vol. 16, No. 4, pp. 432-443, 1990

[8] Stroph R., Clarke T., “Dynamic Acceptance Tests for
Complex Controllers”, Proceedings 24th Euromicro
Conference, pp.411-417, 1998

[9] Clegg M., Marzullo K., “Predicting Physical Processes in
the Presence of Faulty Sensor Readings”, Proceedings 27th

International Symposium on Fault-Tolerant Computing,
pp.373-378, 1996

[10] US Air Force – 99, “Military specification: Aircraft
Arresting System BAK-12A/E32A; Portable, Rotary
Friction”, MIL-A-38202C, Notice 1, US Department of
Defence, September 2, 1986

[11] Christmansson J., Hiller M., Rimén M., “An Experimental
Comparison of Fault and Error Injection”, Proceedings 9th

International Symposium on Software Reliability
Engineering, pp. 369-378, 1998

[12] Rimén M., Ohlsson J., Torin J., “On Microprocessor Error
Behavior Modelling”, Proceedings 24th International
Symposium on Fault-Tolerant Computing, pp.76-85, 1994

