
On the Placement of Software Mechanisms for Detection of Data Errors �

Martin Hiller, Arshad Jhumka, Neeraj Suri
Department of CE, Chalmers Univ., Göteborg, Sweden

fhiller, arshad, surig@ce.chalmers.se
http://www.ce.chalmers.se/LDC/DEEDS

Abstract

An important aspect in the development of dependable
software is to decide where to locate mechanisms for effi-
cient error detection and recovery. We present a compar-
ison between two methods for selecting locations for er-
ror detection mechanisms, in this case executable asser-
tions (EA’s), in black-box modular software. Our results
show that by placing EA’s based on error propagation anal-
ysis one may reduce the memory and execution time re-
quirements as compared to experience- and heuristic-based
placement while maintaining the obtained detection cover-
age. Further, we show the sensitivity of the EA-provided
coverage estimation on the choice of the underlying error
model. Subsequently, we extend the analysis framework
such that error-model effects are also addressed and intro-
duce measures for classifying signals according to their ef-
fect on system output when errors are present. The extended
framework facilitates profiling of software systems from var-
ied dependability perspectives and is also less susceptible
to the effects of having different error models for estimating
detection coverage.

1 Introduction

An integral part of developing dependable software is to
incorporate error detection mechanisms (EDM’s) and error
recovery mechanisms (ERM’s), such as containment wrap-
pers (see, e.g., [17]), in the software structure to handle data
errors (as defined in [11]). However, placement of such
mechanisms has long been performed based on experience
and/or heuristics (or even ad hoc). This has led to potential
inefficient use of resources, in terms of both memory re-
quirements and execution time, such that a higher overhead
than necessary is used in order to achieve a certain level of
coverage.

�Research supported in part by Volvo Research Foundation (FFP-
DCN), by NUTEK (1P21-97-4745), and by Saab Endowment

In order to place EDM’s and ERM’s in an effective way,
error propagation analysis is an important corner-piece dur-
ing software development. By analyzing the propagation of
errors, it is possible to find those locations in software that
are likely to be subjected to errors, if there are any present
in the system. In [9], we have introduced a framework for
analyzing error propagation and placing EDM’s/ERM’s and
used it together with Executable Assertions (EA’s–a variant
of acceptance tests, [12, 16]). In this paper, we make three
specific contributions. Our first contribution is a compari-
son between achieved error detection coverage and resource
requirements when using an experience/heuristic-based ap-
proach (EH-approach) for placement of EDM’s/ERM’s and
when using systematic placement based on our developed
error propagation analysis framework (PA-approach). The
term systematic is here used to indicate that the framework
(a) provides a basis of EDM/ERM placement, (b) enables
quantification of the effect of good/bad EDM/ERM place-
ment and (c) is a process for profiling and consequence as-
sessment. Our results show that the developed error prop-
agation analysis framework can reduce the usage of mem-
ory and execution time by reducing the number of required
mechanisms while maintaining the obtained error detection
coverage.

The error propagation characteristics of a software sys-
tem are dependent on the considered error types, such as
bit-flips, code mutations, memory leaks, etc. Errors of one
type may propagate in a very different manner than errors
of another type. Thus, when analyzing propagation, it is
important to know what error type should be the focus of
attention. In our second contribution, we illustrate how a
change in error type can affect the coverage provided by
the EA’s placed according to our framework, showing that
propagation analysis alone may not provide sufficient infor-
mation for placing EDM’s/ERM’s, but that one must also
analyse the effect of errors. An error with a low probabil-
ity of propagating may still cause severe damage when it
actually propagates. Our third contribution is in extending
the propagation analysis framework such that the effect of
varied error types can be analyzed. More specifically, we

propose measures of impact and criticality for software pro-
filing to conduct EDM/ERM placement. These measures,
taken on a signal basis, help in assessing the importance
of system input or intermediate signals with respect to the
system output. Overall, our intent is to provide a method
for software profiling with regard to error propagation and
error effect characteristics to allow effective placement of
EA’s for error handling.

Paper organization: We review related work in Sec-
tion 2. In Section 3 we define the system model used in our
proposed approach and instantiate this model with a target
system described in Section 4. Two approaches for select-
ing locations for EA’s are compared in Sections 5 and 6.
In Section 7 we do a second comparison utilizing a differ-
ent error model and discuss limitations in the propagation
analysis framework. These limitations are addressed in an
extension to the framework in Sections 8 and 9. Section 10
contains an extended analysis and profiling of the target sys-
tem. Summary and conclusions are found in Section 11.

2 Related Work

Error propagation analysis for logic circuits has been in
use for over 30 years. Numerous algorithms and techniques
have been proposed, e.g., the D-algorithm [15], the PODEM-
algorithm [6] and the FAN-algorithm [5] (which improves
on the PODEM-algorithm).

Propagation analysis in software has been described for
debugging use in [20]. Here the propagation analysis aimed
at finding probabilities of source level locations propagating
data-state errors if they were executed with erroneous initial
data-states. The framework was further extended in [13, 21]
for analyzing source code under test in order to determine
test cases that would reveal the largest amount of defects.
In [22], the framework was used for determining locations
for placing assertions during software testing, i.e., aiming
to place simple assertions where normal testing would have
difficulties finding defects.

Finding optimal combinations of hardware EDM’s based
on experimental results was described in [18]. They used
coverage and latency estimates for a given set of EDM’s to
form subsets which minimized overlapping between differ-
ent EDM’s, thereby giving the best cost-performance ratio.

3 Software System Model

In our studies, we consider modular software, i.e., dis-
crete software functions interacting to deliver the requisite
functionality. A module is viewed as a generalized black-
box with multiple inputs and outputs. Modules commu-
nicate with each other in some specified way using varied
forms of signaling, e.g., shared memory, messaging, param-
eter passing etc., as pertinent to the chosen communication

model. We will use the term signal in an abstract manner,
representing a software channel for data communication be-
tween modules. A system is built up from a number of such
inter-linked modules. Of course, this system may be seen
as a larger component or module in an even larger system.

Software systems constructed as such are found in nu-
merous embedded systems, for example, most applications
controlling physical events such as in automotive systems.
Our studies mainly focus on software developed for embed-
ded systems in consumer products (high-volume and low-
production-cost systems).

In this paper we perform experiments on an example
target system designed according to the described system
model. The system is used for aircraft arrestment and is
described in the following section.

In the subsequent sections we will utilize two different
error models for our comparisons. More information on
those error models will be given in conjunction with those
comparisons.

4 Target: Aircraft Arrestment System

The target system is a system used for arresting aircraft
on short runways The system aids incoming aircraft to re-
duce their velocity, eventually bringing them to a complete
stop and is constructed according to specifications in [19].

4.1 Software Structure

In our study, we used actual software ported it to run on
a Windows-based computer. The scheduling is slot-based
and non-preemptive. Thus, from the software viewpoint,
there is no difference in running on the actual hardware or
running on a desktop computer.

DIST_S

CLOCK

PRES_S

CALC

V_REG PRES_A

ms_slot_nbr

pulscnt

slow_speed

stopped

PACNT

TIC1

TCNT

mscnt

i

SetValue

IsValue
OutValue TOC2

ADC

1

Pressure
sensor

HW
counter

2

3

4

5 2

1

Rotation
sensor

1
1

2

1

2

3

1

2

3

1 1
1

2
1 1 1

Figure 1. Software structure of target

The structure of the software is illustrated in Fig. 1. The
numbers shown at the inputs and outputs are used for num-
bering the signals. For instance, PACNT is input #1 of
DIST S, and SetValue is output #2 of CALC.

The software is composed of six modules of varying size
and input/output signal count. CLOCK provides a clock,
mscnt, and a signal indicating the current execution slot for
the scheduler, ms slot nbr. DIST S receives PACNT and
TIC1 from sensors and are used to calculate the distance
an aircraft has traveled on the runway, pulscnt. It also pro-
vides two boolean values, slow speed and stopped, i.e., if
the velocity of the aircraft is below a certain threshold or if
it has stopped. CALC uses mscnt, pulscnt, slow speed and
stopped to calculate SetValue, the preferred value for the
system actuators. PRES S reads the value that is actually
being applied by the actuators, ADC, and provides the sig-
nal IsValue. V REG uses SetValue and IsValue to generate
OutValue, the output value to the actuators. The modules
attempts to compensate for the difference between SetValue
and IsValue. PRES A uses OutValue to set the actuator via
the hardware register TOC2.

4.2 Failure Classification

The system specifications [19] set a number of physical
constraints within which the system must operate. These
constraints are that i) the retardation must not exceed a cer-
tain limit, ii) the brake force applied by the cable on the
aircraft must not exceed a certain limit, and iii) the aircraft
must be arrested before the runway ends. Any violation of
these constraints is regarded as a failure. For this imple-
mentation the constraints are the following:

1. Retardation, r < 3:5g.

2. Retardation force, Fret < Fmax. The maximum
allowed retardation force, Fmax, is a function of the
aircraft mass and its engaging velocity (velocity when
arrestment is initiated).

3. Stopping distance, d < 335 meters.

Now we have presented the target system used in our
comparisons. The next section will briefly describe the prop-
agation analysis framework with associated measures used
for placement of EA’s and subsequent sections contain the
comparison itself.

5 Ascertaining Locations for EDM’s: Two Ap-
proaches

Here we illustrate how using a rigorous approach to place-
ment of EDM’s can actually decrease the requirements on
memory and execution time while maintaining (and possi-
bly increasing) the provided error detection coverage. We
show two specific studies, namely: (1) the results obtained
for a system where we used an experience/heuristic-based
approach (which we refer to as the EH-approach) and (2)
the results obtained using our developed error propagation

analysis framework (which we refer to as the PA-approach)
to identify locations for EDM’s for the same embedded sys-
tem. The EDM’s used in this experiment were generic pa-
rameterized Executable Assertions (defined in [7]), EA’s,
which fall into the category of acceptance tests.

5.1 Placing EDM’s Using Experience/Heuristics

In previous experiments on the target system [7], we had
selected a number of locations in the software according
to an experience/heuristic-based approach (EH-approach).
The following process was used:

1. Identify input and output signals of the system and paths from
each input signal to one or more output signals.

2. Identify internally generated signals with a direct influence on
intermediate and output signals.

3. Determine which signals that are the most critical for system op-
eration, e.g. by using FMECA.

4. Decide on locations for error detection mechanisms.

Using this process the following signals were selected as
EDM-locations: SetValue, IsValue, i, pulscnt, ms slot nbr,
mscnt, and OutValue. As the selection of locations in this
target system was made before the described framework for
propagation analysis existed, there is no bias that makes the
selection consciously less good than the selection obtained
after propagation analysis.

We have now selected EDM-locations based on the EH-
approach. Next, we will select locations using a systematic
approach based on propagation analysis, but first we give a
brief overview of the analysis framework used.

5.2 Propagation Analysis: The Basic Framework

We first provide a brief description of the error propa-
gation analysis framework (see [9] for details) used for sys-
tematic EDM/ERM-placement in this paper (PA-approach).
The analysis framework will subsequently be extended in
this paper. The framework focuses on the analysis of the
propagation of data errors, i.e., erroneous values in the in-
ternal variables and signals of a system.

.

.

.

.

.

.

Input 1

Input m Output n
M

Output 1

Figure 2. A basic black-box software module

Consider the black-box software module in Fig. 2. For
each pair of input and output signals, we can define error
permeability as the conditional probability of an error oc-
curring on the output given that there is an error on the in-
put. Thus, for input i and output k of a module M we define
the error permeability, PM

i;k , as follows:

0 � PM
i;k = Prferror in o/p kjerror in i/p ig � 1 (1)

This measure indicates how permeable an input/output
pair of a software module is to errors occurring at the input.
Based on this we defined the following measures:

Relative permeability (PM) quantifies the “ability” of a module M to
let propagating errors pass through it. The higher the permeability, the
higher the chance of an error at the inputs getting through to the outputs.
This is normalized with the number of input/output pairs and thus has a
value between 0 and 1. The non-weighted relative permeability (^PM) is
the same measure without the normalization.
Error exposure (XM) quantifies the level of exposure to propagating
errors for module M. The higher the exposure, the more likely will the
module be exposed to propagating errors (if there are errors in the sys-
tem). Again, this is normalized to be between 0 and 1. The non-weighted
error exposure (^XM) is the same measure without the normalization.
Signal error exposure (XSs) is the equivalent of the error exposure but
taken for a signal, S. Thus, with this measure we can identify which
particular signals are more likely to be exposed to errors than others.

Note that these measures do not necessarily reflect prob-
abilities. Rather, they are abstract measures that can be used
to obtain a relative ordering across modules and signals, i.e.,
software profiling with regard to error propagation.

In [9], we further provided algorithms for generating the
following structures to visualize of propagation paths:

Backtrack trees (BT’s) illustrate the propagation paths that errors can
take to get to a certain output signals. A BT has a system output signal as
its root node and the various paths to system input signals, represented
by the leaf nodes, as branches.
Trace trees (TT’s) go in the opposite direction and depict the propaga-
tion paths from input signals to output signals. The root node represents
a system input signal and the various branches are the propagation paths
to any output signal, represented by the leaf nodes.

Identifying candidate locations for EDM’s and ERM’s is
a process where trade-offs have to be weighed against each
other. Given the set of measures and visualizations we have
defined so far, we can now set up the following guide-lines
for interpretation of obtained results:

R1: The higher the error exposure values of a module, the higher the
probability that it will be subjected to errors propagating through the
system if errors are indeed present. Thus, it may be more cost effective
to place EDM’s in those modules than in those with lower error exposure.
An analogous way of reasoning is valid also for the signal error exposure.
R2: The higher the error permeability values of a module the lower its
ability to contain errors. Thus, the probability of subsequent modules
being subjected to propagating errors is increased. Therefore, it may be
more cost effective to place ERM’s in those modules than in those with
lower error permeability.

Deciding on locations according to these guidelines of-
ten requires making trade-offs. For instance, one might de-
cide to equip a module with high permeability with EDM’s
and ERM’s even though its exposure is relatively low.

Now that we have briefly described the propagation anal-
ysis framework, we will use it in order to systematically se-
lect EDM-locations. In the subsequent sections, the two sets
of selected locations and corresponding mechanisms will
be compared with regard to error detection coverage and
resource requirements (specifically memory and execution
time requirements).

5.3 Placing EDM’s Using Propagation Analysis

In the previous section we described the basic propa-
gation analysis framework we use for systematic selection
of locations for EDM’s/ERM’s. In this section, we will
utilize that framework on our target system to select loca-
tions for Executable Assertions (EA’s). Analyzing the prop-
agation of errors using the developed framework (the PA-
approach) will generate a number of estimates of perme-
ability measures–one for each input/output pair in the target
system (see Eq. 1), resulting in 25 specific estimate values.

To produce estimates of the error permeabilities of the
modules of the target system we used fault injection (FI)
as described in [9]. The FI-technique is widely used as a
means for experimental estimation of f.i. coverage values
(see, e.g., [1, 2, 3, 4, 10]). The permeability estimates were
produced in the following way: we produced a Golden Run
(GR) for each test case. Then, we injected errors in the input
signals of the modules and monitored the produced output
signals. For each injection run (IR) only one error was in-
jected at one time, i.e., no multiple errors were injected. For
details on the experiment setup, we refer the reader to [9].

The raw data obtained in the IR’s was used in a Golden
Run Comparison where the trace of each signal (input and
output) was compared to its corresponding GR trace. The
comparison stopped as soon as the first difference between
the GR trace and the IR trace was encountered.

We only took into account the direct errors on the out-
puts. We did not count errors originating from errors that
propagated via one of the other outputs and then came back
to the original input producing an error in the first output.

Using this method we obtained the results presented in
Table 1. These values are the permeability values estimated
for each input/output signal pair of each module and form
the basis for subsequent results.

The signal error exposure (X S
s) for each signal (shown

in Table 2) gives us better granularity for deciding which
signals we should equip with EA’s. The EA’s we have cho-
sen for our system are aimed at individual signals so we
concentrate on the signal error exposure values and the in-
dividual permeability values when selecting locations. The
selected locations are also summarized in Table 2, where
also a short motivation is given as to why that particular
location was selected (for details, see [9]).

Now we have selected two sets of locations for our EA’s.
The EH-set, i.e., the set of locations selected using the EH-
approach, contains SetValue, IsValue, i, pulscnt, ms slot nbr,
mscnt, and OutValue. The PA-set, i.e. the set of loca-
tions selected using the PA-approach, contains SetValue, i,
pulscnt, and OutValue. Next, we compare, for both sets of
locations, the resource requirements and the coverage ob-
tained when the system is subjected to errors at the system
inputs (e.g., by noisy and/or faulty sensors).

Input! Output Name Value

ms slot nbr! ms slot nbr PCLOCK
1;1 1.000

ms slot nbr! mscnt PCLOCK
1;2 0.000

PACNT! pulscnt PDIST S
1;1 0.957

TIC1! pulscnt PDIST S
2;1 0.000

TCNT! pulscnt PDIST S
3;1 0.000

PACNT! slow speed PDIST S
1;2 0.010

TIC1! slow speed PDIST S
2;2 0.000

TCNT! slow speed PDIST S
3;2 0.000

PACNT! stopped PDIST S
1;3 0.000

TIC1! stopped PDIST S
2;3 0.000

TCNT! stopped PDIST S
3;3 0.000

ADC! IsValue PPRES S
1;1 0.000

i! i PCALC
1;1 1.000

mscnt! i PCALC
2;1 0.000

pulscnt! i PCALC
3;1 0.494

slow speed! i PCALC
4;1 0.000

stopped! i PCALC
5;1 0.013

i! SetValue PCALC
1;2 0.056

mscnt! SetValue PCALC
2;2 0.530

pulscnt! SetValue PCALC
3;2 0.000

slow speed! SetValue PCALC
4;2 0.892

stopped! SetValue PCALC
5;2 0.000

SetValue! OutValue PV REG
1;1 0.885

IsValue! OutValue PV REG
2;1 0.896

OutValue! TOC2 PPRES A
1;1 0.875

Table 1. Estimated error permeability values
of the input/output pairs

6 Comparing the Two Placement Techniques

This section will compare the two sets of selected loca-
tions with regard to the resources required and also with re-
gard to the coverage obtained when the system is subjected
to errors at the system input signals.

6.1 Memory and Execution Time Requirements

For comparison of resource requirements using the EH-
approach and the PA-approach, Table 3 presents a summary
of the two sets of locations/mechanisms and their respective
requirements on memory resources (ROM contains constant
parameters defining allowed behavior, and RAM contains
run-time data). As expected, the requirements for the PA-
set, fEA1, EA3, EA4, EA7g, is less than the requirements
for the EH-set, fEA1, EA2, EA3, EA4, EA5, EA6, EA7g,
as the former is a subset of the latter (as seen in Table 3).
Specifically, there is a 40 percent reduction in memory re-
quirements when for the PA-set over the EH-set.

The overhead in terms of execution time is also reduced.
The tool used for obtaining these results does not provide a
means for measuring execution time, thus we were not able
to quantitatively assess the reduction. However, the EA’s are
all functions which are executed sequentially, i.e. the soft-
ware is not executed in a truly parallel manner as only one
processor is used. Also, they are invoked with roughly the

Signal XS
s Select Motivation

OutValue 1.781 yes High error exposure
i 1.507 yes High error exposure
SetValue 1.478 yes High error exposure
ms slot nbr 1.000 no Zero error permeability to mscnt
pulscnt 0.957 yes High error exposure
TOC2 0.875 no Errors here most likely come from

OutValue
slow speed 0.010 no Low error exposure, selected EA’s

not geared at boolean values
IsValue 0.000 no Zero error exposure
mscnt 0.000 no Zero error exposure
stopped 0.000 no Zero error exposure

Table 2. Estimated signal error exposures and
PA-based selection of EA locations

Signal EA EH-set PA-set ROM RAM
(bytes) (bytes)

SetValue EA1
p p

50 14
IsValue EA2

p
- 50 14

i EA3
p p

25 13
pulscnt EA4

p p
25 13

ms slot nbr EA5
p

- 37 13
mscnt EA6

p
- 25 13

OutValue EA7
p p

50 14

Total ROM/RAM (bytes) 262/94 150/54

Table 3. EA-setup and sum of RAM/ROM re-
quirements

same period and require roughly the same execution time
for each invocation. Thus, the reduction in execution time
overhead is likely to be in the order of the reduction in num-
ber of EA’s, i.e., about 40 percent.

6.2 Error Detection Coverage

When comparing the error detection coverage for the two
sets of EA’s we assumed that the system would only be sub-
jected to errors introduced via the system inputs, e.g., from
noisy or faulty sensors. Thus we assumed errors to get into
the system via these four signals: 1) ADC, 2) PACNT, 3)
TIC1, and 4) TCNT.

For the error injection experiments, we used the same
setup, i.e. the same error model and the same test cases, as
we used for the propagation analysis.

As we already have seen, errors (from this error model)
injected into ADC did not propagate further into the system,
so we can safely say that the coverage of detection for those
errors will be zero (as there is nothing to detect) for both
sets of EA’s and locations. Thus, we can concentrate our
experiments on the remaining three signals.

In Table 4 we summarize the results from the injection
experiments. The results are shown for each input signal
that was targeted during the experiments. The nerr col-
umn shows how many errors that were active after injection
(e.g., we injected a total of 2,000 errors in PACNT, and of

Signal nerr EA1 EA2 EA3 EA4 EA5 EA6 EA7 Total

Member of EH-set
p p p p p p p

Member of PA-set
p

-
p p

- -
p

PACNT 1856 0.218 0.105 - 0.975 - - 0.005 0.975
TIC1 3712 - - - - - - - -
TCNT 3712 - - - - - - - -

All 9280 0.062 0.040 - 0.195 - - < 0.001 0.195

Table 4. Obtained detection coverage for errors injected in system input - EH-based and PA-based
EA-placements

those 1,856 were active, i.e., injected before the arrestment
of an aircraft was not completed). The various EAx columns
show the obtained coverage for each individual EA (a dash
indicates zero coverage), calculated as ndet=nerr. The To-
tal column is the combined coverage considering all EA’s.
Each row contains the data for errors injected into one sig-
nal except for All which shows the coverage obtained for
the various EA’s considering all signals. The rows contain-
ing tick-marks indicate which EA’s were part of the EH-set
and of the PA-set (a tick-mark indicates membership).

In Table 4 we can see that only those errors that were
injected into PACNT were detected. This is on par with the
results obtained in the propagation analysis which showed
that errors injected into those signals with a very low prob-
ability propagated into any of the signals that were selected
to be guarded with an EA. Those errors that propagate are
likely to be hard to detect by the selected mechanisms. How-
ever, 97.5 percent of the errors injected into PACNT were
detected. All errors detected by EA1, EA2 or EA7 were
also detected by EA4.

It may seem odd that EA2, which guards IsValue, has
a non-zero coverage for errors in PACNT, while no errors
injected into ADC could propagate into IsValue. This, how-
ever, is a result of errors in PACNT propagating all the way
through the system and out beyond the system barrier where
they eventually affect the environment to such a degree that
ADC is affected in a way the PRES S module cannot fully
mask or contain, and the errors are then detected by the EA
guarding IsValue.

Comparing the results shown in Table 4 also shows that
the obtained coverage for the two sets of EA’s is the same.

6.3 EH v/s PA: Comparative Summary

Now we have resource and coverage information for the
various EA’s which enables us to perform the comparison
between the two sets of selected locations and mechanisms.

Starting with the resources from Table 3, we can see that
the requirements on memory (i.e. RAM and ROM com-
bined) for EA’s in the the EH-set is almost double that of
those in the PA-set.

Furthermore, from Table 4 we can observe that the cover-

age obtained with the EH-set of EA’s (EA1 through EA7) is
the same as that obtained with the PA-set set of EA’s (EA1,
EA3, EA4, and EA7).

From this we can conclude that the PA-approach suc-
cessfully enabled us to cut the resources used for error de-
tection while maintaining the detection coverage. The next
step in our comparison will investigate the effect of varying
error model on the obtained error detection coverage.

7 The Effect of Varying Error Model On Er-
ror Detection Coverage

At this point we have shown that when assuming that er-
rors are introduced into the system via the system inputs the
framework can enable developers to reduce the amount of
resources required in order to obtain a certain level of de-
pendability. In this section we will investigate the ramifica-
tions of changing the error model. The error model used in
the previous sections for ascertaining coverage values may
be considered a “nice” error model in that it only has a direct
effect on the input signals of the system and only disrupts
these once during the entire duration of the arrestment.

Here we change the error model to a more severe one.
We still use single bit flips to generate data errors, but now
the target will not only be system input signals but also in-
termediate signals and module state (a total of 150 locations
in RAM and 50 locations in the stack) of the system. The
errors are injected not only at one point in time but period-
ically with a period of 20 ms. The same 25 test cases were
used giving us a total of 200�25 = 5000 arrestment with in-
jections. An error is said to be detected if it is detected at
least once during the arrestment.

The results are summarized in Fig. 3. The RAM-bars are
the coverage values for errors injected into the RAM areas
of the modules, and the Stack-bars the coverage values for
errors injected into the stack area. The Total-bars are the
coverage for all errors. The measure ctot is the total cov-
erage of the EA-set, cfail is the coverage considering only
errors that led to system failure (according to the classifica-
tion of Section 4), and cnofail is for errors that did not lead
to system failure.

The first observation we make when comparing the re-

Figure 3. Comparison of coverage values

sults for the two approaches is that the coverages for the
PA-set of EA’s are lower than the coverage for the EH-set.
For errors injected into RAM the coverage is just over half
that obtained using the full set of EA’s and for errors in stack
the decrease is even greater. This indicates a sensitivity in
the propagation analysis framework when it comes to deal-
ing with error models where errors are introduced not only
via the inputs of a system, but rather via internal variables
and structures.

Thus, it may not be sufficient to only take into account
error propagation, but that one also has to consider the what
if ’s that may have a very low probability of occurring but
still have a profound effect on system operation should they
actually occur. To address these limitations in our existing
framework, we extend it with additional measures adding
error effect analysis to the provided error propagation anal-
ysis. This has the property that the resulting framework is
made more resilient to differences in error model. The ex-
tensions are described in the following sections.

8 Effect Analysis: Software Profiling With Re-
gard to Error Impact and Criticality

From the results shown in Section 7, we can see that
propagation analysis alone may be insufficient when select-
ing locations for EDM’s and ERM’s. Errors that may have a
low probability of propagating may still cause severe dam-
age should propagation occur. Taking this into account we
now define measures which let us analyse to what extent er-
rors in a signal (system input signal or intermediate signal)
affect the system output, i.e., what is the impact of errors on
the system output signals.

As errors in a source signal can propagate along many
different paths to the (destination) system output signal we
must consider this in our definition of impact. In order
to calculate the impact of errors in a signal Ss on a sys-
tem output signal So we must first generate an impact tree,
which is a generalization of trace trees (see Section 5). This

tree has the signal of interest as the root, in this case Ss.
Next, we generate all the propagation paths from the root
to the leaves containing system output signal So (there may
be leaves generated by other system output signals). Each
path i has a weight wi associated with it which is the prod-
uct of all permeability values along that path. We define
Ss ; So, the impact of (errors in) Ss on So, as

0 � Ss ; So = 1�
Y

i

(1� wi) � 1 (2)

where wi is the weight of path i from Ss to So. If one
could assume independence all over, the impact measure
would be the conditional probability of an error in S s prop-
agating all the way to So. However, as independence can
rarely be assumed we will treat this as a relative measure
by which different signals can be ranked. The general inter-
pretation of this measure is that the higher the impact, the
higher the risk of an error in the source signal generating
an error in the output of the system. Thus, when placing
EDM’s and ERM’s one may consider placing such mecha-
nisms at signals which have a high impact even though they
may have a low error exposure (meaning that errors in this
signal are relatively rare but costly, should they occur).

To illustrate this further, consider our target system shown
in Fig. 1. Suppose we would like to calculate the impact of
errors in signal pulscnt on system output TOC2. First, we
will generate an impact tree as shown in in Fig. 4.

Paths generated from the impact tree:
CALCP 2,3

CALCP 2,1

CALCP 1,3

REGVP _
1,1

APRESP _
1,1

pulscnt

i

SetValue

OutValue

TOC2

SetValue

OutValue

TOC2

REGVP _
1,1

APRESP _
1,1

1w 021.0APRESREGVCALCCALC PPPP _
1,1

_
1,12,11,3= =

2w 000.0= APRESREGVCALC PPP _
1,1

_
1,12,3 =

Figure 4. Impact tree for signal pulscnt and
generated propagation paths.

In order to calculate the impact of errors in pulscnt on
system output TOC2 we generate all the propagation paths
from the root to the leaves. In this case, where we have only
one system output, all leaves are considered. This gives us
two paths as shown in Fig. 4.

Using the weights of the paths we can now calculate
pulscnt ; TOC2, i.e., the impact of (errors in) pulscnt
on TOC2, as

pulscnt ; TOC2 = 1�

2Y

i=1

(1� wi) = 0:021

where wi are the weights shown in Fig 4.

The concept of impact as described above considers the
impact on system output generated by errors in system in-
put signals and intermediate signals. However, when a sys-
tem has multiple outputs, these outputs are not necessarily
all equally important for the operation of the system, i.e.,
some outputs may be more critical than others. For cost-
efficiency, one may wish to concentrate resources for de-
pendability on the most critical system outputs and there-
fore needs to know which signals in the system that are
“best” (in a loose sense) to equip with EDM’s/ERM’s.

For each system output signal So;i (the ith output signal)
we assign a criticality value Co;i which is a value between 0
and 1 where 0 denotes not at all critical and 1 denotes high-
est possible criticality. These criticality values are assigned
by the system designer for example from the specifications
of the system or from results from experimental vulnerabil-
ity analyses.

The criticality of system input signals and intermediate
signals is calculated using the assigned criticality values of
the system output signals and the various impact values cal-
culated for the various signals. Each signal Ss has a certain
impact, Ss ; So;i, on system output So;i, as calculated
according to Eq. 2. Based on the impact, the criticality of
Ss as experienced by system output So;i is calculated as

0 � Cs;i = Co;i � (Ss ; So;i) � 1 (3)

Once we have the criticality of Ss with regard to each
system output signal So;i we can calculate a total criticality.
We define the criticality Cs of signal Ss as

0 � Cs = 1�
Y

i

(1� Cs;i)

= 1�
Y

i

(1� Co;i � (Ss ; So;i)) � 1

� 1 (4)

The criticality measure indicates for each signal how “ex-
pensive” errors are with regard to the total system operation,
i.e., the higher the criticality value, the higher the likelihood
of the system not being able to deliver its intended service,
should an error occur in the signal. The notion of criticality
as defined here also takes into account the “cost” associated
with errors in system outputs as defined by the system de-
signer. Thus, while the impact measures are independent of
the project policies regarding dependability, the criticality
values may change when project policies change.

Note that if the system only has one output signal then
the criticality will only function as a constant scaling factor,
i.e., the relative order among the signals of the system will
not change. Thus, calculating criticality values is only re-
quired when there are multiple output signals in a system. If
there are multiple outputs, a given signal may have identical
impact for different outputs, but the criticalities may differ.

In the following section we discuss how the various mea-
sures obtained in the error effect analysis together with the
values obtained in the error propagation analysis can be
used to identify candidate locations for EDM’s and ERM’s.

9 Candidate Locations For EDM’s/ERM’s

In this section we discuss how candidate locations for
EDM’s and ERM’s may be identified based on the results
from the propagation analysis and the effect analysis. We
have, in Section 5, given two rules of thumb for the propa-
gation analysis. Here we add one for effect analysis:
R3: The higher the criticality (or impact if the system only has one out-
put signal) of a signal, the higher the probability of an error in that signal
causing damage from a system point-of-view. Thus, it may be more cost
effective to equip those signals with EDM’s and ERM’s which have the
highest criticality (impact).

When selecting locations, the rules of thumb (R1, R2 and
R3) may have to be weighed against each other. Consider
the case where a signal has a low exposure but a high crit-
icality. The low exposure means that there is a low prob-
ability of errors propagating to that signal. However, the
high criticality means that, should an error find its way into
that signal, there is a high probability of that error causing
damage which propagates beyond the system barrier into
the environment. Thus, one may select signals with low ex-
posure and high criticality as candidate locations for EDM’s
and ERM’s.

As a process, a possible approach to placement of EDM’s
and ERM’s may be to set up specific conditions which the
software must conform to. For example, one may wish to
set a minimum level of error containment for all modules,
which can be accomplished by setting a maximum level on
error permeability values. Thus, a module exceeding this
limit indicates that more resources have to be allocated to
that module to increase its error containment capabilities.
The same argument can be used for error exposure. If a
module or signal is highly exposed, this indicates that more
resources are required either to protect the exposed module
or signal, or to increase the error containment capabilities
of the module or signal responsible for the high degree of
exposure.

From a criticality (impact) point-of-view, a project may
also set up certain limits. For example, one may wish to
set a maximum level of impact for the various signals. Sig-
nals exceeding this limit indicate that the error containment
from that signal out to the system output signals is not high
enough. As the criticality values of signals are based on the
criticality values assigned to system output signals, these
can only be indirectly adjusted via the impact values.

The results from the analysis may also aid in the design
of EDM’s. For example, a situation with low error expo-
sure and high criticality (impact) indicates that any EDM in

ms_slot_nbr

pulscnt

slow_speed

stopped

PACNT

TIC1

TCNT

mscnt

i

SetValue

IsValue
OutValue TOC2

ADC

1

Pressure
sensor

HW
counter

2

3

4

5 2

1

Rotation
sensor

1
1

2

1

2

3

1

2

3

1 1
1

2
1 1 1

V_REG PRES_A

CALC

CLOCK

DIST_S

PRES_S

Highest exposure

Lowest exposure

Zero exposure

No exposure
value assigned

Figure 5. Exposure profile of target system

ms_slot_nbr

pulscnt

slow_speed

stopped

PACNT

TIC1

TCNT

mscnt

i

SetValue

IsValue
OutValue TOC2

ADC

1

Pressure
sensor

HW
counter

2

3

4

5 2

1

Rotation
sensor

1
1

2

1

2

3

1

2

3

1 1
1

2
1 1 1

V_REG PRES_A

CALC

CLOCK

DIST_S

PRES_S

Highest impact

Lowest impact

Zero impact

No impact
value assigned

Figure 6. Impact profile of target system

that location would have to be highly specialized as errors
are infrequent and likely to be hard to detect. The opposite
situation, i.e., high exposure and low criticality (impact) in-
dicates that a coarser EDM in that location may suffice.

Having extended the analysis framework, we refer back
to our target system and conduct effect analysis to see if
there are more locations for EDM’s/ERM’s to be selected.

10 Extended Analysis of Target System

Using the permeability values presented in Table 1 we
can now obtain impact values for the various signals of the
target system. As the target system has only one output sig-
nal, there is no need to produce any criticality values as they
would be the same as the impact values, only adjusted with
a constant. Table 5 contains these impact values together
with the previously obtained signal exposure values.

Signal (s) XS
s s ; TOC2

PACNT - 0.027
TCNT - 0.000
TIC1 - 0.000
ADC - 0.000
OutValue 1.781 0.875
i 1.507 0.043
SetValue 1.478 0.774
ms slot nbr 1.000 0.000
pulscnt 0.957 0.021
TOC2 0.875 -
slow speed 0.010 0.691
IsValue 0.000 0.784
mscnt 0.000 0.410
stopped 0.000 0.001

Table 5. Estimated signal error exposures and
impacts on TOC2

In Table 5, we now have both exposure values, X S
s , and

impact values, s ; TOC2, of the various signals of the
target system. Signal TOC2 has no impact value associated
with it as this is the system output signal (one could say
that the impact is 1.0 in this case). The same information is
depicted graphically in Figs. 5 and 6. Here we can clearly
see the difference between the two profiles of the system.

The thickness of a line now depicts the value of the respec-
tive measure–the thicker the line, the higher the value. A
dashed line indicates a zero value and a dashed-dotted line
indicates that no value is assigned to that signal (either be-
cause the signal is a system input or output signal).

Previously we had ascertained that signals SetValue, i,
pulscnt and OutValue were to be guarded by EA’s because
of their high exposure to propagating errors. If we now take
into account the impact of the signals on system output, we
see that signals IsValue, mscnt and slow speed may be con-
sidered for being guarded by EA’s as well. The mechanisms
we have chosen are implemented such that it is difficult to
detect errors in a boolean value, thus setting an EA on the
signal slow speed is not efficient in this case. Therefore,
when taking into account also the impact values of the sig-
nals we can decide to place EA’s on IsValue and mscnt as
well. Also, as the permeability-value of ms slot nbr is 1,
and the assumed error model now introduces errors in the
entire memory space of the system (as opposed to only sys-
tem input signals earlier) we also select that signal.

The results illustrate the important distinction between
permeability/exposure and impact/criticality, where the for-
mer is used for profiling software with regard to its error
propagation characteristics and the latter to profile software
with regard to the effect errors would have if they were
present in different parts of the system.

In this specific example, using the locations indicated by
the extended framework will give us the same coverage val-
ues as for the EH-approach (see Fig. 3), as we now have
the same set of EA’s selected by the EH-approach and the
extended framework. This shows that with the extension
presented here the analysis framework is more robust with
regard to the error model, i.e., we have reduced the effect
of the error model on the analysis results obtained with the
framework.

11 Summary and Conclusions

The focus of this paper was on presenting methods for
selecting locations in embedded modular software where er-

ror detection and recovery mechanisms (EDM’s and ERM’s)
should be considered in order to increase dependability with
regard to data errors. We make the following contributions:

C1: We compared two approaches for selecting loca-
tions in software for EDM’s/ERM’s: i) an approach based
on experience/heuristics (EH-approach), and ii) an approach
based on propagation analysis (PA-approach, [9]). The com-
parison used the software of an aircraft arrestment system
and showed that the PA-approach could decrease, compared
to the EH-approach, the resource requirements (memory
and execution time) for Executable Assertions (EA’s), while
maintaining the obtained error detection coverage.

C2: The error model in C1 introduced errors into the
system only via its main input signals. A second compari-
son, using an error model where errors were introduced also
in the internal variables and structures, illustrated that the
locations selected using the PA-approach to be guarded by
EDM’s in C1 did not obtain the same coverage as the loca-
tions selected by the EH-approach. The results show that in
addition to analyzing the propagation characteristics of er-
rors in software, one must also take into account the effect
of errors–an error may have a very low probability of prop-
agating into a given signal, but should this signal contain an
error this may have severe consequences on the output of
the system. This points out a limitation in the PA-approach
which does not take error effect into account.

C3: In order to remove the limitation identified in C2,
we extended the framework with means to analyse the effect
of errors by adding the measures impact and criticality. The
impact is a measure of the probability of an error in a signal
to disrupt the system output. When a system has multiple
outputs with varying “importance” (e.g., a diagnostic output
may not be as “important” as an actuator control output), the
criticality measure allows the developer to rank outputs and
consequently scale the impact values of signals. Thus, two
signals with the same impact may have different criticalities
depending on which outputs they affect the most. Using the
extended analysis framework we could select locations for
EDM’s such that high error detection coverage was obtained
also for the more disruptive error model used in C2.

From this we can conclude that the extended error propa-
gation and effect analysis framework provides software de-
velopers with a generalized process to profile modular soft-
ware systems such that dependability resources can be al-
located according to system requirements and available re-
sources. We comment that our software profiling approach
is developed for generic modular black-box software, en-
suring its scalability with regard to software size.

Future work includes applying the analysis framework
on alteranet target systems in order to validate the general-
ized applicability of the obtained results. We will also look
at using the framework in conjunction with methods for as-
sessing overall consistency and coverage of EA’s.

12 Acknowledgments

We would specifically like to thank Professor Inhwan
Lee for his help and comments over the paper revision, and
also the entire DEEDS group at Chalmers for their multi-
faceted support.

References

[1] Arlat, J., et al., “Fault Injection for Dependability Validation: A
Methodology and Some Applications”, IEEE Trans. on SE, Vol. 16,
No. 2, pp. 166-182, 1990.

[2] Chillarege R., Bowen N. S., “Understanding Large System Failures
- A Fault Injection Experiment”, Proc. FTCS-19, pp. 356-363, 1989.

[3] Cukier M., et al., “Coverage Estimation Methods for Stratified
Fault-Injection”, IEEE Trans. on Comp., pp. 707-723, 1999.

[4] Fabre J.-C., et al., “Assessment of Microkernels by Fault Injection”,
Proc. DCCA-7, pp. 25-44, 1999.

[5] Fujiwara H., Shimono T. “On the Acceleration of Test Generation
Algorithms”, Proc. FTCS-13, pp. 98-105, 1983.

[6] Goel P., “An Implicit Enumeration Algorithm to Generate Tests for
Combinational Logic Circuits”, IEEE Trans. on Comp., Vol. 30, No.
3, pp. 215-222, 1981.

[7] Hiller M., “Executable Assertions for Detecting Data Errors in Em-
bedded Control Systems”, Proc. DSN 2000, pp. 24-33, 2000.

[8] Hiller M., “A Tool for Examining the Behavior of Faults and Errors
in Software”, TR 00-19, Dept. of CE, Chalmers Univ., (available at
http://www.ce.chalmers.se/LDC/DEEDS/), 2000.

[9] Hiller M., Jhumka A., Suri N., “An Approach for Analysing the
Propagation of Data Errors in Software”, Proc. DSN 2001, pp. 161-
170, 2001.

[10] Iyer R. K., Tang D., “Experimental Analysis of Computer System
Dependability”, Chapter 5 in Fault-Tolerant Computer System De-
sign (ed. D.K. Pradhan), Prentice Hall, 1996.

[11] Laprie J.-C., “Dependable Computing: Concepts, Limits, Chal-
lenges”, Proc. FTCS-25, pp. 42-54, 1995.

[12] Mahmood A., et al., “Executable Assertions and Flight Software”,
Proc. DASC-6, pp. 346-351, 1984.

[13] Morell L., Murrill B., Rand R., “Perturbation Analysis of Computer
Programs”, Proc. COMPASS’97, pp. 77-87, 1997.

[14] Powell D., et al., “Estimators for Fault Tolerance Coverage Evalua-
tion”, IEEE Trans. on Comp., Vol. 44, No. 2, pp. 261-274, 1995.

[15] Roth J.P., Computer Logic, Testing and Verification, Computer
Press, 1980.

[16] Saib S.H., “Executable Assertions - An Aid To Reliable Software”,
11th Asilomar Conference on Circuits, Systems and Computers, pp.
277-281, 1978.

[17] Salles F., et al., “MetaKernels and Fault Containment Wrappers”,
Proc. FTCS-29, pp. 22-29, 1999.

[18] Steininger A., Scherrer C., “On Finding an Optimal Combination
of Error Detection Mechanisms Based on Results of Fault Injection
Experiments”, Proc. FTCS-27, pp. 238-247, 1997.

[19] US Air Force - 99, “MIL-SPEC: Aircraft Arresting System BAK-
12A/E32A; Portable, Rotary Friction”, MIL-A-38202C, Notice 1,
US Dept. of Defense, Sept. 2, 1986.

[20] Voas J., Morell L. J., “Propagation and Infection Analysis (PIA) Ap-
plied to Debugging”, Proc. of Southeastcon’90, pp. 379-383, 1990.

[21] Voas J., “PIE: A Dynamic Failure-Based Technique”, IEEE Trans.
on SE, Vol. 18, No. 8, pp. 717-727, 1992.

[22] Voas J., et al., “Error Propagation Analysis Studies in a Nuclear
Research Code”, Aerospace Conf., Vol. 4, pp. 115-121, 1998.

