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ABSTRACT
In order to produce reliable software, it is important to have knowl-
edge on how faults and errors may affect the software. In partic-
ular, designing efficient error detection mechanisms requires not
only knowledge on which types of errors to detect but also the ef-
fect these errors may have on the software as well as how they
propagate through the software. This paper presents the Propaga-
tion Analysis Environment (PROPANE) which is a tool for profil-
ing and conducting fault injection experiments on software running
on desktop computers. PROPANE supports the injection of both
software faults (by mutation of source code) and data errors (by
manipulating variable and memory contents). PROPANE supports
various error types out-of-the-box and has support for user-defined
error types. For logging, probes are provided for charting the val-
ues of variables and memory areas as well as for registering events
during execution of the system under test. PROPANE has a flex-
ible design making it useful for development of a wide range of
software systems, e.g., embedded software, generic software com-
ponents, or user-level desktop applications. We show examples of
results obtained using PROPANE and how these can guide software
developers to where software error detection and recovery could in-
crease the reliability of the software system.
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1. INTRODUCTION
In order to develop software that functions in a non-harmful

manner in the presence of faults and errors (as defined in [9]), one
requires knowledge of the behavior of the software under these ex-
ceptional conditions. In particular, one needs to know how faults
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and errors propagate to affect the execution of software. Know-
ing propagation pathways may, for instance, be of great help when
deciding where to place error detection and recovery mechanisms.

Learning about error propagation characteristics of a software
system requires not only that one should be able to inject errors
and monitor the effect these have on system output, but also that
one is able to monitor how these errors are transported through the
system. Thus, high observability is required for these activities.
Ideally, one should be able to observe every individual variable and
data structure in the software.

This paper presents the main features of PROPANE (details are
available in [6]), the Propagation Analysis Environment, which
enables the injection of primarily errors (e.g. erroneous variable
contents) but also faults (e.g. source code defects) into software
running on a desktop computer (currently for Windows NT/2000).
PROPANE supports various ways of probing a system, i.e., tracing
internal variables and events during system operation, as well as
ways of injecting software faults and data errors.

PROPANE can be useful in a number of situations. For instance,
in Component-Based Software Development (CBSD) generic con-
figurable software components are manufactured and assembled to
form an entire system (inspired by the use of generic hardware
components for building hardware systems). These components
are often ported to several different hardware platforms. This lim-
its generalized verification and validation use of tools that focus on
specific hardware configurations. PROPANE on the other hand has
no such limitations as it is does not require any special hardware as-
sistance. Thus, software components may be verified and validated
with PROPANE before porting them to various target hardware.
This argument will of course also be valid for testing embedded
software which in many cases may exist before the hardware plat-
form has been finalized.

We emphasize that PROPANE, through its depiction of error
propagation paths, is primarily designed as a software design aid
with complementary capability of being used in the evaluation of
effectiveness of error handling mechanisms.

The remaining paper is structured as follows: In Section 2 we
describe the target system model for which PROPANE is aimed.
Section 3 describes the PROPANE tool suite and it’s main features.
An example of actual PROPANE usage is shown in Section 4. In
Section 5, we shortly compare PROPANE to some similar tools.
Finally, in Section 6 we summarize this paper.

2. TARGET SYSTEM MODEL
PROPANE aims at modular software, i.e., discrete software func-

tions interacting to deliver the requisite functionality. A module in



this context is a generalized software block having possibly mul-
tiple inputs and outputs. Modules communicate with each other
in some specified way using varied forms of signaling, e.g., shared
memory, messaging, parameter passing etc., as pertinent to the cho-
sen communication model.

A software block performs computations using the provided in-
puts to generate the outputs. At the lowest level, such a software
block may be a procedure or a function but could also conceptually
be a basic block or particular code fragment within a procedure or
function (at a finer level of software abstraction). A number of such
modules constitute a system and they are inter-linked via signals,
much like hardware components on a circuit board. Of course, this
system may be seen as a larger component or module in an even
larger system.

Software constructed as such is found in numerous systems–
desktop systems as well as embedded systems. For example, most
applications controlling physical events, e.g. in automotive sys-
tems, are traditionally built up as such. Our studies mainly focus
on software developed for embedded systems in consumer products
(high-volume and low-production-cost systems).

The PROPANE environment is designed with a focus on soft-
ware for single-process user applications on desktop systems. How-
ever, this single process may be multi-threaded. The PROPANE in-
jection and logging mechanisms are generic and are provided in a
static C-library, thus allowing for a vast range of applications. For
example, it has been used in experimentally analyzing the propaga-
tion of data errors in the software of an embedded control system
simulated on a Windows-based desktop computer [7, 8]. The re-
quirement for using PROPANE is that the language used for the
source code is able to interface with libraries implemented in the C
programming language.

3. MAIN FEATURES OF PROPANE
This section provides an overview of the main features of the

PROPANE tool suite, how it is structured, and its proposed usage.

3.1 Basic system structure
PROPANE is designed to run on a desktop system and consists

of a suite of tools, namely: the PROPANE Setup Creator (PSC), the
PROPANE Campaign Driver (PCD), the PROPANE Library (PL),
and the PROPANE Data Extractor (PDE). An overview is shown in
Fig. 1.
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Figure 1: An overview of PROPANE together with target soft-
ware and environment simulator

The PL is used by the target system to gain access to the prob-
ing and injection functionality of PROPANE and is written in the
C programming language. The PCD is responsible for handling

the actual execution of experiments and is in a sense the main ad-
ministrator of PROPANE. It has a user interface through which the
user can control and follow the experiments. The PDE may be used
during analysis to extract specific data from the experiment readout
files. The PCD and the PL are integrated with each other, whereas
the PSC and the PDE are stand-alone components of PROPANE.
The environment simulator and target software are provided by the
user. The environment simulator will act as a stimuli generator for
the target software and may be partially controlled by the output
generated by the target software (e.g., as in a control loop). The in-
teractions between these two sub parts of the target executable are
user-defined.

The PSC aids in the creation of setup files needed for controlling
PROPANE during the execution of FI-experiments. Given infor-
mation regarding errors and faults, probes, injection locations, etc.,
it will generate the requisite description files. The PSC will also
generate description files used by the PDE during analysis.

For each experiment specified in the description files, the PCD
spawns a new process running an executable file containing a com-
plete specification for conducting one experiment. This executable
contains the PL which performs the actual injection of errors and
logging of variables. The executable also has to contain everything
necessary to run the target system and the environment simulator.

During the execution of the experiments, log files and readout
files are created. The log files contain information regarding the
execution of the experiments, i.e., PROPANE performance and be-
havior information, and does not contain any readout data gathered
from the target software. If the experiment could not be executed
successfully for some reason, the log files provide hints to poten-
tial problems. The readout files contain the data obtained by the
inserted probes and the performed injections and are the basis for
subsequent error propagation analysis. The environment simulator
is designed by the user of the PROPANE tool, hence it may or may
not use description files and may or may not create log files and/or
readout files as per user-specified requirements. Also, the format of
the files read and/or written by the environment simulator is user-
defined.

The PL requires interfacing to the environment simulator. How-
ever, if an environment simulator exists which does not comply
with the interface specifications, a wrapper layer is warranted which
has the PROPANE interface on one side and the environment sim-
ulator interface on the other, acting as a translator between the two
components. Thus, the environment simulator need not necessarily
be an integrated part of the target executable.

The PDE will extract traces of the various logged variables and
memory areas and can conduct Golden Run Comparisons (i.e. com-
paring system traces obtained during injection experiments with
fault/error free reference traces, so called Golden Runs) to detect
whether errors have occurred due to fault injection. Information
regarding propagation will be compiled and presented. Also, in-
termediate extracted data is stored in special files which can sub-
sequently be used in a customized analysis tools which may take
into account desired experiment specific information and/or aims,
such as coverage estimation of error handling mechanisms, failure
classification or other activities which may be target specific.

3.2 Work process for using PROPANE
The typical work process when using PROPANE can basically

be divided into three main phases, namely: 1) Setup, 2) Injection,
and 3) Analysis (as illustrated in Fig. 2).

Setup phase: In the Setup phase, description files are generated
and the target system is instrumented. The inputs to this phase in-
clude the original source code of the target software, information
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Figure 2: The basic work process when using PROPANE.

on distribution and nature of faults and/or errors and information
about target system usage. The fault and error information is used
for determining the fault and error sets to be injected in the experi-
ments. The usage information forms the basis for determining the
test cases used during the injections in order to provide the target
system with a realistic operational profile. Instrumentation of the
target system means adding probes for logging variables, memory
areas, and events, as well as with high-level software traps for in-
jecting faults/errors to the source code. At this point, target instru-
mentation is still a manual task. However, a tool for automatic in-
strumentation is currently being developed and will be added to the
PROPANE suite. Given basic information about errors and faults,
probes, injection details, etc., PSC generates the required descrip-
tion files for PCD/PL and PDE. The description files contain infor-
mation on which faults are to be injected, which errors are to be
injected and at which locations, and which test cases are to be used
by the environment simulator during the execution of experiments.

Injection phase: During the Injection phase, the PROPANE
Campaign Driver (PCD) is set up with the description files gen-
erated in the Setup phase. The PCD invokes the target executable
as an individual process and generates readout files containing de-
tailed information on the results of the experiments. During the
experiment, the specified faults and/or errors are injected and the
specified variables and events are logged. Log-files are generated
recording the actions of the PROPANE tool itself.

Faults are injected when the corresponding fault-triggers are ac-
tivated. Fault injection at this level means that a faulty piece of
code is executed instead of the correct piece.

Errors are injected based on the built-in error types, or on user-
implemented error types. Thus, it is possible to implement error
models which are not originally included in PROPANE. For ex-
ample, if some parts of a system work unreliably under extreme
temperatures, a user error type could take this into consideration.

Error-triggers are boolean expressions and an error is injected
when its corresponding error-trigger is evaluated to true. Error-
triggers may be based on time, frequency or a probability distri-
bution. In addition to the built-in error-triggers, PROPANE also
supports user-implemented error-triggers. As was the case for user
error types, a user error-trigger may take into account target specific
information, such as system state or the environment. In the exam-
ple with the temperature-induced error type, a corresponding error-
trigger may evaluate to true when the temperature (obtained from
the environment simulator) is below a lower threshold or above an
upper threshold (or both).

Analysis phase: The readout files generated in the Injection
phase are analyzed in the Analysis phase to evaluate metrics for the
target systems. These metrics may include coverage values, propa-
gation information, etc. One aspect of analysis is to compare traces
from two different runs with each other, e.g., compare a golden
run(i.e. a reference run) with an injection run. The PROPANE Data
Extractor compiles propagation information from the readout files
and also generates a set of data-files containing data such as de-
tailed results on Golden Run Comparisons, injection information,
propagation information, etc.

4. EXAMPLE RESULTS GENERATED BY
PROPANE

This section presents example results obtained using PROPANE.
In [7], we used PROPANE on the software of an embedded con-
trol system for arresting aircraft on short runways (such as aircraft
carriers). The system aids incoming aircraft to reduce their veloc-
ity, eventually bringing them to a complete stop. The structure of
the software is illustrated in Fig. 3. The numbers shown at the in-
puts and outputs are used for numbering the signals. For instance,
PACNT is input #1 of DIST S, and SetValue is output #2 of CALC.

We used the actual software ported and it to run on a Windows-
based computer. The scheduling is slot-based and non-preemptive.
Thus, from the software viewpoint, there is no difference in running
on the actual hardware or running on a desktop computer.
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Figure 3: SW structure of the example system.

The software is composed of six modules of varying size and in-
put/output signal count. CLOCK provides a clock, mscnt, and a
signal indicating the current execution slot, ms slot nbr. DIST S
receives PACNT and TIC1 from sensors and are used to calcu-
late the distance an aircraft has traveled on the runway, pulscnt.
It also provides two boolean values, slow speed and stopped, i.e.,
if the velocity of the aircraft is below a certain threshold or if it
has stopped. CALC uses mscnt, pulscnt, slow speed and stopped
to calculate SetValue, the preferred value for the system actuators.
PRES S reads the value that is actually being applied by the actua-
tors, ADC, and provides the signal IsValue. V REG uses SetValue
and IsValue to generate OutValue, the output value to the actuators.
The modules attempts to compensate for the difference between
SetValue and IsValue. PRES A uses OutValue to set the actuator
via the hardware register TOC2.

We injected bit-flip errors in each of the signals (one at a time)
and monitored all the signals. Details on the setup and further re-
sults of this experiment can be found in [7].

During data analysis, the PDE extracts vital information for the
assessment of error propagation for each individual experiment run
but also for groups of experiments. Due to space limitations, we
will in this paper only show examples of results for groups of ex-
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Figure 4: Propagation graph (generated by the dot tool) for errors injected in PACNT.

periments. PDE generates concise information pertaining to the
propagation of the injected errors in the system. For each signal
that is subjected to error injections, a propagation graph and propa-
gation summary will be generated. The PDE stores the propagation
graph in two different file formats: i) dot [2], and ii) GML [4]. As
these formats are common for graph representation, there is a range
of applications that can be used for plotting and manipulating the
propagation graphs. In Fig. 4 we can see the propagation graph for
errors injected into the PACNT in the example system used in this
section. The graph is generated using the dot tool.

The propagation graph illustrates the propagation characteristics
of the errors injected into the signals PACNT. The label on an arc
from one node to another tells how many errors propagated along
this arc (top value), and the minimum, average and maximum prop-
agation times (bottom values) for these errors. The graph shows the
temporal order between errors in different signals. For example, if
we consider the errors detected (during the Golden Run Compar-
ison) in i, we can see that for 1120 of them, there were no errors
detected earlier in other signals (although errors were detected in
pulscnt at the same point in time), whereas for 691 of the detected
errors, there were error detected earlier in pulscnt.

Using the same example experiment as above, we show the gen-
erated propagation summary for errors in PACNT in Table 1. The
summary is obtained by collapsing all ingoing arcs of each node in
the propagation graph. Thus, e.g., the summary for i is obtained by
adding its two ingoing arcs in the propagation graph, which gives
us a total of 1811 errors. The propagation times are obtained from
the combined set of propagation times for the errors detected in i.

Table 1: Propagation of errors injected into PACNT.
error count is the number of errors detected using Golden Run Com-
parison and the error rate is the same information normalized. The
propagation times are all in milliseconds.

Signal error count error rate ���� ���� ����

PACNT 1840 1.000 0 0 0
pulscnt 1840 1.000 0 0 20
i 1811 0.984 0 4 20
OutValue 1275 0.693 1 613 4159
SetValue 1275 0.693 1 613 4159
TOC2 1275 0.693 3 615 4161
ADC 1265 0.688 10 629 4168
IsValue 1202 0.653 155 682 3467
slow speed 769 0.418 0 2004 5890
mscnt 1184 0.643 476 2982 6201
ms slot nbr 1184 0.643 476 2982 6201
TCNT 1184 0.643 476 2982 6201
TIC1 1184 0.643 476 2982 6201

In the summary shown in Table 1 we see the number of errors in
PACNT that caused errors in other signals (count and rate), as well
as the minimum, average and maximum propagation time for these
errors (the rows are ordered according to their average propagation
time). In this particular example we can see that all of the 1840
errors injected into PACNT, propagated to pulscnt with an average
propagation time of 0 ms. 1275 errors made it all the way to the
output signal TOC2 with an average propagation time of 615 ms.



From the software structure shown in Fig. 3 we can see that errors
in the signals listed below TOC2 in Table 1 (except slow speed),
must be indirect, since there is no direct path from PACNT. Thus,
errors in this signal must have propagated out of the system into the
environment and then back into the system again.

The results presented give information on how errors propagate
through the system, identifying which modules and signals that
may be in need of special mechanisms for protection against prop-
agating errors. For example, from the results in Table 1 we see that
errors in PACNT mainly propagate through DIST S into CALC
using pulscnt. From the propagation graph in Fig. 4 we see that
propagation into CALC is fast, whereas propagation out of CALC
takes a little longer. Thus, CALC seems to delay the propagation
of errors. We also see that after CALC, error propagation again
is swift. These results would indicate that system reliability could
increase if pulscnt were to be equipped with with EDMs (error de-
tection mechanisms) and ERMs (error recovery mechanisms), as
this would likely break the propagation at an early stage.

These examples demonstrate PROPANE’s capabilities for gen-
erating pertinent information for propagation analysis. However,
the level of detail required may generate very large amounts of raw
data. In order to further analyse this raw data (further than done
by the PDE) additional actions can be performed to reduce the raw
data into useful information. We refer the reader to [7, 8], where
details of actual results, as well as two different data analysis frame-
works (with different objectives) are described.

5. OTHER TOOLS
There are other tools for injection of errors and faults, e.g. DE-

PEND [5], Xception [1], MAFALDA [3], and NFTAPE [10]. DE-
PEND is aimed at evaluating architectures and thus the granularity
of the obtained results is at the system level (or node level for dis-
tributed systems) and thus cannot aid in charting error propagation
at the variable level. Xception is targeted for evaluation of fault tol-
erance against HW faults and its results are also at the system level.
Also, Xception connects directly to the hardware of a system and
thus has a tight link to the target processor.

The aim of MAFALDA is evaluation of the robustness of micro-
kernels and investigating the effect of software faults and software
errors on the operation of these kernels. This means that the tool is
able to inject at the OS-level. PROPANE is aimed at software at the
USER-level, hence it is not suited for these types of investigations.
However, as far as we know, MAFALDA lacks comprehensive log-
ging facilities for examining the propagation of errors in a micro-
kernel. NFTAPE is, in our opinion, a very versatile tool which can
perform the same investigations PROPANE can. NFTAPE, just like
PROPANE, has support for user-defined injectors as well as user-
defined triggers, and is capable of observing the target system at
the variable level. As both tools have support for user-defined in-
jectors, both may be extended to handle physical fault injection as
well as SWIFI. However, NFTAPE is designed to run on a LAN,
and has therefore a separate control host and a target node.

6. SUMMARY
This paper briefly presents PROPANE, the Propagation Analysis

Environment, which is a software design-stage profiling tool suite
developed for analyzing the propagation and effect of errors in soft-
ware systems. PROPANE is a desktop environment and contains
support for conducting fault and error injections in target software
systems. The tool also provides support for inserting probes into
the target system enabling the logging of variables and events dur-
ing injection experiments.

PROPANE is totally target system independent, i.e., it may be
used on any target system provided that one can execute it in a
desktop environment. Also, PROPANE does not require any HW
or OS support and is easily ported to other operating systems (the
current version is available for Windows NT/2000-based comput-
ers). As PROPANE is implemented using ANSI C, porting it is
mostly just a question of recompiling for the desired environment.

The injection capabilities include fault injection by mutation of
source code as well as SWIFI-based injection of errors. PROPANE
supports user-defined injectors and triggers which makes it capable
of supporting other injection techniques than SWIFI (for example,
physical fault injection).

PROPANE supports observations down to the variable level, i.e.,
individual variables may be logged during injection experiments.
This enables the detailed examination of error propagation in soft-
ware and is a valuable help in finding vulnerable software modules
and/or variables.

For analysis, the toolkit contains the PROPANE Data Extractor,
which can perform Golden Run Comparisons for each channel cre-
ated by a variable in the readout files. The results will be stored
in a text file with a spreadsheet format that is easily imported into
other tools for further analysis. The results from the GRC are also
compiled to show where errors propagate through the system and
how long time it takes.

The PDE can also extract injection information from the readout
files and store this in separate files, and create channel logs for each
individual channel of each individual experiment if a more detailed
analysis or graphical representation is desired. Also, PDE creates
propagation graphs and summaries which visualize the propagation
characteristics of the software system.

To demonstrate the tool we have shown detailed results from an
injection experiment performed on a medium sized embedded con-
trol system used for arresting aircraft (similar to the cable-and-hook
systems found on aircraft carriers).
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