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Abstract

This paper describes a method for profiling modular soft-
ware by analyzing the propagation and effect of data er-
rors. A framework of different metrics, based on the con-
cept of error permeabilityenables the profiling of vulner-
abilities and hot-spots, specifically i) the modules and sig-
nals that are most likely exposed to propagating errors, and
ii) the modules and signals which, when subjected to er-
rors, tend to cause more damage than others. Based on the
profiles obtained by the metrics framework we discuss how
to identify where dependability structures and mechanisms
are likely to be the most effective. We also describe a fault-
injection-based method for estimating the metrics, and pro-
file the software of a real embedded system to show the type
of results obtainable by the framework.

1 Introduction

The increasing use of software in computerized systems
to lower costs for certain functionalities has produced a
large increase in the need for software implemented mech-
anisms for dependability. An integral part of developing
low-cost robust systems is to equip software with struc-
tures and mechanisms providing dependability (e.g., mask-
ing fault tolerance, fail safety or fail silence). The necessary
prerequisites for developing and providing the relevant de-
pendability in software are:

1. The type of errors that the system is supposed to han-
dle; their nature, frequency, duration, etc. If this is not
known, it is very hard to know how to obtain any de-
pendability. This would make both the development as
well as the assessment/analysis of the system difficult
(if not impossible).

∗This work was mainly performed at Chalmers University of Technol-
ogy (Göteborg, Sweden), supported in part by Volvo Research Foundation
(FFP-DCN), by NUTEK (1P21-97-4745), by Saab Endowment, and by
NSF Career CCR 9896321

2. The available structures and mechanisms for depend-
ability. When developing dependable software it is of
course important to know the characteristics and prop-
erties of the mechanisms at ones disposal, including
their strengths and weaknesses. The overall architec-
ture of the software may be affected by these proper-
ties.

3. The vulnerabilities and hot-spots of the software. In
order to be able to incorporate dependability structures
and mechanisms where they are likely to be the most
effective, it is important to know where errors tend to
propagate and where errors tend to do the most dam-
age.

This paper has a focus on the last issue above and
presents a framework for profiling modular software with
regard to error propagation and error effect. The framework
is calledEPIC after the four groups of measures it intro-
duces (Exposure, Permeability, Impact, andCriticality).

Propagation analysis may be used to find the modules
and signals which are most exposed to errors in a system,
and to ascertain how different modules affect each other in
the presence of errors. In addition to knowing error prop-
agation characteristics it is also important to know where
errors are likely to do the most damage. Note that those
errors which are most likely to propagate are not always
those that are most likely to cause great damage. Thus it is
important to do an analysis of both notions to identify the
most vulnerable parts of a system.

The focus ofEPIC is on handling data errors and we
consider modular software resident on either single or dis-
tributed hardware nodes. In our approach, we adopt a black-
box view of modular software and introduce the measureer-
ror permeability as well as a set of related measures. Subse-
quently, we define a methodology for using these measures
to obtain software profiles providing information on error
propagation and error effect, and also aid in identifying hot-
spots and vulnerabilities in the software. As such, parts of
the calculations and techniques used in the framework re-
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semble those used for reliability diagrams and fault trees.
Paper organisation: Section 2 reviews related work and

Section 3 describes the assumed system model and intro-
duce an example system. The EPIC framework is described
in Section 4. In Section 5, a method for estimating numeri-
cal values of the metrics is discussed, and we also produce
estimates of the various metrics for our example system.
Section 6 contains a summary and conclusions.

2 Related Work

Error propagation analysis for logic circuits has been
in use for many decades. Numerous algorithms and tech-
niques have been proposed, e.g., the D-algorithm [9], the
PODEM-algorithm [3] and the FAN-algorithm [2] (which
improves on the PODEM-algorithm).

Propagation analysis in software has been described for
debugging use in [11]. Here the propagation analysis aimed
at finding probabilities of source level locations propagat-
ing data-state errors if they were executed with erroneous
initial data-states. The framework was further extended
in [7, 12] for analysing source code under test in order to
determine test cases that would reveal the largest amount
of defects. In [13], the same framework was used for de-
termining locations for placing assertions during software
testing, i.e., aiming to place simple assertions where normal
testing would have difficulties finding defects.

3 Assumed Models, and Example System

System/Software Model, and Fault Model In our stud-
ies, we consider modular software, i.e., discrete software
functions interacting to deliver the requisite functionality. A
module is viewed as a generalised black-box with multiple
inputs and outputs. Modules communicate with each other
in some specified way using varied forms of signaling, e.g.,
shared memory, messaging, parameter passing etc., as per-
tinent to the chosen communication model. We will use the
term signal in an abstract manner, representing a software
channel for data communication between modules.

The fault model which EPIC is aimed at is that of data
errors. That is, errors in variables and signals. However, we
do not explicitly consider data errors which may result in
control error errors.

An Example Embedded System In order to illustrate the
proposed methodology of profiling error propagation and
effect in software, we use the software of an embedded
control system used for arresting aircraft on short runways
and aircraft carriers, constructed according to specifications
found in [10].

In our study, we used actual software of the system mas-
ter and ported it to run on a Windows-based computer. The

scheduling is slot-based and non-preemptive. Thus, from
the software viewpoint, there is no difference in running on
the actual hardware or running on a desktop computer.
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Figure 1. Software structure of target

The structure of the software is illustrated in Fig. 1. The
numbers shown at the inputs and outputs are used for num-
bering the signals. For instance, PACNT is input #1 of
DIST S, and SetValue is output #2 of CALC.

The software is composed of six modules of varying size
and input/output signal count:
CLOCK provides a millisecond-clock, mscnt. The signal ms slot nbr in-
dicates the current execution slot. DIST S receives PACNT and TIC1 from
the rotation sensor and TCNT from the hardware counter modules. The ro-
tation sensor reads the number of pulses generated by a tooth wheel on the
drum. The module provides a total count of the pulses, pulscnt, generated
during the arrestment. It also provides two Boolean values, slow speed and
stopped. CALC uses mscnt, pulscnt, slow speed and stopped to calculate
a set point value for the pressure valves, SetValue, at six predefined check-
points along the runway. The checkpoints are detected by comparing the
current pulscnt with pre-defined values corresponding. The current check-
point is stored in i. PRES S reads the the pressure that is actually being ap-
plied by the pressure valves, using ADC from the internal A/D-converter.
This value is provided in IsValue. V REG uses SetValue and IsValue to
control OutValue, the output value to the pressure valve. OutValue is based
on SetValue and then modified to compensate for the difference between
SetValue and IsValue. PRES A uses OutValue to set the pressure valve via
the hardware register TOC2.

4 Software Profiling using EPIC

The EPIC framework aims at providing a means of pro-
filing software such that weaknesses and hot-spots in modu-
lar software can be identified. To achieve this, EPIC can be
used to generate two distinct profiles of a software system:
i) error propagation profile and ii) error effect profile. These
chart how data errors propagate through a software system
and their effect on system operations, respectively. When
performing a cost/benefit analysis, both profiles are used.

4.1 Error Permeability - Letting Errors Pass

The basis of the approach is error permeability. Upon
this, we define a set of related metrics providing an insight
on the error propagation and effect characteristics of a sys-
tem.
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Figure 2. A basic black-box software module
with m inputs and n outputs

Consider the software module in Fig. 2. For each pair of
input and output signals, the error permeability is defined
as the conditional probability of an error occurring on the
output given that there is an error on the input. Thus, for
input i and output k of a module M, the error permeability,
PM

i,k , is defined as follows:

0 ≤ P M
i,k = Pr{error in k|error in i} ≤ 1 (1)

This measure indicates how permeable an input/output
pair of a software module is to errors occurring on that par-
ticular input. It should be noted that if the error permeabil-
ity of an input/output pair is zero, this does not necessarily
mean that the incoming error did not cause any damage.
The error may have caused a latent error in the internal state
of the module that for some reason is not visible on the out-
puts. In Section 5, we describe an approach for experimen-
tally estimating values for this measure.

Going to the module level (Fig. 2), we define the mod-
ule error permeability, P M , of a module M with m input
signals and n output signals, to be:

0 ≤ P M =

(
1

m
· 1

n

)∑
i

∑
k

P M
i,k ≤ 1 (2)

In order to be able to make a distinction between mod-
ules with a large fan in/out and those with a small fan in/out,
we can, for a module M with m input signals and n output
signals, define the non-normalized module error permeabil-
ity, P̂M as follows:

0 ≤ P̂ M =
∑

i

∑
k

P M
i,k ≤ m · n (3)

The two measures defined in Eqs. 2 and 3 are both nec-
essary for analyzing the modules of a system. For instance,
consider the case where two modules, G and H, are to be
compared. G has few inputs and outputs, and H has many.
Then, if P G = PH , then P̂G < P̂H . And vice versa, if
P̂G = P̂H , then P G > PH .

4.2 Ascertaining Propagation Paths

In order to gain knowledge about the exposure of the
modules to propagating errors in the system we define the
following process which considers interactions across mod-
ules.

Consider the example software system shown in Fig. 1.
External input to the system is received at PACNT, TIC1,
TCNT, and ADC. The output is TOC2.

Once we have obtained values for the error permeability
for each input/output pair of each module, we can construct
a permeability graph as illustrated in Fig. 3.
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Figure 3. Permeability graph of target

In the graph (Fig. 3) we can see the various permeability
values (labels on the arcs) that will have to be calculated.
The numbers used in the notation refer to the numbers of
the input signals and output signals respectively, as shown
in Fig. 1. For instance, P CALC

2,1 is the error permeability
from input 2 (mscnt) to output 1 (i) of module CALC.

With the permeability graph we can:

A Backtrack from system output signals to system in-
put signals in order to find those paths which have the
highest probability of error propagation (Output Error
Tracing), or

B Trace errors from system input signals to system out-
put signals in order to find which paths these errors will
most likely propagate along (Input Error Tracing).

Output Error Tracing is easily accomplished by con-
structing a set of backtrack trees, one for each system out-
put, according to the procedure in Fig. 4.

This will, for each system output, give us a backtrack
tree where the root corresponds to the system output, the
intermediate nodes correspond to internal outputs and the
leaves correspond to system inputs (or module inputs re-
ceiving feedback from its own module). Also, all vertices
in the tree have a weight corresponding to an error perme-
ability value. Once we have obtained this tree, finding the
propagation paths with the highest propagation probability
is simply a matter of finding which paths from the root to
the leaves have the highest weight.
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A1. Select a system output signal and let it be the root node of the
backtrack tree.

A2. For each error permeability value associated with the signal, gen-
erate a child node that will be associated with an input signal.

A3. For each child node, if the corresponding signal is not a system
input signal, backtrack to the generating module and determine the
corresponding output signal. Use this signal and construct the sub-
tree for the child node from A2. If the corresponding signal is a
system input signal it will be a leaf in the tree. If the corresponding
signal is an input signal to the same module it will be a leaf in the
tree (as opposed to other leaves which are system input signals).
We do not follow the recursion that is generated by the feedback.

A4. If there are more system output signals, go back to A1.

Figure 4. Generating backtrack trees.

Input error tracing is achieved similarly. Here, we con-
struct a trace tree for each system input, according to the
procedure in Fig. 5.

B1. Select a system input signal and let it be the root node of the trace
tree.

B2. Determine the receiving module of the signal and for each output
of that module, generate a child node. This way, each child node
will be associated with an output signal.

B3. For each child node, if the corresponding signal is not a system
output signal, trace the signal to the receiving module and deter-
mine the corresponding input signal. Use this signal and construct
the sub-tree of the child node from B2. If the corresponding signal
is a system output signal it will be a leaf in the tree. If the input
signal is the same module that generated the output signal (i.e. we
have a module feedback) then follow this feedback once and gen-
erate the sub-trees for the remaining outputs. We do not follow the
recursion generated by this feedback.

B4. If there are more system input signals, go back to B1.

Figure 5. Generating trace trees.

This procedure results in a set of trace trees - one for
each system input. In a trace tree, the root will represent a
system input, the leaves will represent system outputs, and
the intermediate branch nodes will represent internal inputs.
Thus, all vertices will be associated with an error perme-
ability value. From the trace trees we find the propagation
pathways that errors on system inputs would most likely
take by finding the paths from the root to the leaves having
the highest weights.

From the permeability graph in Fig. 3 we can now gen-
erate the backtrack tree for the system output signal TOC2.
This tree is shown in Fig. 6.

As illustrated in the backtrack tree (Fig. 6), we have a
special relation between the leaves for ms slot nbr and for i
and their respective parent. This is because the parent node
is also either ms slot nbr or i. Thus, we have an output
signal which is connected back to the originating module
giving us a recursive relation. In those cases where errors
only can enter a system via its main inputs, these branches
of the backtrack-trees can be disregarded.

In Fig. 7, we have the trace tree for system input PACNT.
The trees for inputs TIC1, TCNT, and ADC are very similar
to the tree for PACNT so they will not be shown here.

SDISTP _
1,1

SDISTP _
2,1

SDISTP _
3,1

CALCP 2,3
CALCP 2,4

CALCP 2,5

CALCP 2,1

CALCP 1,3
CALCP 1,4

CALCP 1,5

REGVP _
1,1

APRESP _
1,1

pulscnt

i

slow_speed stopped

SetValue

OutValue

TOC2

SetValue

OutValue

TOC2

i

SetValue

OutValue

TOC2

SetValue

OutValue

TOC2

i

SetValue

OutValue

TOC2

SetValue

OutValue

TOC2

PACNT

REGVP _
1,1

APRESP _
1,1

APRESP _
1,1

APRESP _
1,1

APRESP _
1,1

APRESP _
1,1

REGVP _
1,1

REGVP _
1,1

REGVP _
1,1

REGVP _
1,1

CALCP 2,1
CALCP 2,1

Figure 7. Trace tree for input PACNT

As described in Section 4.2, we do not follow the recur-
sion generated by a feedback from a module to itself. In
module CALC we have a feedback in signal i, and as seen
in Fig. 7, we do not have a child node from i that is i itself.

Here we can see which propagation path from system
input to system output has the highest probability. As for
backtrack trees, the probability of a path is obtained by mul-
tiplying the error permeability values along the path.

4.3 Assessing the Error Exposure of Modules and
Signals

To find modules most likely to be exposed to propagating
errors, we want to have some knowledge of the “amount” of
errors that a module may be subjected to. For this we define
the module error exposure, XM , of a module M as:

0 ≤ XM =
1

N

∑
incoming arcs of M ≤ 1 (4)

where N is the number of incoming arcs and M is the node
in the permeability graph, representing software module M.
The module error exposure is the mean of the weights of
all incoming arcs of a node. We define the non-normalized
module error exposure, X̂M , of a module M as:

0 ≤ X̂M =
∑

incoming arcs of M ≤ N (5)

Going to the signal level, we want to analyse the system
and get indications on which signals might be the ones that
errors most likely will reach and propagate through. In the
backtrack trees we can easily see which error permeability
values are directly associated with a signal s. We define the
set Sp as composed of all unique arcs going to the child
nodes of all nodes generated by the signal s. A signal may
generate multiple nodes in a backtrack tree (see for instance
signal pulscnt in the backtrack tree in Fig. 6). However, in
the set Sp, the permeability values associated with the arcs
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Figure 6. Backtrack tree for output TOC2

emanating from those nodes will only be counted once. The
signal error exposure, XS

s , of signal s is then calculated as:

XS
s =

∑
all permeability values in Sp (6)

4.4 Analyzing the Effect of Errors

It may be insufficient to only take into account the prop-
agation characteristics of data errors for a given software
system in order to identify weaknesses. Errors that have a
low probability of propagating may still cause severe dam-
age should propagation occur. Taking this into account we
now define measures which let us analyse to what extent er-
rors in a signal (system input signal or intermediate signal)
affect the system output, i.e., what is the impact of errors on
the system output signals.

As errors in a source signal can propagate along many
different paths to the (destination) system output signal we
must consider this in our definition of impact. In order to
calculate the impact of errors in a signal s on a system out-
put signal OSys we must first generate an impact tree, which
is a generalization of the trace tree described in Section 4.2.
Instead of generating a trace tree with a system input as root
node, we use the signal of interest in our analysis as the root,
in this case s. An impact tree is generated using the same
steps as for trace trees (see Fig. 5).

Once we have generated the impact tree for a given sig-
nal s, we generate all the propagation paths from the root
to the leaves containing system output signal OSys (there
may be leaves which are generated by other system output
signals). Each path has a weight associated with it which is
the product of all permeability values along that path. We
define s ❀ OSys, the impact of (errors in) s on OSys, as

0 ≤ s ❀ OSys = 1 −
∏

i

(1 − wk) ≤ 1 (7)

where wk is the weight of path k from s to OSys. If one
could assume independence over all paths, the impact mea-
sure would be the conditional probability of an error in s
propagating all the way to OSys. However, as independence
can rarely be assumed we will treat this as a relative mea-
sure by which different signals can be ranked.

In Eq. 7, the measure only considers one system output
signal. If a system has multiple output signals, the corre-
sponding impact value which considers all output signals
can be defined as:

0 ≤ s ❀ OSys = 1 −
∏

i

(1 − (s ❀ OSys
i )) ≤ 1 (8)

where s ❀ OSys
i is the impact of signal s on system output

signal OSys
i , i.e., the ith system output signal.

The concept of impact as described above considers the
impact on system output generated by errors in system in-
put signals and intermediate signals. However, when a sys-
tem has multiple output signals, these are not necessarily
all equally important for the operation of the system, i.e.,
some output signals may be more critical than others. For
cost-efficiency, one may wish to concentrate resources for
dependability on the most critical system output signals and
therefore needs to know which signals in the system that are
“best” (in a loose sense) to monitor/protect.

Each system output signal OSys
i is assigned a criticality

COSys
i

, which is a value between 0 and 1, where 0 denotes
not at all critical and 1 denotes highest possible criticality.
These criticality values are assigned by the system designer.

Each signal s has a certain impact, s ❀ OSys
i , on sys-
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tem output OSys
i , as calculated according to Eq. 7. The

criticality of s as experienced by system output OSys
i , Cs,i,

is calculated as

0 ≤ Cs,i = C
O

Sys
i

· (s ❀ OSys
i ) ≤ 1 (9)

Once we have the criticality of s with regard to each sys-
tem output signal OSys

i we can subsequently compute an
overall criticality value. We define the criticality Cs of sig-
nal s as

0 ≤ Cs = 1 −
∏

i

(1 − C
O

Sys
i

· (s ❀ OSys
i )) ≤ 1 (10)

For each signal, the criticality measure indicates how “ex-
pensive” errors are with regard to the total system operation,
i.e., the higher the criticality value, the higher the likelihood
of the system not being able to deliver its intended service,
should an error occur in the signal. The notion of criticality
as defined here also takes into account the “cost” associated
with errors in system outputs as defined by the system de-
signer. Thus, while the impact measures are independent of
the project policies regarding dependability, the criticality
values may change when the project policies for software
development change.

At this point, we have only defined impact and criticality
at the signal level. If we consider a module M in a system
with i output signals, we can define the impact of M on a
given system output signal OSys

i , M ❀ OSys
i , as follows:

0 ≤ M ❀ OSys
i = 1 −

∏
j

(1 − (OM
j ❀ OSys

i )) ≤ 1 (11)

where OM
j ❀ OSys

i is the impact of (errors in) the output

signal OM
j of M on system output signal OSys

i . For each
output signal of M, there is one such impact value. In order
to get a measure for the impact of M on the system output
as a whole we can define M ❀ OSys, the module impact
of M on system output, as follows:

M ❀ OSys = 1 −
∏

i

∏
j

(1 − (OM
j ❀ OSys

i )) ≤ 1 (12)

Going from impact to criticality is not a big step. Instead
of using the individual impact values of the outputs of a
module, the corresponding criticality values for the chosen
system output signal are used. The criticality of module M,
with regard to system output OSys

i can thus be defined as:

0 ≤ CM
i = 1 −

∏
j

(1 − COM
j

,i) ≤ 1 (13)

where COM
j

,i is the criticality of output OM
j with regard

to system output signal OSys
i . A total measure regarding

all system output signals is then referred to as the module
criticality, CM , of M and is defined as:

0 ≤ CM = 1 −
∏

i

∏
j

(1 − C
O

Sys
i

· (OM
j ❀ OSys

i )) ≤ 1 (14)

4.5 Identifying Hot-Spots and Vulnerabilities

In this section we will discuss how to identify hot-spots
and vulnerable locations in the analysed software using the
obtained error propagation and error effect profiles.

It is hard to develop a generalized heuristic for identifica-
tion hot-spots and vulnerabilities. However, the following
rules of thumb or recommendations for interpretation of the
metrics can be made:

• The higher the error exposure values of a module or
signal, the higher the probability that it will be sub-
jected to errors propagating through the system if er-
rors are indeed present.

• The higher the error permeability values of a module or
signal, the lower its ability to contain (as in “confine” )
errors. Thus, there is an increase in the probability of
subsequent modules being subjected to propagating er-
rors if errors should pass through the module.

• The higher the criticality (or impact if the system only
has one output signal) of a module or signal, the higher
the probability of an error there causing damage from
a system point-of-view.

When selecting which parts of the software to improve
with dependability structures and mechanisms, these rules
may not individually yield the same result. Consider the
case where a module or signal has a low exposure but a high
criticality. The low exposure means that there is a low prob-
ability of errors propagating to that module/signal. How-
ever, the high criticality means that, should an error find
its way into that module/signal, there is a high probabil-
ity of that error causing damage which propagates beyond
the system barrier into the environment. Thus, one may se-
lect modules/signals with low exposure and high criticality
for further dependability efforts. For example, a signal with
high criticality may be equipped with error detection and re-
covery mechanisms, or a module with high criticality may
be duplicated or triplicated.

From a pure dependability viewpoint, it may be suffi-
cient to only consider the criticality of modules and signals,
as these indicate the amount of damage an error may cause.
However, from a cost viewpoint, taking care of high crit-
icality events may not be worthwhile if these events have
a very low probability of occurring. Using both the prop-
agation and the effect profiles, a cost-benefit analysis can
be performed. In this case, project policies will determine
whether a low-probability event with high criticality will be
taken care of or not.
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The obtained profiles may also aid in the design of struc-
tures for dependability. For example, a situation with low
error exposure and high criticality (impact) indicates that
any error detection mechanism in that location would have
to be highly specialized as errors are infrequent and likely
to be hard to detect. The opposite situation, i.e., high ex-
posure and low criticality (impact) indicates that a coarser
error detection mechanism in that location may suffice.

5 Obtaining Numerical Estimates of Error
Permeability

Our method for experimentally estimating the error per-
meability values of software modules is based on fault in-
jection (FI – see, e.g., [6]).

For analysis of raw experimental data, we make use of
so-called Golden Run Comparisons (GRC). A Golden Run
(GR) is a trace of the system executing without any injec-
tions being made, hence, this trace is used as reference and
is stated to be “correct” . All traces obtained from the injec-
tion runs (IR’s, where injections are conducted), are com-
pared to the GR, and any difference indicates that an error
has occurred. The main advantage of comparing an injec-
tion run with a reference run to detect perturbations is that
this does not require any a priori knowledge of how the
various signals are supposed to behave, which makes this
approach less application specific.

Experimentally estimating error permeability is done by
injecting errors in the input signals of a module and logging
its output signals. We only inject one error in one input
signal at a time. Suppose, for module M, we inject n inj

distinct errors in input i, and at output k observe nerr differ-
ences compared to the GR’s, then we can directly estimate
the error permeability P M

i,k to be nerr

ninj
(see more on experi-

mental estimation in [1] and [8]).
The type of injected errors and the work load are likely to

affect the estimates. Thus, when generating estimates using
fault-injection, one should use an error set which resembles
real faults and errors as closely as possible, and also use
realistic work loads.

5.1 Example Analysis

For estimating error permeability values of our exam-
ple system, we used the Propagation Analysis Environment
(PROPANE [5]). This tool enables fault and error injec-
tion, using SWIFI (SoftWare Implemented Fault Injection),
in software running on a desktop.

In this study, the aim was to produce an estimate of the
error permeability of the modules of the target system. As
described in Section 5 we produced a Golden Run (GR) for
each test case. Then, we injected errors in the input signals
of the modules and monitored the produced output signals.

For each injection run (IR) only one error was injected at
one time, i.e., no multiple errors were injected.

We injected single bit-flips in the input signals of the
modules at 10 different time instances distributed in half-
second intervals between 0.5 s and 5.0 s from start of ar-
restment (although only at one time in each IR). To get a
varied load on the system and the modules, we subjected
the system to 25 test cases: 5 masses and 5 velocities of
the incoming aircraft uniformly distributed between 8,000-
20,000 kg, and between 40-80 m/s, respectively.

The raw data obtained in the IR’s was used in a Golden
Run Comparison where the trace of each signal (input and
output) was compared to its corresponding GR trace. The
comparison stopped as soon as the first difference between
the GR trace and the IR trace was encountered.

5.2 Experimental Results and Obtained Profiles

In the target system, we have 25 input/output pairs for
which we produced an estimate of the error permeability
measure (see Eq. 1) using the method from Section 5. Due
to space limitations, we do not include all individual esti-
mates here. However, these values can be found in [4].

In Table 1, we obtain error permeability values (P M and
P̂M , respectively), error exposure values (X M and X̂M )
and impact values (M ❀ TOC2) for each module.

The modules DIST S and PRES S have no error expo-
sure values as they only receive system input signals, i.e.,
from external sources. This does not mean that these mod-
ules will never be exposed to errors on their inputs, but
rather that the error exposure is dependent on the probability
of errors occurring in the various external data sources. The
modules with the highest non-weighted error exposure are
the CALC module and the V REG module. This indicates
that these two modules are central in the system and thus
candidates for error detection and recovery mechanisms.

The module PRES A has no impact value since the im-
pact is calculated with regard to its output. One could per-
haps say that this module has an impact of 1.0, as an error
in its output signal (TOC2) is guaranteed to generate an er-
ror in the system output signal (also TOC2). When calcu-
lating module impact, one may also view the environment
as a module and calculate its impact on system output. In
this case, the system input signals are viewed as the out-
puts of the environment and calculations are performed as
described in Eq. 12. The system only has one output sig-
nal. Thus, no criticality values are calculated as these would
only be scaled impact values.

In Table 2, we have both exposure values, X S
s , and im-

pact values, s ❀ TOC2, of the various signals of the target
system. Signal TOC2 has no impact value associated with
it as this is the system output signal (one could say that the
impact is 1.0 in this case).
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Table 1. Estimated relative permeability, error
exposure and impact values of the modules

Module PM P̂ M XM X̂M M ❀ TOC2

CLOCK 0.500 1.000 1.000 1.000 0.410
DIST S 0.107 0.966 - - 0.698
PRES S 0.000 0.000 - - 0.784
CALC 0.299 2.986 0.165 2.473 0.784
V REG 0.890 1.781 0.247 1.479 0.875
PRES A 0.875 0.875 0.890 1.781 -

Table 2. Estimated signal error exposures and
impacts on TOC2

Signal (s) XS
s s ❀ TOC2

PACNT - 0.027
TCNT - 0.000
TIC1 - 0.000
ADC - 0.000
OutValue 1.781 0.875
i 1.507 0.043
SetValue 1.478 0.774
ms slot nbr 1.000 0.000
pulscnt 0.957 0.021
TOC2 0.875 -
slow speed 0.010 0.691
IsValue 0.000 0.784
mscnt 0.000 0.410
stopped 0.000 0.001

Here, an example of how the rules-of-thumb for identifi-
cation of weaknesses and hot-spots can be in conflict with
each other is highlighted. Consider the signal IsValue go-
ing from PRES S to V REG. With the propagation analy-
sis, we obtained a zero error exposure value indicating that
errors never (or at least rarely) propagate into this signal.
This suggests that IsValue may not be a weak part of the
software. On the other hand, with the effect analysis, we
obtained a very high error impact value. This means that
an error in IsValue could have a high impact should it occur
and may cause severe system failure, which would suggest
that IsValue may be location which should be considered as
a weak spot of the software. Thus, the propagation analysis
and the effect analysis may identify different weaknesses of
the software and corresponding input to system designers
regarding cost/benefit trade-offs and implications of place-
ment and design of structures and mechanisms for depend-
ability.

6 Summary and Conclusions

This paper presents a condensed description of the EPIC
framework for analysis of propagation and effect of data er-
rors in software. The system model assumed in this frame-
work is that software is composed of a set of modules
interconnected with signals. The results from EPIC can
be used for identifying areas (modules and signals) which

may prove to be weaknesses and/or hot-spots in the sys-
tem. Thereby, extra efforts for providing dependability may
be directed towards those areas. We also describe a fault-
injection based method for obtaining estimates of the met-
rics and use an example system to illustrate the obtained
profiles. Concluding this paper, we state that the EPIC
provides means for software profiling which may provide
knowledge pertinent to dependability engineering in soft-
ware systems.
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