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ABSTRACT
Business relationships between ASes in the Internet are typ-
ically confidential, yet knowledge of them is essential to un-
derstand many aspects of Internet structure, performance,
dynamics, and evolution. We present a new algorithm to
infer these relationships using BGP paths. Unlike previ-
ous approaches, our algorithm does not assume the pres-
ence (or seek to maximize the number) of valley-free paths,
instead relying on three assumptions about the Internet’s
inter-domain structure: (1) an AS enters into a provider
relationship to become globally reachable; and (2) there ex-
ists a peering clique of ASes at the top of the hierarchy, and
(3) there is no cycle of p2c links. We assemble the largest
source of validation data for AS-relationship inferences to
date, validating 34.6% of our 126,082 c2p and p2p infer-
ences to be 99.6% and 98.7% accurate, respectively. Using
these inferred relationships, we evaluate three algorithms for
inferring each AS’s customer cone, defined as the set of ASes
an AS can reach using customer links. We demonstrate the
utility of our algorithms for studying the rise and fall of large
transit providers over the last fifteen years, including recent
claims about the flattening of the AS-level topology and the
decreasing influence of “tier-1”ASes on the global Internet.

Categories and Subject Descriptors
C.2.5 [Local and Wide-Area Networks]: Internet; C.2.1
[Network Architecture and Design]: Network topology

Keywords
AS relationships; routing policies; customer cones

1. INTRODUCTION
The Internet consists of thousands of independent inter-

connected organizations, each driven by their own business
model and needs. The interplay of these needs influences,
and sometimes determines, topology and traffic patterns,
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i.e., connectivity between networked organizations and rout-
ing across the resulting mesh. Understanding the underlying
business relationships between networked organizations pro-
vides the strongest foundation for understanding many other
aspects of Internet structure, dynamics, and evolution.

Business relationships between ASes, which are typically
congruent with their routing relationships, can be broadly
classified into two types: customer-to-provider (c2p) and
peer-to-peer (p2p). In a c2p relationship, the customer pays
the provider for traffic sent between the two ASes. In return,
the customer gains access to the ASes the provider can reach,
including those which the provider reaches through its own
providers. In a p2p relationship, the peering ASes gain ac-
cess to each others’ customers, typically without either AS
paying the other. Peering ASes have a financial incentive
to engage in a settlement-free peering relationship if they
would otherwise pay a provider to carry their traffic, and
neither AS could convince the other to become a customer.
Relationships are typically confidential so must be inferred
from data that is available publicly. This paper presents a
new approach to inferring relationships between ASes using
publicly available BGP data.

Measurement and analysis of Internet AS topologies has
been an active area of research for over a decade. While
yielding insights into the structure and evolution of the topo-
logy, this line of research is constrained by systematic mea-
surement and inference challenges [32], many of which our
approach proactively addresses. First, the BGP-based col-
lection infrastructure used to obtain AS-level topology data
suffers from artifacts induced by misconfigurations, poisoned
paths, and route leaks, all of which impede AS-relationship
inference. Our algorithm incorporates steps to remove such
artifacts. Second, AS topologies constructed from BGP data
miss many peering links [6]. We show this lack of visibility
does not hinder the accuracy of inferences on the links we
do observe. Third, most AS-relationship algorithms rely on
“valley-free” AS paths, an embedded assumption about the
rationality of routing decisions that is not always valid [32],
and which our algorithm does not make. Fourth, import
and export filters can be complicated; some operators caveat
their c2p links as being region or prefix specific. However,
they still describe themselves as customers even if they do
not receive full transit. Therefore, we make a c2p inference
when any transit is observed between two ASes. We argue
that relationship inferences can still be c2p or p2p with the
caveat that the c2p relationship may be partial. We develop
techniques to mitigate the effects of such hybrid relationships
when computing an AS’s customer cone, described later in



this section. Finally, a single organization may own and
operate multiple ASes; we leave the inference of sibling rela-
tionships as future work because it is difficult to distinguish
them from route leaks. We make the following contributions:
We introduce a new algorithm for inferring c2p

and p2p links using BGP data. Our algorithm builds on
three generally accepted assumptions about industry struc-
ture: (1) there is a clique of large transit providers at the
top of the hierarchy; (2) most customers enter into a tran-
sit agreement to be globally reachable; and (3) cycles of
c2p links (e.g., where ASes A, B, and C are inferred to be
customers of B, C, and A respectively) should not exist for
routing to converge [19]. Our algorithm achieves near-perfect
accuracy for both p2p and p2c links for the subset of rela-
tionships we were able to validate, using the largest set of
externally gathered AS relationship validation data collected
to date. Since even our three different sources of validation
data disagree by 1%, our algorithm reaches the limit of ac-
curacy achievable with available data.
We evaluate our algorithm’s accuracy by validat-

ing 43,613 (34.6%) of our inferences – the largest val-
idation of AS-relationships performed to date. First,
we received nearly 2400 directly reported relationship asser-
tions from operators through the interactive feedback func-
tionality of our public repository of AS relationships [1].
Second, we use policy information encoded in the RIPE
WHOIS database to extract more than 6,500 unique rela-
tionships; we extract only relationships between ASes where
both ASes have policies recorded in the database and both
policies are expressed consistently. Third, we extract more
than 41,000 relationships using community strings encoded
in BGP messages by ASes who publish how these strings
map to AS relationships. Our validation data, 97% of which
we can share (we cannot share directly reported relation-
ships) will itself contribute to a research area that has long
suffered from lack of validation.
We introduce a new algorithm for inferring the

customer cone of an AS. The customer cone of AS X is
defined as the set of ASes that X can reach using p2c links;
for AS X the customer cone includes X’s customers, as well
as X’s customers’ customers, and so on. The customer cone
is not a methodologically clean construct, since some ASes
have hybrid relationships; for example, they peer in some
regions (or some prefixes), but one AS will purchase from
the other for other regions (or other prefixes). We compare
the strengths and weaknesses of three distinct approaches
for computing customer cones, and explain why we believe
one approach is more accurate. We also show how this con-
struct informs our understanding of evolutionary trends such
as the flattening of the Internet topology and the financial
consolidation of the Internet transit industry.

2. RELATED WORK
Gao [18] was the first to study the inference of AS relation-

ships. Her solution relies on the assumption that BGP paths
are hierarchical, or valley-free, i.e., each path consists of an
uphill segment of zero or more c2p or sibling links, zero or
one p2p links at the top of the path, followed by a downhill
segment of zero or more p2c or sibling links. The valley-free
assumption reflects the typical reality of commercial rela-
tionships in the Internet: if an AS were to announce routes
learned from a peer or provider to a peer or provider (cre-
ating a valley in the path), it would then be offering transit

for free. Gao’s algorithm thus tries to derive the maximum
number of valley-free paths, by selecting the largest-degree
AS in a path as the top, and assuming that ASes with sim-
ilar degrees are likely to be peers (p2p). Gao validated her
results using information obtained from a single Tier-1 AS
(AT&T). Xia and Gao [36] proposed an improvement to
Gao’s algorithm that uses a set of ground truth relation-
ships to seed the inference process. Transit relationships
are then inferred using the valley-free assumption. Gao’s
algorithm [18] is used for remaining unresolved links. They
validated 2,254 (6.3%) of their inferences using 80% of their
validation data and found their algorithm was accurate for
96.1% of p2c links and 89.33% of p2p links.

Subramanian et al. [34] formalized Gao’s heuristic into
the Type of Relationship (ToR) combinatorial optimization
problem: given a graph derived from a set of BGP paths,
assign the edge type (c2p or p2p, ignoring sibling relation-
ships) to every edge such that the total number of valley-free
paths is maximized. They conjectured that the ToR prob-
lem is NP-complete and developed a heuristic-based solu-
tion (SARK) that ranks each AS based on how close to
the graph’s core it appears from multiple vantage points.
Broadly, as in Gao [18], ASes of similar rank are inferred to
have a p2p relationship, and the rest are inferred to have a
p2c relationship. Di Battista, Erlebach et al. [9] proved the
ToR problem formulation was NP-complete in the general
case and unable to infer p2p relationships. They reported
that it was possible to find a solution provided the AS paths
used are valley-free. They developed solutions to infer c2p
relationships, leaving p2p and sibling inference as open prob-
lems. Neither Subramanian et al. or Di Battista, Erlebach
et al. validated their inferences; rather, they determined the
fraction of valley-free paths formed using their inferences.

Dimitropoulos et al. [16] created a solution based on solv-
ing MAX-2-SAT. They inferred sibling relationships using
information encoded in WHOIS databases. Their algorithm
attempted to maximize two values: (1) the number of valley-
free paths, and (2) the number of c2p inferences where the
node degree of the provider is larger than the customer. The
algorithm uses a parameter α to weight these two objec-
tives. They validated 3,724 AS relationships (86.2% were
c2p, 16.1% p2p, and 1.2% sibling) and found their algorithm
correctly inferred 96.5% of c2p links, 82.8% of p2p links,
and 90.3% of sibling links. Their validation covered 9.7% of
the public AS-level graph and has thus far been the most
validated algorithm. However, MAX-2-SAT is NP-hard and
their implementation does not complete in a practical length
of time for recent AS graphs.

UCLA’s Internet Research Laboratory produces AS-level
graphs of the Internet annotated with relationships [3]. The
method is described in papers by Zhang et al. [37] and
Oliveira et al. [29]. Their algorithm begins with a set of ASes
inferred to be in the Tier-1 clique, then infers links seen by
these ASes to be p2c; all other links are p2p. Zhang [37]
describes a method to infer the clique; Oliveira [29] assumes
the Tier-1 ASes are externally available, such as a list pub-
lished by Wikipedia. There are a growing number of region-
specific c2p relationships visible only below the provider AS,
causing this approach to assign many p2p relationships that
are actually p2c. Gregori et al. [23] used a similar approach;
for each AS path, their algorithm identifies the relationships
possible and infers the actual relationship based on the life-
time of the paths. None of [23, 29,37] describes validation.



The problematic lack of validation puts AS relationship in-
ference research in a precarious scientific position. Nonethe-
less, research continues to build on the assumption that
meaningful AS relationship inference can be achieved and
applied to the study of the Internet, from deployment of se-
curity technologies [21], Internet topology mapping [6,8,12]
and evolution [13,14], to industry complexity [17] and mar-
ket concentration [15]. Due to the diversity in inter-domain
connectivity, relationship inferences do not (by themselves)
consistently predict paths actually taken by packets; such
predictive capabilities remain an open area of research [27].
Given its importance to the field of Internet research, we

revisited the science of AS relationship inference, with par-
ticular attention to validation. Our algorithm does not seek
to maximize the number of valley-free (hierarchical) paths,
since at least 1% of paths are non-hierarchical (section 3.6).
We make inferences using AS path triplets (adjacent pairs
of links) which allow us to ignore invalid segments of paths
that reduce the accuracy of valley-free path maximization
approaches. We also rely on two key assumptions: (1) an AS
enters into a c2p relationship to become globally reachable,
i.e. their routes are advertised to their provider’s providers,
and (2) there exists a clique of ASes at the top of the hi-
erarchy that obtain full connectivity through a full mesh
of p2p relationships. We acquired external validation for
34.6% of the links in our AS graph, which was certainly a
challenge but not one as insurmountable as has been sug-
gested (e.g. [9, 18, 23,33,34]).

3. DATA
In this section we present the sources of data we use: pub-

lic BGP data, a list of AS allocations to RIRs and organi-
zations, and multiple sources of validation data.

3.1 BGP paths
We derive BGP paths from routing table snapshots col-

lected by the Route Views (RV) project [5] and RIPE’s
Routing Information Service (RIS) [4]. Each BGP peer is
a vantage point (VP) as it shows an AS-level view of the
Internet from that peer’s perspective. For each collector, we
download one RIB file per day between the 1st and 5th of
every month since January 1998, and extract the AS paths
that announce reachability to IPv4 prefixes. When we ex-
tract the AS paths, we discard paths that contain AS-sets
and compress path padding (i.e. convert an AS path from
“A B B C” to “A B C”). We record all AS paths that are
seen in any of the five snapshots and use the union to sub-
sequently infer relationships. We use all paths and not just
“stable” paths because backup c2p links are more likely to
be included if we use all AS paths, and temporary peering
disputes may prevent a normally stable path from appearing
stable in our five-day window of data.
Figure 1 shows the number of ASes peering with RV or

RIS between 1998 and 2013. We also show the number pro-
viding full views (routes to at least 95% of ASes). RV is
the only source that provides BGP data collected between
1998 and 2000, and while more than two thirds of its peers
provided a full view then, it had at most 20 views during
these three years. For the last decade, approximately a third
of contributing ASes provide a full view. Most (64%) con-
tributing ASes provide routes to fewer than 2.5% of all ASes.
The operators at these ASes likely configured the BGP ses-
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Figure 1: Number of ASes providing BGP data to
Route Views and RIS over time. Currently, a third
of all contributors provide a full view. The number
of ASes providing a full view has not grown since
2008.

sion with the collector as p2p and therefore advertise only
customer routes.

3.2 Allocated ASNs
We use IANA’s list of AS assignments [2] to identify valid

AS numbers assigned to organizations and RIRs. We filter
out BGP paths that include unassigned ASes, since these
ASes should not be routed on the Internet.

3.3 Validation data directly reported
Our website provides the ability to browse our relationship

inferences and submit validation data. We use corrections
to two separate inferred datasets, created in January 2010
and January 2011 using a previous relationship inference
algorithm. This older algorithm did not produce a cycle
of p2c links but assigned many more provider relationships
than ASes actually had; 93% of the website feedback consists
of p2p relationships, and 62% of that consists of correcting
our inference of a c2p relationship to a p2p relationship. In
total, we received 129 c2p and 1,350 p2p relationships from
142 ASes through our website. The disparity between our
previous inferences and the submissions motivated the new
algorithm that we present in this paper.

We separately followed up on unchanged inferences with
operators, as well as submissions that seemed erroneous com-
pared to observations in public BGP paths. We received
responses from more than 50 network operators. 18 rela-
tionships submitted through our website were later acknowl-
edged by the submitting operator to have been inaccurately
classified (9 by one operator) or to have changed subsequent
to the submission. Additionally, based on email exchanges
with operators, we assembled a file containing 974 relation-
ships – 285 c2p and 689 p2p (contained within the “directly
reported” circle of figure 2, described further in section 3.6).

3.4 Validation data derived from RPSL
Routing policies are stored by network operators in pub-

lic databases using the Routing Policy Specification Lan-
guage (RPSL) [7]. The largest source of routing policies
is the RIPE WHOIS database, partly because many Euro-
pean IXPs require operators to register routing policies with
RIPE NCC. The routing policy of an AS is stored as part
of the aut-num record [7]. The aut-num record lists import
and export rules for each neighbor AS. An import rule spec-
ifies the route announcements that will be accepted from the
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Figure 2: Summary of validation data sets collected
and agreement among sets (first number inside in-
tersections is number of overlapping relationships
that agree). Overall, 2203 of 2225 relationships
agree (99.0%) suggesting a limit on the accuracy of
any source of validation data.

neighbor, while an export rule specifies what routes will be
advertised to the neighbor. The special rule ANY is used by
an AS to import/export all routes from/to the neighbor, and
is indicative of a customer/provider relationship. Using the
RIPE WHOIS database from April 2012, we extracted a set
of c2p relationships using the following method: if X has a
rule that imports ANY from Y, then we infer a c2p relation-
ship if we also observe a rule in Y’s aut-num that exports
ANY to A. Limiting ourselves to records updated between
April 2010 and April 2012 provided us with 6,530 c2p links
between ASes with records in RIPE NCC’s database.

3.5 Validation data derived from communities
AS relationships can be embedded in BGP community at-

tributes included with each route announcement. Commu-
nity attributes can be tagged to a route when it is received
from a neighbor. Community attributes are optional tran-
sitive attributes; they can be carried through multiple ASes
but could be removed from the route if that is the policy
of an AS receiving the route [11]. The tagging AS can an-
notate the route with attributes of the neighbor and where
the route was received, and the attributes can be used to
control further announcements of the route. The commonly
used convention is for the tagging AS to place its ASN, or
that of its neighbor, in the first sixteen bits. The use of the
remaining 16 bits is not standardized, and ASes are free to
place whatever values they want in them. Many ASes pub-
licly document the meaning of the values on network oper-
ations web sites and in IRR databases, making it possible
to assemble a dictionary of community attributes and their
policy meanings. We used a dictionary of 1286 community
values from 224 different ASes assembled from [22] to con-
struct a set of relationships from BGP data for April 2012;
in total, there are 41,604 relationships in our set (16,248 p2p
and 23,356 c2p).

3.6 Summary of validation data
Figure 2 uses a Venn diagram to show the size and overlap

of our validation data sources. Overall, 2203 of 2225 rela-
tionships that overlap agree (99.0%), with multiple explana-
tions for the discrepancies. For the directly reported source,
some operators reported a few free transit relationships as
peering relationships, i.e., they were reported in the tradi-
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Figure 3: Characteristics of validation data. Rela-
tive to BGP data, clique links and links directly con-
nected to VPs are over-represented and stub links
are under-represented.

tional economic sense rather than in a routing sense. For
the RPSL source, some providers mistakenly imported all
routes from their customers and some customers mistakenly
exported all routes to their providers. For the BGP com-
munities source, some customers tagged routes exported to
a Tier-1 AS as a customer. While there are limits to the ac-
curacy of all our sources of validation, the 99.0% overlap in
agreement gives us confidence in using them for validation.

We assembled our validation data set by combining our
four data sources in the following order: (1) directly re-
ported using the website, (2) RPSL, (3) BGP communities,
and (4) directly reported in an email exchange. Where a
subsequent source classified a link differently, we replaced
the classification; we trust relationships acquired through
email exchanges more than relationships submitted via the
website. Our validation data set consists of 48,276 relation-
ships: 30,770 c2p and 17,506 p2p.

To estimate possible biases in our validation data set, we
compared its characteristics with those of the April 2012
BGP dataset in terms of the link types and the minimum
distance from a VP at which those links were observed. The
closer the link is to a vantage point, the more likely we are
to see paths that cross it. We classify links as clique (one
endpoint is in the clique), core (both endpoints are not in
the clique and are not stubs), and stub (one endpoint is
a stub and the other endpoint is not in the clique). Fig-
ure 3(a) shows clique links are over-represented in our vali-
dation data set as compared to BGP data, while stub links
are under-represented. This disparity is due to the valida-
tion data from BGP communities, which mostly comes from
large ASes. Figure 3(b) shows links directly connected to a
VP (distance 0) are over-represented in our validation data
relative to April 2012 BGP data, likely due to the communi-
ties dataset, many of which involve ASes that provide VPs.
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4. RELATIONSHIP INFERENCE
Our algorithm uses two metrics of AS connectivity: the

node degree is the number of neighbors an AS has; and the
transit degree is the number of unique neighbors that appear
on either side of an AS in adjacent links. Figure 4 illustrates
the transit degree metric; ASes with a transit degree of zero
are stub ASes. We use transit degree to initially sort ASes
into the order in which we infer their relationships, breaking
ties using node degree and then AS number. ASes inferred to
be in the clique are always placed at the top of this rank or-
der. Sorting by transit degree reduces ordering errors caused
by stub networks with a large peering visibility, i.e., stubs
that provide a VP or peer with many VPs.

4.1 Assumptions
We make three assumptions based on discussions with op-

erators and generally understood industry structure.
Clique: multiple large transit providers form a peering

mesh so that customers (and indirect customers) of a tran-
sit provider can obtain global connectivity without multiple
transit provider relationships.
A provider will announce customer routes to its

providers. All ASes, except for those in the clique, require
a transit provider in order to obtain global connectivity. We
assume that when X becomes a customer of Y, that Y an-
nounces paths to X to its providers, or to its peers if Y
is a clique AS. Exceptions to this rule include backup and
region-specific transit relationships.
The AS topology can be represented in a directed

acyclic graph. Gao et al. argue there should be no cycle
of p2c links to enable routing convergence [19].

4.2 Overview
Algorithm 1 shows each high-level step in our AS relation-

ship inference algorithm. First, we sanitize the input data
by removing paths with artifacts, i.e., loops, reserved ASes,
and IXPs (step 1). We use the resulting AS paths to com-
pute the node and transit degrees of each AS, and produce
an initial rank order (step 2). We then infer the clique of
ASes at the top of the hierarchy (step 3). After filtering
out poisoned paths (step 4), we apply heuristics to identify
c2p links (steps 5-10). Finally, we classify all remaining un-
classified links as p2p. Our algorithm contains many steps,
a consequence of trying to capture the complexity of the
real-world Internet and mitigate limitations of public BGP
data [32]. The output from this process is a list of p2c and
p2p relationships with no p2c cycles, by construction.

Algorithm 1 AS relationship inference algorithm.

Require: AS paths, Allocated ASNs, IXP ASes
1: Discard or sanitize paths with artifacts (§4.3)
2: Sort ASes in decreasing order of computed transit de-

gree, then node degree (§4)
3: Infer clique at top of AS topology (§4.4)
4: Discard poisoned paths (§4.3)
5: Infer c2p rels. top-down using above ranking (§4.5)
6: Infer c2p rels. from VPs inferred not to be announcing

provider routes (§4.5)
7: Infer c2p rels. for ASes where the provider has a smaller

transit degree than the customer (§4.5)
8: Infer customers for ASes with no providers (§4.5)
9: Infer c2p rels. between stubs and clique ASes (§4.5)
10: Infer c2p rels. where adjacent links have no relationship

inferred (§4.5)
11: Infer remaining links represent p2p rels. (§4.5)

4.3 Filtering and Sanitizing AS Paths
We first sanitize the BGP paths used as input to our algo-

rithm, especially to mitigate the effects of BGP path poison-
ing, where an AS inserts other ASes into a path to prevent
its selection. A poisoned path implies a link (and thus re-
lationship) between two ASes, where in reality neither may
exist. We infer poisoning, or the potential for a poisoned
path, in AS paths (1) with loops, or (2) where clique ASes
are separated. We filter out paths with AS loops, i.e., where
an ASN appears more than once and is separated by at least
one other ASN. Such paths are an indication of poisoning,
where an AS X prevents a path from being selected by a
non-adjacent upstream AS Y by announcing the path “X Y
X” to provider Z, so if the route is subsequently received by
Y it will be discarded when the BGP process examines the
path for loops [24]. For BGP paths recorded in April 2012,
0.11% match this rule. After we have inferred the clique
in step 3, we also discard AS paths where any two ASes in
the clique are separated by an AS that is not in the clique.
This condition indicates poisoning, since a clique AS is by
definition a transit-free network. For BGP paths recorded
in April 2012, 0.03% match this rule.

We also filter out paths containing unassigned ASes; in
BGP paths from April 2012, we observed 238 unassigned
ASes in 0.10% of unique paths. 222 of these ASes are re-
served for private use and should not be observed in paths
received by route collectors. In particular AS23456, reserved
to enable BGP compatibility between ASes that can process
32-bit ASNs and those that cannot [35], is prevalent in ear-
lier public BGP data and can hinder relationship inferences.

We also remove ASes used to operate IXP route servers
because the relationships are between the participants at the
exchange. Unfortunately we know of no public database of
IXP route server ASes, nor do we know of any algorithm
that reliably identifies an IXP route server. To identify IXP
route server ASes, we manually searched for IXP ASes using
a combination of routing and WHOIS data: if the name of
the AS in WHOIS contains RS or IX, we include the AS
in our list if the AS announces less address space than a
/23. This process yielded a list of 25 ASes known to operate
route servers; we remove these ASes from paths so that the
IX participants are adjacent in the BGP path.



Jan ’13

1
2548
6762
3320
3257
5511
293

1668
174

1299
6453
2828
6461
3561
2914
3356
7018
3549
1239
701
209

Jan ’02 Jan ’03 Jan ’04 Jan ’05 Jan ’06 Jan ’07 Jan ’08 Jan ’09 Jan ’10 Jan ’11 Jan ’12
286
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Finally, we discarded all paths from 167.142.3.6 for May
and June 2003, and from 198.32.132.97 between March and
November 2012; the former reported paths with ASes re-
moved from the middle of the path, and the latter reported
paths inferred from traceroute.

4.4 Inferring Clique
We attempt to infer the ASes present at the top of the

hierarchy. Since Tier-1 status is a financial circumstance,
reflecting lack of settlement payments, we focus on identify-
ing transit-free rather than Tier-1 ASes. First, we use the
Bron/Kerbosch algorithm [10] to find the maximal clique C1

from the AS-links involving the largest ten ASes by transit
degree.1 Second, we test every other AS in order by transit
degree to complete the clique. AS Z is added to C1 if it has
links with every other AS in C1 and it does not appear to
receive transit from another member of C1; i.e. no AS path
should have three consecutive clique ASes. Because AS path
poisoning may induce three consecutive clique ASes in a false
BGP path“X Y Z”, we add AS Z to C1 provided there are no
more than five ASes downstream from “X Y Z”. A nominal
value of five ASes will still capture clique ASes even in paths
poisoned multiple times, yet is unlikely to wrongly place a
large transit customer in the clique since a clique AS is likely
to announce (and we are likely to observe [28]) more than
five customers of large transit customers. If an AS would be
admitted to C1 except for a single missing link, we add that
AS to C2. Finally, because an AS might be in C1 but not in
the clique, we re-use the Bron/Kerbosch algorithm to find
the largest clique (by transit degree sum) from the AS-links
involving ASes in C1 and C2. The product of this step is a
clique of transit-free ASes.
Figure 5 shows ASes inferred to be in the clique since Jan-

uary 2002. Nine ASes have been in the clique nearly every
month, and ASes that are inferred to be in the clique are

1 Starting with ten ASes reveals most clique ASes and is
small enough to prevent the incorrect inference of a clique
below the top of the hierarchy. If there are multiple cliques,
we select the clique with the largest transit degree sum.

almost continuously present. The consistency of the inferred
clique and our discussions with operators give us confidence
in our clique inference methodology. However, peering dis-
putes and mergers of ASes can disrupt our inference of the
clique. ASes may form alliances to prevent de-peering inci-
dents from partitioning their customers from the Internet. If
such a disconnection incident triggers activation of a backup
transit relationship, a peer will disappear from the clique
and instead be inferred as a customer of the allied peer. The
process of merging ASes can can also result in peers being
inferred as customers. For example, in 2013 Level3 (AS3356)
gradually shut down BGP sessions established with Global
Crossing (AS3549), shifting sessions to AS3356. In order
to maintain global connectivity during this merger process,
Level3 advertised customers connected to AS3549 to peers
that were only connected to AS3356. As a result, ASes in
the clique appeared to be customers of AS3356, when in re-
ality they were peers. Specifically, in figure 5, AS6461 was
not inferred to be a member of the clique because it had
shifted all peering ports with Level3 to AS3356.

4.5 Inferring Providers, Customers, and Peers
The remainder of the algorithm infers p2c and p2p rela-

tionships for all links in the graph. Step 3 infers p2p rela-
tionships for the full mesh of links between clique ASes. The
rest of this section uses figure 6 as reference.

AS path triplets: We make inferences using only AS
path triplets (adjacent pairs of links). Triplets provide the
constraints necessary to infer c2p relationships while allow-
ing us to ignore non-hierarchical segments of paths, and are
more computationally efficient than paths. For example, in
figure 6 we break path 1 into two triplets: “1239 3356 9002”
and “3356 9002 6846”.

Notation: We use the notation in table 1 to describe re-
lationships between ASes. A p2c relationship between X and
Y is presented as “X > Y”. The notation reflects providers
as typically greater (in degree or size or tier of a traditional
hierarchical path) than their customers. A triplet with no
inferred relationships is presented as “X ? Y ? Z”.
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Figure 6: Inferring providers, customers, and peers.
Each AS is labeled “AS Number:Transit Degree”.
VPs are in double squares, and (by definition) on
the left side of all raw BGP paths. We use this set of
paths to illustrate the inferences made at each step
of our algorithm. Relationships listed use notation
in Table 1.

Notation Description
X < Y X is a customer of Y
X − Y X is a peer of Y
X ? Y No inferred relationship

Table 1: Notation used to describe relationships.

Sorting of ASes: We sort ASes in the order we will esti-
mate their c2p relationships. ASes in the clique are placed at
the top, followed by all other ASes sorted by transit degree,
then by node degree, and finally by AS number to break
ties. We sort by transit degree rather than node degree to
avoid mistaking high-degree nodes (but not high-transit de-
gree, e.g., content providers) for transit providers. Figure 6
shows the sorted order of the ASes in that graph.
Preventing cycles of p2c links: When we infer a c2p

relationship we record the customer AS in the provider’s
customer cone, and add the AS to the cones of all upstream
providers. Any ASes in the customer’s cone not in the cones
of its upstream providers are also added to the cones of those
providers. We do not infer a c2p relationship if the provider
is already in the AS’s cone, to prevent a cycle of p2c links.
Step 5: Infer c2p relationships top-down using

ranking from Step 2. This step infers 90% of all the c2p
relationships we infer, and is the simplest of all our steps.
We visit ASes top-down, skipping clique ASes since they
have no provider relationships. When we visit AS Z, we in-
fer Y > Z if we observe “X − Y ? Z”or “X > Y ? Z”. To have
observed “X − Y”, X and Y must be members of the clique

(step 3). To have inferred “X > Y” by now, one must have
visited Y in a previous iteration of this step. No cycle of c2p
links can be formed because c2p relationships are assigned
along the degree gradient, i.e. no c2p relationship is inferred
between two ASes where the provider has a smaller transit
degree, a necessary condition to create a cycle. For example,
in figure 6, we first consider (after the four clique ASes) c2p
relationships for 9002 (3356), then 15169 (none), etc.

The order of the ASes in the triplet is important, at this
step and for most of the remaining steps. To minimize false
c2p inferences due to misconfigurations in one direction of a
p2p relationship (an AS leaks provider or peer routes to
peers), we infer a c2p relationship when we observe the
provider or peer closer than the customer to at least one
VP in at least one triplet. This heuristic builds on the in-
tuition that an AS enters a provider relationship to become
globally reachable, i.e., at least one VP should observe the
provider announcing the customer’s routes. For example,
when we infer 3356 > 9002 in figure 6, we use triplet “1239
3356 9002” from path 1 and not triplet “9002 3356 1239”
from path 7 because 3356 appears before 9002 in path 1.

Step 6: Infer c2p relationships from VPs inferred
to be announcing no provider routes. We assume that
“partial VPs”providing routes to fewer than 2.5% of all ASes
either (1) export only customer routes, i.e., the VP has con-
figured the session with the collector as p2p; or (2) have
configured the session as p2c, but have a default route to
their provider, and export customer and peer routes to the
collector. Given a path “X ? Y ? Z” where X is a partial
VP and Z is a stub, the link XY can either be p2c or p2p,
requiring Y > Z. In figure 6, we use path 9 and the inference
of 15169 as a partial VP to infer 6432 > 36040.

Step 7: Infer c2p relationships for ASes where the
customer has a larger transit degree. Given a triplet
“W > X ? Y” where (1) Y has a larger transit degree than
X, and (2) at least one path ended with “W X Y” (i.e. Y
originates a prefix to X), then we assign X > Y. We assume
c2p relationships against the degree gradient are rare, al-
though they can arise from path poisoning. Condition (2)
mitigates the risk of using poisoned paths because poisoned
segments of a path do not announce address space. In fig-
ure 6 we infer 721 (X) > 27065 (Y) because path 5 shows
27065 announcing a prefix to 721. In the absence of path 5,
we would infer that 2629 poisoned path 6 with 27065 and
we would not assign a c2p relationship. When we assign X
> Y, we also assign Y > Z where we observe triplets “X >

Y ? Z”; in figure 6 we use path 6 to infer 27065 > 2629.
Step 8: Infer customers for provider-less ASes.

We visit provider-less ASes top-down, skipping clique mem-
bers because their customers were inferred in step 5. This
step is necessary because steps 5 and 7 require an AS to
have a provider in order to infer customers. Examples of
provider-less ASes are some regional and research networks,
e.g., TransitRail. For each provider-less AS X, we visit each
of its neighbors W top-down. When we observe triplet“W X
Y”, we infer W − X because we never observed W announc-
ing X to providers or peers in previous steps; therefore, X >

Y. We remove the condition in step 5 that the peer AS must
be closest to the VP, because provider-less ASes are mostly
observed by downstream customers providing a public BGP
view. In figure 6, 11164 (X) is a provider-less AS; we use
path 8 to infer 9002 (W) − 11164 (X) and 11164 (X) > 2152
(Y). When we assign X > Y, we also assign Y > Z where we
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Figure 7: p2c-c2p valleys caused by unconventional routing policies between (a) siblings, (b) mutual transit,
and (c) leaking/poisoning. Each AS is labeled with its transit degree, which influences the order of p2c
inferences. An AS-to-organization map would resolve (a) but not (b) because the ASes in (b) are independent
ASes. Leaking as in (c) results in paths with spurious p2c-c2p valleys when an AS leaks a route from a provider
to another provider. Note that in (c) AS6203 could instead be poisoning to prevent AS2828 from selecting
the more specific route (traffic engineering); we believe (c) to be an example of a prefix-list leak because
AS2828 is the only origin AS observed for that prefix. All examples are present in April 2012 BGP data.

observe triplets “X > Y ? Z”; in figure 6 we also use path 8
to infer 2152 (Y) > 7377 (Z).
Step 9: Infer that stub ASes are customers of

clique ASes. If there is a link between a stub and a clique
AS, we classify it as c2p. This step is necessary because step
5 requires a route between a stub and a clique AS to be ob-
served by another clique AS before the stub is inferred to be
a customer. Stub networks are extremely unlikely to meet
the peering requirements of clique members, and are most
likely customers. In figure 6, path 2 reveals a link between
1239 and 13395, but there is no triplet with that link in the
set, perhaps because it is a backup transit relationship.
Step 10: Resolve triplets with adjacent unclassi-

fied links. We again traverse ASes top down to try to
resolve one link as p2c from triplets with adjacent unclassi-
fied links. We do this step to avoid inferring adjacent p2p
links in step 11, since adjacent p2p links imply anomalous
behavior, e.g., free transit or route leakage. We loosen the
requirement in step 5 that the first half of the triplet must be
resolved. When we visit Y, we search for unresolved triplets
of the form “X ? Y ? Z”, and attempt to infer Y > Z. For
each unresolved triplet “X ? Y ? Z”, we look for another
triplet “X ? Y < P” for some other P. If we find one, we
infer X < Y (and Y will be inferred as a peer of Z in step
11). Otherwise we search for a triplet “Q ? Y ? X”, which
implies Y > X, and therefore we would resolve both sides of
the original unresolved triplet to X < Y and Y > Z. Since we
are only confident of resolving one side of the original triplet
(embedding an assumption that most p2c links have already
been resolved at earlier steps), we make no inferences in this
case. Otherwise, we infer Y > Z in this step, and X − Y in
step 11.
Step 11: Infer p2p links: We assign p2p relationships

for all links that have no inferred relationships.

4.6 Complex Relationships
Sibling Relationships and Mutual Transit: Our al-

gorithm does not infer sibling relationships, where the same

organization owns multiple ASes, which can therefore have
unconventional export policies involving each sibling’s peers,
providers, and customers. Similarly, we do not infer mutual
transit relationships, where two independent organizations
provide transit for each other in a reciprocal arrangement.
Both of these arrangements can lead to paths (and triplets)
that violate the valley-free property, and in particular pro-
duce p2c-c2p valleys in paths. Gao’s algorithm [18] inferred
that two ASes involved in a non-hierarchical path segment
were siblings, which maximizes the number of valley-free
paths. Dimitropoulos et al. used WHOIS database dumps
to infer siblings from ASes with similar organization names,
because policy diversity among siblings makes it difficult to
infer siblings from BGP data [16]. Our algorithm does not
attempt to resolve these unconventional routing policies be-
cause it is difficult to accurately classify them; as a result,
our algorithm produces p2c-c2p valleys in paths.

Figure 7 provides three examples of non-hierarchical path
segments caused by siblings (figure 7(a)), mutual transit (fig-
ure 7(b)), and route leaks or path poisoning (figure 7(c)).
In figure 7(a), ASes 9398 and 9822 are ASes owned by the
same organization, Amcom Telecommunications, which im-
plements complex export policies with these ASes. Specifi-
cally, we observe customers of 9822 are exported to 9398’s
peers and providers, and routes originated by 9398 are ex-
ported to 9822’s providers. These policies induce a p2c-
c2p valley in a path, because we infer 9398 is a customer
of both 9822 (path x) and 2914, and observe 9398 to an-
nounce customers of its inferred provider 9822 to its other
inferred provider (path y). In figure 7(b), independently op-
erated ASes 6772 and 15576 implement mutual transit, ow-
ing to complementary traffic profiles: AS6772 is an access
provider with mostly inbound traffic, while AS15576 is a
content provider, with mostly outbound traffic. A WHOIS-
derived database of sibling relationships does not help in-
fer mutual transit arrangements. Finally, route leaks and
path poisoning can also result in a p2c-c2p valley in a path.
Figure 7(c) provides an example of a route leak from 6203,
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where it provides transit to a /24 prefix announced by one of
its providers (AS2828) to another provider (AS7922). The
prefix AS2828 announces is a more specific prefix of a /16
prefix that AS6203 announces, and has likely leaked because
of a prefix list configured in AS6203. An alternative explana-
tion is that AS6203 is poisoning that path so that AS2828
cannot select the more specific prefix. We believe a route
leak is the more plausible explanation because AS2828 is
the only AS to originate the prefix. Without the use of pre-
fixes, it is not possible to distinguish this valley from mutual
transit or siblings. We do not currently use prefixes in our
inference algorithm; detecting and validating route leaks and
path poisoning remains an open problem.
We used sibling inferences derived from WHOIS database

dumps [25] to evaluate how the sibling links in our topology
were classified. We did not use these sibling inferences in our
algorithm because (1) we did not have supporting WHOIS
databases going back to 1998, (2) in validation the sibling
inferences contained a significant number of false-positives
(where two ASes were falsely inferred to belong to an orga-
nization), and (3) they do not help distinguish mutual tran-
sit between independent ASes from other anomalies such as
path poisoning and route leaks. In total, there were 4537
links observed between inferred siblings for April 2012; we
inferred 4238 (93%) of these to be p2c. Because we inferred
most of the siblings to have p2c relationships (i.e. a tran-
sit hierarchy) we also used the sibling inferences to examine
if the ordering of ASes in paths supported the classifica-
tion. Of the 312 organizations for which we observe at least
two siblings in a path, 275 (88%) had a strict ordering; i.e.
AS x was always observed in a path before sibling AS y.
For example, we observed 21 Comcast sibling ASes in BGP
paths with at least two siblings present; all of these ASes
were connected beneath AS7922. It is possible that Com-
cast’s siblings exported routes received from their peers (if
any) to other siblings. However, we did not see any peer
links from beneath AS7922 (perhaps due to limited visibil-
ity), and it would make more engineering sense to share peer
routes among siblings by connecting the peer to AS7922.
Partial Transit, Hybrid Relationships, and Traffic

Engineering: Our algorithm infers either a p2p or c2p rela-
tionship for all links. A partial transit relationship typically
restricts the propagation (and visibility) of routes beyond a
provider to the provider’s peers and customers. Similarly,
complex import and export policies can produce hybrid re-
lationships [27]. Figure 8 depicts an AS pair with a c2p
relationship in one region, and a p2p relationship elsewhere.

Because publicly available BGP data only includes the best
paths announced from each AS, there is no way to distin-
guish hybrid relationships from traffic engineering practices
such as load balancing across providers. Similarly, ASes A
and B may enter into a p2p relationship, but B may not ad-
vertise all customers or prefixes to A, requiring A to reach
those via a provider. We consider hybrid relationships and
traffic engineering when computing the customer cone of
each AS, which we describe in section 5. Modeling routing
policies remains an open problem [27].

The presence of hybrid relationships can cause our algo-
rithm to incorrectly infer a c2p link as a p2p link. In figure 8,
if we observe no providers of A announcing routes to E via
A then our algorithm infers the c2p link between A and E as
p2p. This inference occurs because step 10 collapses triplets
with no relationships inferred for either link; i.e., it does not
adjust the triplet “E ? A > B”. A separate step is necessary
to distinguish partial transit relationships visible from a VP
below the provider from peering relationships.

Paid Peering: An assumption behind c2p and p2p re-
lationships is that the customer pays the provider and p2p
relationships are settlement-free, as historically p2p relation-
ships were viewed as mutually beneficial. Modern business
relationships in the Internet are more complicated; ASes
may enter into a paid-peering arrangement where an AS
pays settlements for access to customer routes only. Multiple
network operators confirmed several aspects of paid-peering:
(1) approximately half of the ASes in the clique (figure 5)
were paid-peers of at least one other AS in the clique as of
June 2012; (2) paid-peering occurs between ASes at lower-
levels of the AS topology; and (3) routes from paying and
settlement-free peers have the same route preference. This
last condition prevents us from distinguishing paid-peering
from settlement-free peering using BGP data alone.

Backup Transit: A backup transit relationship occurs
when a customer’s export policies prevent their routes from
being exported outside a provider’s customer networks. The
export policies used while the provider is in backup con-
figuration are identical to peering; the difference between
backup transit and paid peering is due to export filters in-
stead of a contractual agreement. Our algorithm infers most
backup transit relationships as peering.

4.7 Validation
In this section we evaluate the positive predictive value

(PPV) and true positive rate (TPR, or recall) of our heuris-
tics against our validation dataset (section 3.6). Our AS
relationships dataset consists of 126,082 links; we validated
43,613 (34.6%) of these. Table 2 shows the PPV of infer-
ences made at each step of our algorithm. Most relationship
inferences are made in steps 5 (56.4%) and 11 (37.7%), and
both of these stages have excellent PPV (99.8% and 98.7%).

Table 3 compares the PPV of our inferences and those
made by four other popular inference algorithms for April
2012 BGP paths. Our algorithm correctly infers 99.6% of
c2p relationships and 98.7% of p2p relationships. We asked
the authors of SARK [34], CSP [27], and ND-ToR [33] for
the source code for their algorithm, or for a set of relation-
ships inferred from April 2012 BGP paths; we did not receive
either. Gao’s PPV for p2p relationships is the highest of the
algorithms tested because it makes the fewest number of p2p
inferences of all the algorithms, inferring many more c2p re-
lationships than exist in the graph. The algorithm that per-



Step Description Validation (PPV) Fraction
3 clique at top of AS topology 136 p2p @ 100% 153 (0.12%)
5 c2p relationships top-down 26664 c2p @ 99.8% 71160 (56.4%)
6 c2p relationships from VPs announcing no provider routes 116 c2p @ 99.1% 532 (0.42%)
7 c2p relationships to smaller degree providers 205 c2p @ 96.1% 2420 (1.92%)
8 relationships for ASes with no providers 120 c2p @ 93.3% 842 (0.67%)

152 p2p @ 96.7% 333 (0.26%)
9 c2p relationships for stub-clique 422 c2p @ 95.0% 651 (0.52%)
10 collapse adjacent links with no relationships 524 c2p @ 94.7% 2474 (1.96%)
11 p2p relationships for all other links 15274 p2p @ 98.7% 47517 (37.7%)

43613 @ 99.3% 126082 (100%)

Table 2: Validation of inferences (PPV) and number/fraction of inferences made at each step.

Algorithm c2p p2p
PPV TPR Errs PPV TPR Errs
(%) (%) (1/) (%) (%) (1/)

CAIDA 99.6 99.3 250 98.7 99.3 77
UCLA 99.0 94.7 100 91.7 98.8 12
Xia+Gao 91.3 98.6 11 96.6 81.1 29
Isolario 90.3 98.0 10 96.0 82.4 25
Gao 82.9 99.8 5.8 99.5 62.5 200

Table 3: Our AS relationship algorithm accurately
classifies both c2p and p2p relationships, with high
precision (PPV) and recall (TPR).

forms closest to ours is UCLA’s; our improvements result in
six times fewer false peering inferences. We assembled addi-
tional historical validation datasets by extracting relation-
ships from archives of the RIPE WHOIS database (RPSL,
section 3.4) and public BGP repositories (BGP communi-
ties, section 3.5) at six month intervals between February
2006 and April 2012. The validation performance of Gao,
UCLA, and CAIDA algorithms are quantitatively similar as
shown in table 3.
We investigated the types of errors that these four algo-

rithms produce, focusing on the two cases with significant
occurrence: where we correctly infer c2p (p2p), but another
algorithm mistakenly infers p2p (c2p). We note that when
the ground truth is p2p, Gao often infers the link as c2p,
usually with the customer having a smaller degree than the
provider. On the other hand, UCLA and Isolario produce
errors where a p2p link is inferred to be c2p, often with
the customer having a larger degree than the provider. The
UCLA algorithm often infers c2p links to be p2p because it
uses the visibility of a link from tier-1 VPs to draw infer-
ences, and defaults to a p2p inference for links it cannot see
(see section 2). We agree with the intuition behind this vis-
ibility heuristic and use a variant of it in our algorithm, but
we use additional heuristics to accommodate for phenom-
ena that inhibit visibility through tier-1 VPs, e.g., traffic
engineering, selective announcements.
We compared our inferences with 82 partial transit re-

lationships that were flagged by a community string. Our
algorithm correctly inferred 69 (84%) of them as p2c; 66 p2c
inferences where made in step 10. In comparison, UCLA’s
dataset identified only 13 (16%) of the partial transit rela-
tionships as p2c. We also compared our inferences against
a small set of 27 backup p2c relationships, of which only 2
were correctly identified as p2c. Validation data for partial

and backup transit relationships is scarce because of their
rarity and their limited visibility.

It is well-known that the public view misses a large num-
ber of peering links [6]. While our algorithm can only make
inferences for links we observe, an important question is
whether its accuracy is affected by a lack of (or increas-
ing) visibility. We performed the following experiment 10
times. We start with paths selected from a random set of
25% of VPs, and successively add VPs to obtain topologies
seen from 50%, 75% and all VPs. We measure the PPV
of our inferences on each topology subset. We found that
the PPV of c2p inferences was consistently between 99.4%
and 99.7% on all topology subsets. We found that the PPV
of p2p links varied between 94.6% and 97.7% with 25% of
VPs, and 97.2% and 98.4% with 50% of VPs, indicating that
our algorithm performs better when it has more data (VPs)
available. Consequently, if our visibility of the AS topology
increases in the future (e.g., due to new VPs at IXPs), the
accuracy of our algorithm at inferring the newly visible links
should not be affected.

We agree that collecting validation data is difficult and
time-consuming [9, 16, 18, 34] because the relationships are
considered confidential and often covered by a non-disclosure
agreements, but we gathered validation data from multi-
ple sources that represent more than a third of the publicly
available graph. The previous most validated work was Dim-
itropoulos et al. [16], which validated 9.7% of inferences.

5. CUSTOMER CONES
In this section, we use our AS relationship inferences to

construct the customer cone of each AS. The customer cone
is defined as the ASes that a given AS can reach using a
customer (p2c) link, as well as customers of those customers
(indirect customers). An AS is likely to select a path adver-
tised by a customer (if available) over paths advertised by
peers and providers because the AS is paid for forwarding
the traffic. The most profitable traffic for an AS is traffic
forwarded between customers, as the AS is paid by both.

The customer cone is a metric of influence, but not nec-
essarily of market power. Market power requires the ability
to restrict the mobility of customers; in general, an AS can
enter into a provider relationship with whoever offers a suit-
able service. For large transit providers, particularly those
in the clique where a full p2p mesh is required for global con-
nectivity, the customer cone defines the set of ASes whose
service might be disrupted if the AS were to have opera-
tional difficulty. We compare three algorithms to infer an
AS’s customer cone, and reason why one construction is the



most realistic. We discuss the effect of topology flatten-
ing on the utility of the customer cone metric, and use our
inferences to show how the Internet has flattened from an
inter-domain routing perspective.

5.1 Algorithms to compute the customer cone
Due to ambiguities inherent in BGP data analysis, there

are multiple methods to infer the customer cone of a given
AS. We compare three methods: recursively inferred, BGP
observed, and provider/peer observed. All three methods
infer the set of ASes that can be reached from a given AS
following only p2c links, and the three methods infer the
same customer cone for nearly all but the largest ASes.
Recursive: the customer cone of an AS A is computed

by recursively visiting each AS reachable from A by p2c
links. For example, if B is a customer of A, and C is a
customer of B, then A’s customer cone includes B and C.
Some prior work has defined and used the recursive customer
cone (e.g. [15,16]), but this definition unrealistically assumes
that a provider will receive all of its customers’ routes, and
thus be able to reach them following a customer link. This
definition can thus distort the size of a customer cone.
BGP observed: given a set of relationships and corre-

sponding BGP paths, C is included in A’s customer cone if
we observe a BGP path where C is reached following a se-
quence of p2c links from A. This method addresses two prob-
lems of the recursive method. First, A may provide transit
for some prefixes belonging to B, but not for B’s customers;
the BGP observed method will not recursively include cus-
tomers of B in A’s cone that are never announced to A.
Second, the error induced by hybrid relationships is reduced
because an AS should not announce prefixes received from
the peer segment of the hybrid relationship to providers; in
figure 8, A’s providers will not include E and F in their cus-
tomer cone unless they receive routes to those ASes from
another customer, though A’s cone will include those ASes.
The main limitations of the BGP observed cone method are:
(1) the customer cones of ASes with hybrid relationships will
still include customers of peers, and (2) the customer cones
of ASes that provide a VP are more likely to be complete and
therefore larger as an artifact of the collection apparatus.
Provider/Peer observed: given a set of relationships

and corresponding BGP paths, we compute the customer
cone of A using routes observed from providers and peers of
A. This method addresses the two limitations of the BGP ob-
served method: because A will not announce paths received
from the peering portion of a hybrid relationship with AS
B to providers and peers, we will not include customers of
B observed from the peering portion in the customer cone
of AS A. Similarly, because the customer cone of A is com-
puted based on what neighbors of A announce, the presence
of a VP at A will no longer inflate A’s customer cone rela-
tive to ASes that do not provide a VP. The limitation of the
provider/peer observed method is that we are only able to
view best paths, rather than all paths, so we may underes-
timate the customer cones of some ASes.

5.2 Evaluation
Table 4 displays the customer cone sizes of the 15 largest

ASes as a percentage of all ASes in the graph using the
three methods, as well as their rank order. The rank order
is largely independent of the method used to compute the
customer cone; for example, the same seven ASes are the

ASN VP PP Obs. BGP Obs. Recursive
3356 ⋆ 46.8 (1) 59.1 (1) 78.0 (1)
3549 ⋆ 45.2 (2) 54.2 (2) 72.3 (2)
3257 ⋆ 32.6 (3) 33.8 (5) 59.3 (5)
174 31.1 (4) 39.9 (4) 65.1 (3)
1299 ⋆ 29.3 (5) 40.0 (3) 64.6 (4)
2914 ⋆ 24.6 (6) 29.8 (6) 57.4 (6)
6453 ⋆ 18.9 (7) 28.1 (7) 55.8 (7)
6762 ⋆ 16.9 (8) 18.5 (9) 44.5 (11)
1239 ⋆ 15.2 (9) 21.0 (8) 51.0 (8)
3491 13.8 (10) 13.9 (12) 32.1 (13)
701 ⋆ 12.0 (11) 18.2 (10) 47.4 (9)
2828 11.3 (12) 11.4 (13) 45.7 (10)
7018 ⋆ 10.2 (13) 15.3 (11) 43.7 (12)
1273 8.4 (14) 8.4 (14) 26.7 (14)
6939 ⋆ 8.1 (15) 8.3 (15) 18.6 (15)

Table 4: For April 2012, the fifteen largest ASes
by provider/peer observed customer cone size, their
customer cone sizes inferred with recursive and BGP
observed algorithms, and their rank by customer
cone size. The size of each AS varies significantly,
but their ranks are similar.

largest seven ASes computed with all algorithms. But the
table also shows that the recursive cone is significantly larger
than the BGP observed cone – for nine of the fifteen ASes
shown in Table 4, the recursively defined customer cone is
at least twice the size. We found significant incongruity
between the customer cones constructed for ASes for which
there is also a VP; for example, AS3356 only reaches 60-76%
of the ASes in its recursively-defined customer cone over a
p2c link. This incongruity makes the recursive method less
realistic than the two alternatives we describe.

The BGP observed cone is often larger than the provider/
peer observed customer cone for large ASes. There are three
exceptions in table 4: ASes 1273, 2828 and 3491, none of
which provide a VP. AS174’s BGP observed cone is larger
than its provider/peer observed cone despite not providing
a VP, because one of its customers does. The provider/peer
observed method avoids over-inflating ASes that provide a
VP relative to ASes that do not, as an AS relies on peers
and providers selecting their routes and those routes being
observed by a VP to reveal the AS’s entire customer cone.

Figure 9 shows the customer cone sizes of ASes that were
in the top three (by customer cone size) at any point over
the past eleven years, computed using BGP observed and
provider/peer observed algorithms. BGP observed cones
(figure 9(a)) have spikes that coincide with views of some
peering routes received from neighbors with whom the AS
has a hybrid relationship. In particular, AS1239’s customer
cone is consistently larger between October 2009 and May
2010 because a customer provided a view of the routes adver-
tised by AS1239’s peer. The provider/peer observed cones
(figure 9(b)) have fewer such spikes because these peer routes
were not advertised to other peers. A notable exception is
AS1239’s customer cone between June and December 2006,
which corresponds incorrect inference of backup provider
links as peer links due to an adjacent hybrid relationship
(see section 4.6). In figure 8, if our algorithm incorrectly
infers the c2p link between E and A as p2p, it will also infer
that F and G are in A’s customer cone. The provider/peer
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Figure 9: The size of the customer cones using BGP observed and provider/peer observed algorithms for
the seven ASes that were among the three largest ASes between Jan. 1998 and Aug. 2013. The three largest
ASes in Jan. 1998 (701, 1239, and 3561) are no longer in the top three. The BGP observed cone has several
spikes, including a six-month spike for AS1239 between Oct. 2009 and May 2010 that is not present in the
provider/peer observed cone. We believe the provider/peer observed customer cone is the more realistic
customer cone method.
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Figure 10: Relative size of provider/peer observed
cone over time. 701 acquired part of 3561 in 1999
and moved customers across.

observed cone seems to be the most robust methodology
available to infer AS customer cones provided a customer
link is not mistakenly inferred as a peer link.

5.3 Customer cone over time
Figure 9(b) plots the seven ASes that ranked in the top

three ASes by provider/peer observed customer cone size
at any point from January 1998. We can observe several
interesting trends with just these seven ASes. First, the
three ASes ranked in the top three for January 1998 (ASes
701, 1239, and 3561) are no longer in the top three. In
absolute terms, the customer cone of 701 decreased in size
between January 2002 and October 2012. The customer
cone of 3356 reflects two other interesting events: (1) in early
2003, AS1 (Genuity/BBN) merged with 3356 to create the
third largest network at the time, and (2) in late 2010, 3549
(the second largest AS by customer cone) was purchased by
Level3 (the largest AS by customer cone). 3549’s customer
cone has since shrunk as new customers connect to 3356 and
some of 3549’s customers moved across.

Figure 10 plots the customer cone sizes for the same seven
ASes, but as a fraction of the topology size. We see: (1) ASes
701, 1239, and 3561 all had the same customer cone size in
January 1998, (2) some customers of 3561 (MCI) shifted into
701 (Worldcom) due to the MCI-Worldcom merger in 1998,
(3) 1239 held a third of the ASes in its customer cone for ten
years until 2008, and (4) while 3356 had the largest customer
cone in 2012, its relative cone size, i.e., as a fraction of the
entire AS topology, was slightly smaller than AS701’s was
in January 2000. This last fact reflects massive growth in
the Internet’s AS topology since 2000, in addition to the
consolidation undertaken by both ASes, yielding the largest
customer cones of the two respective decades.

Since most companies providing Internet transit are by
now also in other lines of business and do not report financial
information specific to their transit business, we cannot cor-
relate BGP consolidation with financial performance. But
we know that of the three ASes whose relative customer
cone sizes have plummeted in the last decade (701, 1239,
3561), two of them (Verizon and Sprint) have moved into
more profitable cellular service.

Renesys produces market intelligence data using the cus-
tomer cone notion [31]. They declined to share their data
or method with us to enable a comparison because it is core
to one of their commercial products. Comparing our rank
order in table 4 with their “Bakers Dozen” from 2012 [30]
shows minor differences in rank order.

5.4 Topology Flattening
The introduction of CDNs and richer peering has resulted

in a flattening of the Internet topology [20, 26] where ASes
avoid sending traffic via transit providers. An intriguing
question is how valid is the customer cone in a flattened
Internet topology? How many paths still travel to the top
of a given cone to reach destinations?

We develop a new metric to track this potential shift in
routing behavior as flattening occurs. While public BGP
data contains a small fraction of all peering links [6] we can
study shifts in routing behavior from the paths of individual
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Figure 12: Characteristics of nodes or links at top
of each path. The fraction of paths crossing a non-
clique peering link peaked in January 2006.

VPs because they reveal the peering links they use. For each
VP that provides a full view to RV or RIS and is also in
X’s customer cone, we compute the fraction of cone-internal
paths, i.e., fraction of paths from that VP that transit X (the
cone’s top provider) when reaching another AS in X’s cone
which is not also in the customer cone of the VP. Figure 11
shows the five-month moving average of this fraction for the
seven ASes once they have at least 1000 ASes in their cone.
Five of these networks show a steady decline in the fraction
of cone-internal paths.
To explore this decline in the use of these top (clique)

providers to transit traffic, we evaluate the topological char-
acteristics of top links of each path. Figure 12 plots the
fraction of nodes or links in each topological category since
2002, for a set of seven VPs that consistently provided a pub-
lic view.2 Between 2002 and 2006 the fraction of paths where
the top link was a peering link between two non-clique ASes
rose from 15% to 40% of paths, while the fraction of paths
where the top link was a peering link between two clique
ASes fell from 30% to 10% of paths in 2009. Since 2006, the
fraction of observed paths crossing a peering link between a
clique AS and a lower-tier AS has increased, while the frac-

2ASes 513, 1103, 1221, 2497, 3333, 4608, and 4777.

tion of paths using a non-clique peering link has dropped.
Considering all paths using clique ASes to reach destinations
(clique-nonclique links, clique-clique links, or clique nodes at
the top of paths), over 80% of paths used some clique AS
back in 2002, bottoming out in 2006 (just above 60%), fol-
lowed by a slow rise back to 77% today. This trend reversal
is perhaps a result of Tier-1 ASes adjusting peering strate-
gies as a reaction to ASes peering below the clique (so-called
donut peering) to recover some transit revenue.

Our AS relationship inferences also shed light on the con-
tinually increasing richness of peering in the Internet. As
the number of full VPs has increased an order of magnitude
since 2000 (from 12 to 125 in October 2012), the number
of p2p links observable from these VPs jumped by two or-
ders of magnitude (from about 1K to 52K), and increased
as a fraction of the entire graph from 10% (in 2000) to 38%.
(even after the number of full VPs stabilized in 2008). This
increase in peering (flattening) was not observed by individ-
ual VPs, most (75%) of which experienced almost no change
in the fraction of links inferred as p2p. Instead, the increase
in relative presence of p2p links in the graph is due to indi-
vidual VPs seeing more unique p2p links.

6. SUMMARY AND FUTURE WORK
We have presented, and validated to an unprecedented

level, a new algorithm for inferring AS relationships using
publicly available BGP data. Our algorithm tolerates preva-
lent phenomena that previous algorithms did not handle.
We validated 34.6% of our relationship inferences, finding
our c2p and p2p inferences to be 99.6% and 98.7% accu-
rate, respectively. Since even different sources of our vali-
dation data disagree by 1%, our algorithm reaches the limit
of accuracy achievable with available data. We have pub-
lished 97% of the validation data set, the relationship in-
ference code, and inferred relationships publicly at http:

//www.caida.org/publications/papers/2013/asrank/

Analysis of the Internet at the AS granularity is inher-
ently challenged by measurement and inference in a dynamic
complex network. A known concern is that public views of
the AS topology capture only a fraction of the p2p ecosys-
tem, since so few ASes share their full view of the Internet
with BGP data repositories. Another challenge is the variety
of complex peering relationships that exist, which may be
possible to infer by adapting our algorithm or incorporating
additional data from either the control or data plane. Mean-
while, we have derived techniques to mitigate the effects of
such relationships on application of relationship inferences.

Our inferences shed new light on the flattening Internet
topology, revealing a decline in the fraction of observed paths
traversing top-level (clique) ASes from 2002 (over 80%) bot-
toming out in 2006 (just above 60%), followed by a slow
rise back to 77% today, perhaps as these clique ASes ad-
just their peering strategies to try to recover some transit
revenue. Our customer cone metric reveals other interest-
ing aspects of Internet evolution: the largest customer cone
in the Internet has rarely had more than half of the routed
ASes in it. In 2000, AS701 had a customer cone that con-
tained half of the active ASes, and today AS3356’s cone has
half of the active ASes. An area of future research would
be to explore the predictive capabilities of customer-cone-
related metrics on Internet evolution and dynamics, such as
characteristics that correlate with an impending switch from
a c2p to a p2p relationship.
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