
Fork-Consistent Constructions From Registers?

Matthias Majuntke,1 Dan Dobre,2 Christian Cachin,3 and Neeraj Suri1

1 {majuntke,suri}@cs.tu-darmstadt.de
Technische Universität Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany

2 dan.dobre@neclab.eu
NEC Laboratories Europe, Kurfürsten-Anlage 36, 69115 Heidelberg, Germany

3 cca@zurich.ibm.com
IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

Abstract. Users increasingly execute services online at remote providers, but
they may have security concerns and not always trust the providers. Fork-consis-
tent emulations offer one way to protect the clients of a remote service, which is
usually correct but may suffer from Byzantine faults. They feature linearizability
as long as the service behaves correctly, and gracefully degrade to fork-consistent
semantics in case the service becomes faulty. This guarantees data integrity and
service consistency to the clients.
All currently known fork-consistent emulations require the execution of non-
trivial computation steps by the service. From a theoretical viewpoint, such a ser-
vice constitutes a read-modify-write object, representing the strongest object in
Herlihy’s wait-free hierarchy [1]. A read-modify-write object is much more pow-
erful than a shared memory made of so-called registers, which lie in the weakest
class of all shared objects in this hierarchy. In practical terms, it is important to re-
duce the complexity and cost of a remote service implementation as computation
resources are typically more expensive than storage resources.
In this paper, we address the fundamental structure of a fork-consistent emulation
and ask the question: Can one provide a fork-consistent emulation in which the
service does not execute computation steps, but can be realized only by a shared
memory? Surprisingly, the answer is yes. Specifically, we provide two such al-
gorithms that can be built only from registers: A fork-linearizable construction
of a universal type, in which operations are allowed to abort under concurrency,
and a weakly fork-linearizable emulation of a shared memory that ensures wait-
freedom when the registers are correct.

Keywords: distributed system, shared memory, fork-consistency, universal object, ato-
mic register, Byzantine faults

1 Introduction

The increasing trend of executing services online “in the cloud” [2] offers many eco-
nomic advantages, but also raises the challenge of guaranteeing security and strong
consistency to its users. As the service is provided by a remote entity that wants to re-
tain its customers, the service usually acts as specified. But online services may fail for
? Research funded in part by DFG GRK 1362 (TUD GKmM).

various reasons, ranging from simply closing down (corresponding to a crash fault) to
deliberate and sometimes malicious behavior (corresponding to a Byzantine fault).

For some kinds of services, cryptographic techniques can prevent a malicious provi-
der from forging responses or snooping on customer data. But other violations are still
possible in the asynchronous model considered here: for instance, when multiple iso-
lated clients interact only through a remote provider, the latter may send diverging and
inconsistent replies to the clients. In this context, “forking” consistency conditions [3,4]
offer a gracefully degrading solution because they make it much easier for the clients
to detect such violations. More precisely, they ensure that if a Byzantine provider even
once sent a wrong response to some client, then this client becomes forever isolated
or forked from those other clients to which the provider responded differently. With
this notion, clients may easily detect service misbehavior from a single inconsistent
operation, e.g. by out-of-band communication.

Forking consistency conditions are often encapsulated in the notion of a Byzantine
emulation [4], which ensures graceful degradation of the service’s semantics: If the
service is correct, then operations execute atomically. In any other case, the clients
still observe operations according to the forking consistency notion. Fork-consistency
represents a safety property — after all, a faulty service may simply stop. The liveness
property in a Byzantine emulation refers to the good case when the service behaves
correctly.

Fork-linearizability [3,4] ensures that clients always observe linearizable [5] service
behavior and that two clients, once forked, will never again see each other’s updates to
the system (i.e. they share the same history prefix up to the forking point). However, it
has been found that fork-linearizable Byzantine emulations of a shared memory cannot
always provide wait-free operations [4], i.e., some clients may be blocked because of
other clients that execute operations concurrently. An escape is offered by the weaker
liveness property of abortable emulations, which allow client operations to abort under
contention [6]. As another alternative, the notion of weak fork-linearizability relaxes
fork-linearizability in order to allow wait-free client operations in Byzantine emula-
tions [7]. Weak fork-linearizability [7] allows two clients, after being forked, to observe
a single operation of the other one (at-most-one-join), and that the real-time order in-
duced by linearizability may be violated by the last operation of each client (weak
real-time order).

In this paper, we explore the fundamental assumptions required for building a By-
zantine service emulation. Up to now, all fork-consistent emulation protocols have re-
quired the service to execute non-trivial computation steps, i.e., the service must be
implemented by an object of universal type [1], capable of read-modify-write oper-
ations [8]. We show the surprising result that this requirement can be dropped, and
implement fork-consistent emulation protocols only from memory objects, so-called
registers. They provide simple read and write operations and represent one of the weak-
est forms of computational objects. A long tradition of research has already addressed
how to realize powerful abstractions from weaker base objects (e.g., [1,9]).

Specifically, we propose the first fork-linearizable Byzantine emulation of a uni-
versal object only from registers. Our algorithm necessarily offers abortable operations
because a wait-free construction of a universal object from registers is not possible in

an asynchronous system using only registers [1]. Moreover, we give an algorithm for a
weakly fork-linearizable Byzantine emulation of a shared memory only from registers.
It allows wait-free client operations when the underlying registers are correct.

Our two algorithms may directly replace the computation-based constructions in
the existing respective emulations of shared memory on Byzantine servers [6,7,10]. For
instance, our second construction, which yields a weakly fork-linearizable Byzantine
emulation, allows to eliminate the server code from Venus [10]. Currently, Venus runs
server code implemented by a cloud computing service, but our construction may realize
it from a cloud storage service. For practical systems this can make a big difference in
cost because full-fledged servers or virtual machines (e.g., Amazon EC2) are typically
more expensive than simple disks or cloud-based key-value stores (e.g., Amazon S3).

Note that although our approach uses a collection of registers, we refrain from mak-
ing more specific failure assumptions on them. Our remote service is comprised of
registers, and as soon as one register is faulty, we consider the service to be faulty. It
is conceivable to use fault-prone registers in our algorithms. Standard methods imple-
menting robust shared registers from fault-prone base registers show how to tolerate up
to a fraction of Byzantine base registers [11]. This extension, which is orthogonal to our
work, would further refine our notion of graceful service degradation with faulty base
objects.

Related Work The notion of fork-linearizability was introduced by Mazières and
Shasha [3]. They implemented a fork-linearizable multi-user storage system called
SUNDR. An improved fork-linearizable storage protocol is described by Cachin et
al. [4]; it reduces the communication complexity compared to SUNDR from O(n2)
to O(n). More recently, fork-linearizable Byzantine emulations have been extended to
universal services [12]. All fork-linearizable emulations are blocking and sometimes
require one client to wait for another client to complete [4].

In order to circumvent blocking the clients, Majuntke et al. [6] propose the first
abortable fork-linearizable storage implementations. Their work takes up the notion
of an abortable object introduced by Aguilera et al. [13]. They demonstrated, for the
first time, how an abortable (and, hence, obstruction-free [14]) universal object can be
constructed from abortable registers, which are base objects weaker than registers. In
more recent work, it has been shown that abortable objects can be boosted to wait-free
objects in a partially synchronous system [15]. This makes our Byzantine emulations
of abortable objects very attractive in practical systems.

Actually implemented systems offering data storage integrity through forking con-
sistency semantics include SUNDR (LKMS) [16], which realizes the protocol of Ma-
zières and Shasha [3]. Furthermore, Cachin et al. [17] add fork-linearizable semantics
to the Subversion revision control system, such that integrity and consistency of the
server can be verified. The “blind stone tablet” of Williams et al. [18] provides fork-
linearizable semantics for an untrusted database server; it may abort conflicting op-
erations. Using a relaxation of fork-linearizability, called fork-* consistency, Feldman
et al. [19] introduce a lock-free implementation for online collaboration that protects
consistency and integrity of the service against a malicious provider.

Cachin et al. [7] present the storage service FAUST, which emulates a shared mem-
ory in a wait-free manner by exploiting the notion of weak fork-linearizability. It relaxes

fork-linearizability in two fundamental ways: (1) after being forked, two clients may
observe each others’ operations once more and (2) the real-time order of the last opera-
tion of each client is not preserved. FAUST incorporates client-to-client communication
in a higher layer, which ensures that all operations become eventually consistent over
time (or the server is detected to misbehave). The Venus system [10] implements the
mechanisms behind FAUST and describes a practical solution for ensuring integrity and
consistency to the users of cloud storage.

Li and Mazières [20] study storage systems, built from 3f+1 server replicas, where
more than f replicas are Byzantine faulty. Their storage protocol ensures fork-* con-
sistency. Similar to weak fork-linearizability, fork-* consistency allows that two forked
clients observe again at most one common operation.

Contributions We present, for the first time, Byzantine emulations with forking con-
sistency conditions only from registers, instead of more powerful computation objects.
Any number of registers may be affected by Byzantine failures. Our constructions are
linearizable provided that the base registers are correct. The constructions are:

– A register-based abortable Byzantine emulation of a fork-linearizable universal
type.

– A register-based wait-free Byzantine emulation of weak fork-linearizable shared
memory.

In Section 1, we discuss related work; Section 2 introduces the underlying system
model. The two main constructions are given in Sections 3 and 4. The paper concludes
in Section 5. The correctness proofs of the protocols can be found in our Technical
Report [21].

2 System Model

We consider a distributed system consisting of n > 1 clients C1, . . . , Cn that commu-
nicate through shared objects. Each such base object has a type which is given by a set
of invocations, a set of responses, and by its sequential specification. The sequential
specification defines the allowed sequences of invocations and responses. An invoca-
tion and the corresponding response constitute an operation of an object. A collection
of base objects is used to implement high-level objects, where clients execute algorithm
A, consisting of n state machines A1, . . . , An (where Ci implements Ai). When client
Ci receives an invocation of an operation to the high-level object, it takes steps of Ai,
where it (1) either invokes an operation on some base object, (2) or receives the response
to its previous invocation to a base object, (3) or it performs some local computation.
At the end of a step, Ci changes its local state and possibly returns a response to the
pending high-level operation.

An execution of algorithm A is defined as the (interleaved) sequence of invocation
and response events. Every execution induces a history which is the sequence of in-
vocations and responses of the high-level operations. If σ is a history of an execution
of algorithm A, then σ|Ci

denotes the subsequence of σ containing all events of client
Ci. For sequence σ and operation o, σ|o denotes the prefix of σ that ends with the last

event of o. We say that a response matches an invocation, if both are events of the same
operation. An operation is called complete, if there exists a matching response to its
invocation, else incomplete. We assume that each client invokes a new operation only
after the previous operation has completed. A history consisting only of matching in-
vocation/response pairs is called well-formed. Operation o precedes operation o′ in a
sequence of events σ (o <σ o′) iff o is complete and the response of o happens before
the invocation of o′. If o precedes o′ we denote o and o′ as sequential, if neither one
precedes the other, then o and o′ are said to be concurrent.

For the proposed abortable construction (Sec. 3), we introduce the special response
ABORT. A complete operation o is called unsuccessful (“o is aborted”), if it returns
ABORT, else it is called successful (“o successfully completes”). The formal definition
of an abortable object comprises a non-triviality property which allows aborts only
under concurrency [13].

Clients may fail by crashing, i.e. they stop taking steps and hence, the last opera-
tion of each client might be incomplete. Base objects may deviate arbitrarily from their
specification exhibiting non-responsive-arbitrary faults [22] (called Byzantine). Clients
have access to a digital signature scheme used by each client to sign its data such that
any other client can determine the authenticity of a datum by verifying the correspond-
ing signature. We assume that signatures cannot be forged.

All constructions appearing in this paper are based on atomic registers. An atomic
register provides two operations, read and write4. Operation write(v) stores value v
from domain Values into the register. A call of read() returns the latest written value
from the register or the special value ⊥ if no value has been written. As the register
is atomic, its history satisfies linearizability [1], i.e. operations seem to appear as se-
quential, atomic events5. Further, the atomic registers used allow single-writer-multiple-
reader access (SWMR), i.e. to each register we assign a dedicated client that may call
write and read, while all other clients may only call read to that register.

A sequence of operations π satisfies weak real-time order of σ if π, excluding the
last operation of each client in π, satisfies real-time order of σ. Causality between two
operations depends on the type of the implemented object6. For two operations of a
shared memory o and o′ in σ, o causally precedes o′ (o →σ o

′), if o, o′ are called by
the same client and o happens before o′, or if o′ is a READ operation that returns the
value written by WRITE operation o. The next definition formalizes the notion of fork-
linearizability [4] and weak fork-linearizability [7]; for a formal definition of the term
possible view as well as the above-mentioned notions we refer to the Technical Report
[21].

Definition 1 Let σ be a history of an object of type T and for each client Ci there exists
a sequence of events πi such that πi is a possible view of σ at Ci with respect to T .
History σ is fork-linearizable with respect to object type T if for each client Ci:

4 We type operation calls to base registers in italic font and calls to constructed objects in CAP-
ITALS.

5 Hence, the “latest written value” is well-defined.
6 As causality is needed to define weak fork-linearizability, here, we give causality for a shared

memory, which is the type we implement with weak fork-linearizability.

1. πi preserves the real-time order of σ, and
2. for every client Cj and for every o ∈ πi ∩ πj , it holds πi|o = πj |o.

History σ is weak fork-linearizable with respect to object type T if for each client Ci:

1. πi preserves the weak real-time order of σ, and
2. for every operation o ∈ πi and every operation o′ ∈ σ such that o′ →σ o, it holds

that o′ ∈ πi and that o′ <πi o, and
3. (At-most-one-join) for every client Cj and every two operations o, o′ ∈ πi ∩ πj by

the same client such that o <σ o′, it holds πi|o = πj |o.

The notion of a Byzantine emulation [4] allows us to formally define the safety
and liveness properties of our protocols. Note that the liveness condition of abortable
operations is weaker than wait-freedom but still not weaker than obstruction-freedom
[13].

Definition 2 An algorithm A emulates an object of type T on a set of Byzantine base
objects B with {fork|weak fork}-linearizability whenever following conditions hold:

1. If all objects in set B are correct, the history of every fair7 and well-formed execu-
tion of A is linearizable with respect to type T , and

2. the history of every fair and well-formed execution of A is {fork|weak fork}-
linearizable with respect to type T .

Such an emulation is wait-free (abortable resp.), iff every fair and well-formed execu-
tion of the protocol with correct base objects is wait-free [1] (abortable [13] resp.).

3 A Fork-linearizable Universal Type

In this section we present as our first main contribution an abortable fork-linearizable
Byzantine emulation of a universal type implemented from atomic registers. The shared
object ensures fork-linearizability in the presence of any number of faulty base regis-
ters. High-level operations are abortable [13], i.e. under concurrency, the special re-
sponse ABORT may be returned. The functionality of a universal type T is encoded in
the procedure APPLYT . For client Ci, state s and operation o, APPLYT (s, o, i) returns
(s′, res), where s′ is the new state of the universal object, res the computation result,
and where the sequence of invoking APPLYT (s, o, i) and returning (s′, res) is defined
by the sequential specification of type T .

Our algorithm uses timestamp vectors called versions whose order reflects the real-
time order in which operations are applied to the shared object. Each operation carries a
version and the linearization of operations is achieved through the use of an INC&READ
counter object C with two atomic operations INC&READ and READ. An invocation to
INC&READ(C) advances the counter object C and returns a value which is higher than
any value returned before, and READ(C) returns the current value of the counter object.
An implementation of the INC&READ counter is given in the Technical Report [21]
together with its formal properties. Our implementation uses wait-free atomic registers
as base objects which makes it a wait-free variant of the abortable INC&READ counter
described by Aguilera et al. [13].

7 For a formal definition we refer to standard literature [23]

3.1 Algorithm Ideas

Universal Type To implement universal type T , we use n SWMR registers
R1, . . . , Rn such that client Ci can read from all registers but may write only to Ri.
The registers store states of the universal object. To implement high-level operations,
client Ci reads from the register which holds the most current state, applies the relevant
state transformation, and writes the new state to Ri. Note, that all information are dig-
itally signed by the clients as base objects are untrusted. Thereby, operations “affect”
each other which leads to the following relation on operations: Operation o of Ci affects
operation o′ ofCj , if during o′,Cj is able to verify the signature ofCi on state s that has
been written during o and if Cj executes APPLYT on s during o′; further, an operation
of Ci affects each later operation of Ci.
Concurrency detection We allow operations to abort under concurrency for two rea-
sons: there is no wait-free construction of a universal type from registers, as shown
by Herlihy [1], and no fork-linearizable protocol can be wait-free in all executions, as
shown in a more recent work of Cachin et al. [4]. Cachin’s impossibility is based on
two runs, indistinguishable for the reader: In the first run a READ operation does not re-
turn value v as it is concurrently written, while in the second run v has been previously
written and is hidden by malicious registers. To avoid such a situation, our protocol
implements a concurrency detection mechanism [13] using INC&READ counter object
C. If concurrency is detected, a pending operation is aborted. At the invocation of a
high-level operation o, our protocol calls INC&READ(C) and remembers the times-
tamp returned. At the end of o, READ(C) is executed to check whether counter C still
returns the same timestamp. If not, another operation o′ was invoked during o — thus,
o is aborted. Else, if at the end of o C has not been changed, all successful operations
either terminated before o or will be invoked after o has terminated. This is because the
timestamps, returned from INC&READ, are used to linearize operations: The current
state is written together with the timestamp, and the timestamp is used to determine the
most recent state. Hence, all other operations invoked so far write a state with a lower
timestamp than o. Consequently, such operations are linearized before o and only the
state written by o can be read by later operations.
Fork-Linearizability In addition to the timestamp from INC&READ counter C, each
operation is assigned a vector of timestamps of length n, called version. The order re-
lation ≤ defined on versions respects real-time order and the ”affected by” relation on
operations. The idea is that each operation reads the most recent version from the stor-
age, increments its own entry and writes the new version back to the storage. Thereby,
each operation checks, if the version it reads, has been affected by the version of its own
last successful operation, i.e. one which was not aborted. If the last successful operation
of client Ci is hidden from Cj , then Ci does not accept operations of Cj as they have
not been affected by the last successful operation of Ci. This ensures that the views of
the clients after a forking attack are not rejoined. This principle is based on ideas of
Mazières and Shasha [3], and Cachin et al. [4]. To apply it to this work, we have to
add a specific handling for aborted operations: If operation o of client Ci is aborted, Ci
cannot expect that o will affect later operations. However, it is still possible that some
operation of Cj is affected by aborted o. In this case we call o relevant for Cj (refer to
the Technical Report [21] for a formal definition).

3.2 Description of Algorithm 1

We now describe the steps preformed by client Ci when executing high-level operation
o. The algorithm is given as Algorithm 1, the variables used are collected in Figure 1.

The protocol is framed by INC&READ(C) and READ(C) calls to the counter ob-
ject C implementing the concurrency detection mechanism (lines 1.2 and 1.14). If the
returned timestamps are not equal, the operation is aborted in line 1.16. In lines 1.3–
1.5, the client reads from all atomic registers R1, . . . , Rn and determines by means
of the assigned timestamps the index l of the register holding the latest written data
〈tsl, Vl, sl, sigl〉, where tsl is a timestamp, Vl is the version, sl is the state and sigl is
a signature. If some data have been written to Rl, the signature of the content of Rl
is verified (line 1.6). Then, client Ci checks whether the read version Vl is not smaller
than Vsuc the version of its own last successful operation (line 1.7). When the check
is passed the new state of the universal object and the computation result is computed
by calling APPLYT (sl, o, i) (line 1.8). Finally the new version for operation o has to be
computed. This is done by taking the per-entry maximum of version V , which is the
local version of Ci, and Vl, and by incrementing the ith entry (lines 1.9–1.11). After
signing the current timestamp, the new version V , and new state s in line 1.12, client
Ci writes ts, V , s and the signature into register Ri (line 1.13). If operation o is suc-
cessful, version V is stored as last successful version Vsuc and the computation result
is returned (lines 1.17–1.19).

Fig. 1. Variables used in Algorithm 1
C INC&READ counter object, initially 0
R1, . . . Rn SWMR atomic register, initially 〈0, (0, ..., 0),⊥,⊥〉 /*
ts+version+state+sig */
ts, ts′, tsl, cn integer, initially 0 /* timestamp & counter */
V [1..n], Vl[1..n], Vsuc[1..n] array of integers, intially (0, ..., 0) /* version */
s, sl state, initially ⊥ /* state */
res operation result, initially ⊥ /* return value */
sig, sigl signature, initially ⊥ /* signature */

3.3 Correctness Arguments

In this section we argue why Algorithm 1 satisfies fork-linearizability. The goal is
to construct for each client Ci a view πi of σ that satisfies the properties of fork-
linearizability. To construct πi, we simplify our argumentation by ignoring operations
that are not relevant for Ci. Recall, any operation is relevant for client Ci that affects
Ci’s last successful operation. Hence, operations that are not relevant for client Ci do
not change the object’s state fromCi’s point of view. Thus, we can order them arbitrarily
among the operations in πi and the resulting sequences still satisfy fork-linearizability.

Algorithm 1: Universal Object Implementation, Code of Client i
EXECUTE(o) do1.1

ts← INC&READ(C) /* increment and read from counter */1.2
for j = 1, . . . , n do1.3
〈tsj , Vj , sj , sigj〉 ← read(Rj) /* low-level atomic read */1.4

let l be such that tsl = max1≤j≤n(tsj) /* find register with most1.5
recent data */
if Vl 6= [0 . . . 0] ∧ ¬verifyl(sigl, 〈tsl, Vl, sl〉) then halt /* signature1.6
verified? */
if ∃k : Vsuc[k] > Vl[k] then halt /* fork-linearizability check1.7
passed? */
〈s, res〉 ← APPLYT (sl, o, i) /* compute new state + result */1.8
for j = 1, . . . , n, j 6= i do1.9

V [j]← max(V [j], Vl[j]) /* determine1.10

V [i]← V [i] + 1 new version */1.11
sig ← signi(ts||V ||s) /* signature on ts, version, state */1.12
write(Ri, 〈ts, V, s, sig〉) /* low-level atomic write */1.13
ts′ ← READ(C) /* read from counter */1.14
if ts 6= ts′ then1.15

return ABORT /* concurrency detected */1.16

else1.17
Vsuc ← V /* reset last successful version */1.18
return res /* return result */1.19

The idea behind the construction of the πi in the proof is that operations are ordered
according to their assigned versions. The proof shows that this order respects the “af-
fected by” relation, the sequential specification of a universal type, and the real-time
order. As during an operation the new version is computed using the client’s last ver-
sion and the read version, proving “affected by” and real-time order is straightforward.
The core of the proof is to show that the order of version also respects the sequential
specification. We sketch the intuition behind this with the following argument leading
to a contradiction:

Assume that some operation oc is not affected by the most recent state of the uni-
versal object, which has been written by relevant operation ob, but is affected by an
older state written by operation oa. In this case, the clients of ob and oc are forked,
and neither ob nor oc affect each other. We argue, that in such a situation, there is no
relevant operation that has been affected by both ob and oc, as such an operation would
join the two clients violating fork-consistency. We assume for contradiction, that a rel-
evant operation ojoin of client Cjoin, affected by ob and oc exists which is also the first
among such operations (see Figure 2). Operation ojoin is affected by ojoin suc, the last
successful operation of Cjoin previous to ojoin, and by or that wrote the state which
is read during ojoin. Hence, without loss of generality ojoin suc is affected by ob while
or is affected by oc. During operation ojoin suc, client Cjoin raises its value in the ver-
sion to V [join]join suc. This implies that ojoin only accepts versions where the jointh
entry is at least V [join]join suc (line 1.7). As ojoin suc is not on the path of “affected

by” relations from oc to or, ojoin would block while reading the state of or which is a
contradiction. Thus, ojoin does not exist.

Finally, it follows directly from the described construction, that sequences πi satisfy
the no-join property. To complete the correctness proof of the Byzantine emulation, we
show that when all base objects are correct, no operation blocks and that no operation
trivially aborts.

oa ob oc ojoinojoin suc

or

. . .

Fig. 2. Correctness Idea of Algorithm 1. Arrows denote the “affected by” relation.

4 A Weak Fork-Linearizable Shared Memory

In this section we describe as our second contribution a wait-free, weak fork-linearizab-
le Byzantine emulation of a shared memory implemented from atomic registers. The
presented construction satisfies weak fork-linearizability in the presence of any number
of faulty base objects. The implemented shared memory provides n atomic registers,
such that each client can write to one dedicated register exclusively and may read from
all registers. Operation WRITE(v), called by client Ci, writes value v to Ci’s regis-
ter. Operation READ(i) returns the last written value from Ci’s register, and may be
called by any client. Our algorithm makes use of an atomic single-writer snapshot ob-
ject S with n components [24,25]. Snapshot object S provides two atomic operations:
UPDATE(d, S, i), that changes the state of component i of S to d, and SCAN(S) that
returns vector (d1, . . . , dn) such that di is the state of component i of S, i = 1 . . . , n.
Formally, di is the state written by the last UPDATE to component i prior to SCAN. It
has been shown, that such a shared snapshot object can be wait-free implemented only
from registers [24,25].

4.1 Algorithm Ideas

Each client locally maintains a timestamp that respects causality and real-time order
of its own operations. As the basic principle, during each operation this timestamp is
written to the shared memory and timestamps left by other operations are read. For each
client Ci our implementation uses two registers only Ci may write to, but which can be
read by all clients. The first one is needed to store value and timestamp written by Ci’s
WRITE operations and is implemented by a SWMR atomic register Wi (i.e. registers
W1, ...,Wn in total). The second “register” is required to store the latest timestamp of
Ci’s READ operations. It is implemented as the ith component within the single-writer
snapshot object with n components, S.

During READ(j) operation of Ci, Ci’s current timestamp is written to S using UP-
DATE, thereafter, Ci reads a timestamp-value pair from register Wj (using low-level
read). High-level WRITE(v) of Ci proceeds analogously: Ci writes its current times-
tamp plus value v to register Wi using low-level write, thereafter, it reads all compo-
nents from S using SCAN. By this, operations are able to observe each other, as ex-
pressed in the relation “seen”: We say that a WRITE operation ow of Cj sees a READ
operation or of Ci with timestamp ts if Ci digitally signed ts and updated the ith com-
ponent of S by signed ts during or and, if during ow, Cj scanned S and was able to
verify the signature of Ci on ts; READ operation or sees WRITE operation ow if or
returns the value written by ow.

This construction guarantees the following property on interleaved high-level oper-
ations: Whenever high-level READ(j) or of Ci and WRITE(v) ow of Cj appear in an
execution such that or does not return v but a value written before v, then, by regular-
ity of the atomic base registers, ow.write8 does not precede or.read, i.e., or.read has
been invoked before ow.write finishes. Consequently, or.UPDATE precedes ow.SCAN
(see Figure 3). Thus, if or does not “see” ow, then ow “sees” or. A similar property on
interleaving operations has also been leveraged in our previous work [26] as well as by
Aguilera et al. [9].

write high-level write(v) ow

high-level read or

update read

write scan write scan

Fig. 3. Basic principle implemented by Algorithm 2.

We can expect that client Cj writes information during its next WRITE operation
such that future operations of Ci may verify whether operation ow actually has seen
operation or. More concrete, if READ or has seen WRITE ow then the client checks
during or whether the next WRITE operation after ow (of the same client as ow), has
seen READ operation or or a newer one. Else, the base objects are faulty, as shown
in the following example: Let ow and o′w be two sequential WRITE operations of Ci,
o′w precedes READ operation or of Cj but it is hidden by the malicious base objects
such that or sees only ow. As o′w precedes or, o′w cannot see or. However, as or sees
ow, it expects that o′w will see or. The next WRITE operation o′′w of Ci will write this
information. If client Cj sees o′′w, which would violate weak fork-linearizablility, the
check, explained above, is not passed.

Fig. 4. Variables used in Algorithm 2
S, atomic snapshot object with n componenets, initially ((0,⊥), ..., (0,⊥)) /*
timestamp+sig */
W1, . . . ,Wn, SWMR atomic registers, initially (⊥, 0, ∅, ∅,⊥) /*
val+ts+rs+ws+sig */
v, wv value, initially ⊥ /* value written to storage */
wts, ots, i, k, r, r′, w, w′, tmp1, . . . , tmpn integer, initially 0 /* timestamps +
temp. variables */
read seen[1..n][1..n], write seen[1..n][1..n], /* matrices of seen

r write seen[1..n][1..n], matrix of sets of pairs (integer, integer), initially ∅
operations */
sig, sig1, . . . , sign signature, initially ⊥ /* signatures */

4.2 Description of Algorithm 2

This section explains the steps taken by client Ci to implement high-level READ and
WRITE operations. The algorithm is given as Algorithm 2, its variables in Figure 2.

At invocation of high-level READ(j), client Ci increments its local timestamp and
generates a digital signature of it. The signed timestamp is stored to snapshot ob-
ject S using operation UPDATE((ots, sig), S, i) (lines 2.2–2.4). Then, client Ci reads
register Wj and verifies the signature (line 2.5–2.6). The content of register Wj con-
tains the written value wv, the corresponding timestamp wts, as well as two matrices
r read seen and r write seen. Both matrices are of size n×n where each entry holds
a set of integer pairs (r, w). Client Ci maintains a variable read seen of the same type,
where a pair (r, w) ∈ read seen[i][j] denotes that READ of client Ci with timestamp
r has seen WRITE of client Cj with timestamp w. Analogously, client Ci maintains
a second matrix write seen, where (r, w) ∈ write seen[i][j] denotes that WRITE of
client Ci with timestamp w has seen READ of client Cj with timestamp r. In the next
step (line 2.7), client Ci “merges” variables r read seen and read seen. The merge
procedure returns for each entry of two n × n set matrices A, B set A[i][j] ∪ B[i][j],
i, j = 1, . . . , n. Then, Ci adds a pair consisting of its current timestamp and timestamp
wts from Wj to read seen[i][j]. To ensure weak fork-linearizability, client Ci calls
procedure “check” (line 2.9). If all checks are passed, Ci merges r write seen and
write seen and returns value wv (lines 2.10–2.11).

At invocation of WRITE(v), client Ci increments its timestamp (line 2.13). It dig-
itally signs value v, its timestamp, and variables read seen and write seen to write
to register Wi (lines 2.14–2.15). Next, it reads all timestamps of READs by calling
SCAN to snapshot object S (line 2.16). All entries in S are digitally signed and thus
client Ci verifies the signatures (line 2.18). Then, it adds to all sets write seen[i][k]
(k = 1, . . . , n) a pair consisting of the timestamp of the kth component of S and Ci’s
current timestamp (line 2.19). Finally, client Ci successfully returns (line 2.20).

Procedure “check” implements the principle sketched in section 4.1 for n clients.
It ensures that weak fork-linearizability is never violated. The procedure, called by Ci

8 The notation x.y denotes the call of low-level operation y during high-level operation x.

Algorithm 2: Weak Fork-Linearizable Memory for n Clients, Code of Client Ci
READ(j) do2.1

ots← ots+ 1 /* increment timestamp */2.2
sig ← signi(ots) /* signature on timestamp */2.3
UPDATE((ots, sig), S, i) /* update call to snapshot object */2.4
(wv,wts, r read seen, r write seen, sig)← read(Wj) /* low-level2.5
atomic read */
if not verifyj(sig) then halt /* signature verified? */2.6

read seen← merge(read seen, r read seen) /* update read seen */2.7
read seen[i][j]← read seen[i][j].add((ots, wts)) /* add seen write */2.8
check() /* check passed? */2.9
write seen← merge(write seen, r write seen) /* update write seen2.10

*/
return wv /* return read value */2.11

WRITE(v) do2.12
ots← ots+ 1 /* increment timestamp */2.13
sig ← signi(v, ots, read seen,write seen) /* signature on timestamp2.14

*/
write((v, ots, read seen,write seen, sig),Wi) /* low-level atomic2.15
write */
〈(tmp1, sig1), . . . , (tmpn, sign)〉 ← SCAN(S) /* scan call to snapshot2.16
object */
for k = 1, ..., n do2.17

if not verifyk(sigk) then halt /* signature verified? */2.18
write seen[i][k]← write seen[i][k].add((tmpk, ots)) /* add all seen2.19
reads */

return OK /* successfully return */2.20

check() do2.21
for k = 1, ..., n do2.22

forall (r, w) ∈ read seen[k][i] do2.23
/* check if own writes have seen read operations

reading my values */
if ∃(r′, w′) ∈ write seen[i][k] s.t. w′ > w and w′ minimal then2.24

if r′ < r then halt2.25

forall (r, w) ∈ read seen[i][k] do2.26
/* check if own reads have been seen by other’s

write operations */
if ∃(r′, w′) ∈ r write seen[k][i] s.t. w′ > w and w′ minimal then2.27

if r′ < r then halt2.28

during READ(j) (line 2.21), moves through a loop performing two checks: The first
check (line 2.24–2.25) considers the information left by clients during READ(i) op-
erations (this information is stored in the ith column of read seen). If READ(i) with
timestamp r of client Ck has seen WRITE of Ci with timestamp w, then it is tested
whether the next WRITE of Ci has read (using SCAN) timestamp r or higher of client
Ck. The check uses the local write seen variable of Ci. The second check (line 2.27–

2.28) reviews the information left by client Ci during any READ(k) (which is kept in
the ith row of read seen). If READ(k) with timestamp r of client Ci has seen WRITE
of Ck with timestamp w, then we check whether the next WRITE of Ck has read (using
SCAN) timestamp r or higher of client Ci. This check requires matrix r write seen,
which has been fetched from Wj in line 2.5 before procedure “check” is called.

4.3 Correctness Arguments

In this section we give the intuition why Algorithm 2 satisfies the properties of a wait-
free Byzantine emulation of a shared memory with weak fork-linearizability. Intuitively,
the definition of weak fork-linearizability requires for each client Ci to construct a se-
quence πi such that causality among operations, the sequential specification a shared
memory, and weak real-time order is satisfied, and that two sequences πi and πj share
the same prefix up to the second last common operation (at-most-one-join). The proof
proceeds in steps, where in the first step all operations that have to be included in se-
quence πi are causally ordered. Next, this order is extended such that it additionally re-
spects the sequential specification. Intuitively, as all written values are digitally signed,
the sequential specification never interferes with causality. The hardest step is to prove,
that this order can be further refined such that it does not violate the weak real-time
order. The intuition for this is given below as a proof by contradiction:

We assume that READ(j) operation or of client Ci does not return the latest value,
written by WRITE operation o′w, but an older value written by operation ow (see Figure
5). Further, let or be not the last operation of Ci. During operation or, the pair (r, w)9

is added to set read seen[i][j]. The data written by the next WRITE operation o′′w of
Ci contains this information. Now, the algorithm prevents client Cj from reading the
value written by o′′w which would violate weak real-time order (as or is ordered before
o′w according to the sequential specification). When during o′′r Cj sees operation o′′w, it
finds the pair (r, w) in r read seen. As o′w precedes or, it could not have seen or, thus
write seen[j][i] contains a pair (r′, w′) such that r′ < r and the check in line 2.25
is not passed. Hence, operation o′′r of client Cj would block — a contradiction. This
implies that such a situation does not appear and the constructed order of operations
also satisfies weak real-time order.

As the last step, showing that the sequences πi satisfy the at-most-one-join property
follows directly from a simple construction argument. To prove liveness, as required in
the definition of a Byzantine emulation (Definition 2), we show that no operation blocks
when all base objects are correct, which follows from the principle sketched in section
4.1 as in this case all checks are passed.

Client Ci: or o′′w

ow o′′ro′wClient Cj :

Fig. 5. Correctness Ideas of Algorithm 2. Arrows denote the “seen” relation.

9 We assume that operation ox is assigned timestamp x.

5 Analysis & Conclusions

The abortable construction in Algorithm 1 requires n atomic registers plus n additional
ones to implement the INC&READ counter. The presented construction has an overall
communication complexity of O(n2), as the size of the version vectors used in Algo-
rithm 1 is linear in the number of clients n and as a linear number of such version vec-
tors are exchanged per operation. In contrast, the lock-step protocol of Cachin et al. [4],
also based on linear size version vectors, has an overall communication complexity of
O(n). This difference results from the fact that the server objects used by Cachin et
al. are computationally strong enough to select the latest written version vector while in
Algorithm 1 the client is required to read from all register objects to find the latest one
by itself. For the implementation of Algorithm 2, we need n atomic registers plus 2n
additional ones for the atomic snapshot object. Algorithm 2, uses matrices of size n×n
where the size of each entry depends on the total number of operations N , resulting in
a communication complexity of O(N · n2). We leave for future research whether this
complexity can be reduced by implementing a “garbage collection”. However, both of
our algorithms require only a linear number of base registers.

We have shown by ways of two protocols as a first known result that fork-consistent
semantics can be implemented only from registers. Our first protocol satisfies fork-
linearizability and implements a shared object of universal type. Similar to non-fork-
consistent universal constructions from registers, our protocol may abort operations
under concurrency. Hence, fork-linearizability may be “added” to such protocols with-
out making additional assumptions. Our second protocol implements a shared memory
object that ensures weak fork-linearizability and where operations are wait-free as long
as the base registers behave correctly. Weak fork-linearizability is the strongest known
fork-consistency property that may be implemented in a wait-free manner. Although it
weakens fork-linearizability, it has shown to be of practical relevance [7]. Moreover,
our second algorithm shows for the first time that registers are sufficient to implement a
fork-consistent shared memory. So far, all existing implementations are based on com-
putationally stronger objects (featuring read-modify-write operations [8]). We leave as
an open question whether there is a weak fork-linearizable construction of a universal
type providing a stronger liveness condition than abortable in the fault-free case.

References

1. Herlihy, M.: Wait-Free Synchronization. ACM Trans. Program. Lang. Syst. 13(1) (1991)
124–149

2. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Report,
National Institute of Standards and Technology (NIST) (January 2011) Avail-
able online at http://csrc.nist.gov/publications/drafts/800-145/
Draft-SP-800-145_cloud-definition.pdf.

3. Mazières, D., Shasha, D.: Building Secure File Systems out of Byzantine Storage. In: PODC,
New York, NY, USA, ACM (2002) 108–117

4. Cachin, C., Shelat, A., Shraer, A.: Efficient Fork-Linearizable Access to Untrusted Shared
Memory. In: PODC, New York, NY, USA, ACM (2007) 129–138

5. Herlihy, M.P., Wing, J.M.: Linearizability: A Correctness Condition for Concurrent Objects.
ACM Trans. Program. Lang. Syst. 12(3) (1990) 463–492

http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf

6. Majuntke, M., Dobre, D., Serafini, M., Suri, N.: Abortable Fork-Linearizable Storage.
In: Proceedings of the 13th International Conference on Principles of Distributed Systems.
OPODIS ’09, Berlin, Heidelberg, Springer-Verlag (2009) 255–269

7. Cachin, C., Keidar, I., Shraer, A.: Fail-Aware Untrusted Storage. SIAM Journal on Comput-
ing 40(2) (April 2011) 493–533

8. Kruskal, C.P., Rudolph, L., Snir, M.: Efficient Synchronization of Multiprocessors with
Shared Memory. ACM Trans. Program. Lang. Syst. 10 (October 1988) 579–601

9. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic Atomic Storage Without Con-
sensus. J. ACM 58 (April 2011) 7:1–7:32

10. Shraer, A., Cachin, C., Cidon, A., Keidar, I., Michalevsky, Y., Shaket, D.: Venus: Verifica-
tion for Untrusted Cloud Storage. In: Proceedings of the 2010 ACM Workshop on Cloud
Computing Security. CCSW ’10, New York, NY, USA, ACM (2010) 19–30

11. Malkhi, D., Reiter, M.K.: Byzantine Quorum Systems. Distributed Computing 11(4) (1998)
203–213

12. Cachin, C.: Integrity and Consistency for Untrusted Services. In: Proceedings of the 37th
international conference on Current trends in theory and practice of computer science. SOF-
SEM’11, Berlin, Heidelberg, Springer-Verlag (2011) 1–14

13. Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S.L., Toueg, S.: Abortable and Query-
Abortable Objects and Their Efficient Implementation. In: PODC: Principles of distributed
computing, New York, NY, USA, ACM (2007) 23–32

14. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-Free Synchronization: Double-Ended
Queues as an Example. In: ICDCS, Washington, DC, USA, IEEE Computer Society (2003)
522

15. Aguilera, M.K., Toueg, S.: Timeliness-Based Wait-Freedom: A Gracefully Degrading
Progress Condition. In: PODC ’08: Proceedings of the twenty-seventh ACM symposium
on Principles of distributed computing, New York, NY, USA, ACM (2008) 305–314

16. Li, J., Krohn, M., Mazières, D., Shasha, D.: Secure Untrusted Data Repository (SUNDR). In:
Proc. 6th Symp. Operating Systems Design and Implementation (OSDI 04). (2004) 121–136

17. Cachin, C., Geisler, M.: Integrity Protection for Revision Control. In: Proceedings of the
7th International Conference on Applied Cryptography and Network Security. ACNS ’09,
Berlin, Heidelberg, Springer-Verlag (2009) 382–399

18. Williams, P., Sion, R., Shasha, D.: The Blind Stone Tablet: Outsourcing Durability to Un-
trusted Parties. In: Proc. NDSS. (2009)

19. Feldman, A.J., Zeller, W.P., Freedman, M.J., Felten, E.W.: SPORC: Group Collaboration on
Untrusted Resources. In: Proc. 9th Symposium on Operating Systems Design and Imple-
mentation (OSDI 10), Vancouver, BC (October 2010)

20. Li, J., Mazières, D.: Beyond One-Third Faulty Replicas in Byzantine Fault Tolerant Systems.
In: Proc. NSDI. (2007)

21. Majuntke, M., Dobre, D., Cachin, C., Suri, N.: Fork-consistent constructions from registers.
In: Technical Report TR-TUD-DEEDS-09-01-2011. (September 2011) Available online at
http://www.deeds.informatik.tu-darmstadt.de/matze/fc_wo_sc_
2011.pdf.

22. Jayanti, P., Chandra, T.D., Toueg, S.: Fault-tolerant Wait-free Shared Objects. J. ACM 45(3)
(1998) 451–500

23. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1998)
24. Attiya, H., Guerraoui, R., Ruppert, E.: Partial Snapshot Objects. In: Proc. SPAA. (2008)

336–343
25. Fich, F.E.: How Hard Is It to Take a Snapshot? In: Proc. SOFSEM. (2005) 28–37
26. Dobre, D., Majuntke, M., Suri, N.: On the time-complexity of robust and amnesic storage.

In: OPODIS. (2008) 197–216

http://www.deeds.informatik.tu-darmstadt.de/matze/fc_wo_sc_2011.pdf
http://www.deeds.informatik.tu-darmstadt.de/matze/fc_wo_sc_2011.pdf

	Fork-Consistent Constructions From Registers
	Matthias Majuntke, Dan Dobre, Christian Cachin, and Neeraj Suri

