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Abstract

The integration of system and SW functions for ef-
ficiency, performance and especially dependability is of
interest from a research and system design perspective.
In this paper, we propose a framework for directing the
process of integration of SW functions, with the objec-
tive of designing and maintaining desired dependabil-
ity attributes of the system over the integration pro-
cess. Rules of composition for integrated functions,
and measures to quantify the goodness of dependable
system integration are also addressed.

1 Introduction

The design of a customized dependable [6] system
for each specific operational requirement is usually nei-
ther viable nor economically feasible; thus, develop-
ment of such systems tends to aim at integrating an
assortment of system SW functions onto a shared pro-
cessing platform, i.e., HW resources. The SW func-
tions differ not only by application and implementa-
tion, but also in diverse task criticality requirements,
different fault-tolerance needs, and varied throughput,
timing and security constraints, among other charac-
teristics.

For example, the integration for flight control SW
involves display, sensor, collision avoidance, and nav-
igation SW onto a shared platform'. Realistically, a
limited set of viable HW options (paradigms) exist
to meet specific dependability objectives, and increas-
ingly, SW functionality defines the functional proper-
ties for a system — from not only an operational, but
also from a system dependability viewpoint.

This paper proposes design and composition strate-
gies to aid in systematic design of such integrated sys-
tems, while ensuring dependability of the overall sys-
tem functions as per desired requirements.
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IThe AIMS system in the Boeing 777 addresses composite
information management functions.

1.1 Overall Problem Perspective

A central issue for complex reliable systems is
finding good methodologies or frameworks for de-
sign and implementation of integrated dependable sys-
tems. Any such framework will need to support
dependability-aware specification and integration of
SW, as well as provide assurance for the correctness of
design and implementation. Additional issues include
supporting SW evolution and recertification, reuse,
and cross-platform portability. This paper suggests
a general framework for synthesis of dependable SW.
The set of strategies therein allow integration of SW
modules cognizant of module attributes including crit-
icality, timing constraints, and reliability.

Because dependability is a primary concern, the
framework puts emphasis on handling faults in SW,
and, where possible, on minimizing the number, scope,
and effect of such faults. In the HW arena, an estab-
lished design approach is to design the system based
on fault containment regions (FCRs)? at and across
the architectural, information flow, and timing levels.
We seek an analogous approach for SW partitioning
utilizing some of the established HW solutions such as
replication and design diversity. However, a number of
situations specific to the SW process, and to HW-SW
interactions, are of primary interest here, namely:

e Ensuring a desired level of non-interference of op-
eration between SW modules, and providing ef-
fective guidelines for support of non-interference.

e Delimiting the scope of a fault, restricting the
possible sites for correlated faults. In contrast
to the FCR approach for HW, the SW approach
must consider aspects such as process migration,
variable sharing, and inter-function logical and
temporal dependencies.

e Obtaining isolation of fault types into fixed levels
of a design/implementation hierarchy, ensuring
compatibility across assorted SW modules with
different requirements for (a) criticality, (b) tim-

2An FCR depicts the system boundary where the effect of a
fault will be contained.



ing, (c) communication rates and formats, (d) nu-
merical content, and (e) security of information.

e Selecting an appropriate level of integration to de-
sign for, and ascertaining and quantifying trade-
offs involved in the integration process.

1.2 Approach

The composition of dependable SW is a complex
process requiring several factors, possibly conflicting
one, to be handled concurrently. To reduce the com-
plexity of the dependable SW composition problem, it
is desirable to have SW partitioned into fault contain-
ment modules (FCMs?), which have associated char-
acteristics, and interact in a desired manner. Given
such a partitioning, systematic composition of par-
titions (into an integrated design) helps simplify the
study of fault containment (and verification) over an
evolving design.

By analogy to the HW block-diagram design pro-
cess, we consider a modified top-down design, first
partitioning into building blocks, characterizing each
block, developing the interactions across blocks, and
composing blocks along the developed guidelines to
meet the requirements. Overall, we develop system
SW composed of interacting blocks partitioned into
a hierarchy of FCMs, though the actual block imple-
mentation detail is not pertinent at this stage.

1.3 Paper Organization

Section 2 discusses the system model used in the
paper. In Section 3, we present techniques for defin-
ing and formulating the SW FCMs. The rules for in-
tegration of SW FCMs across the levels of hierarchy
appear in Section 4. After SW FCMs have been cre-
ated, their mapping to the existing HW resources is
critical to ensure an integrated and dependable sys-
tem. This mapping process is described in Section 5.
Finally, an example in Section 6 illustrates the con-
cepts introduced in this paper.

2 System Model

For ease of presenting our approach, we utilize a
simplified system model.
SW Model. To simplify the use of the SW integra-
tion framework, we have chosen a three-level model:
procedures, tasks, and processes — see Fig. 1. We as-
sume a system consisting of multiple processes, with
little or no communication, executing in a multipro-
cessor environment. A process is a heavyweight thread
of control.

Each process consists of a set of singly-threaded
tasks, each with a separate conceptual code and data

3FCMs are, at a general level, analogous to the FCRs used
in a HW context. These are discussed in Section 3.

space (most likely with physical overlays, at least in
cache), and a private PC and stack. Processes may
send messages which use, reserve, or release resources
(e.g., I/0). Tasks are lightweight threads of control;
each task consists of a set of procedures, with calls only
within a task or from task procedures to per-processor
replicated system utilities with known behavior. Tasks
within the same process may communicate via mes-
sages. There is no dynamic task creation; tasks have
unique static names, and only one instance of a given
task can be live at any time.

A procedure is a named and callable SW module

with its own scope. Procedures communicate with
other procedures in the same task through parame-
ter passing and global variables. A procedure cannot
have an independent thread of control like a process
or a task; we also assume that procedures (other than
replicated system utilities) do not have persistent state
(that is, no static variables, and no procedure-valued
result parameters), and have results independent of
invocation order, and thus may be freely replicated.
HW Model. While we envision our approach to aid
in HW/SW codesign, this paper considers only a fixed
topology. We assume homogeneous processors, with
access to equivalent sets of resources. All procedures
of each task, and all tasks in each process, can feasibly
be assigned to the same processor.
Attribute and Fault Model. Timing constraints
are global to tasks or procedures. Procedures also rep-
resent the smallest identifiable denomination of fault
containment. The fault tolerance requirements of a
given application may require redundancy of a task,
process, and/or procedure level FCM. Each level spec-
ifies a predefined class of faults which are handled
within each FCM level.

Fault introduction and transmission probabilities
can be taken to be independent of the locations of
the source and target processes. All faults occur in
single FCMs, or in communication between a pair of
FCMs. There is no fault which relies on interactions
from three unrelated FCMs. The probability of indi-
rect transmission of faults can be well-approximated
by direct fault introduction and transmission proba-
bilities, and the probabilities of faults can be approxi-
mated independently of dynamic context, that is, are
unaffected by the presence of uninvolved FCMs.

3 Software FCMs

As mentioned above, we propose a three-level SW
FCM hierarchy. The choice of three levels (and the
elements used) is deliberate, illustrating the concep-
tual approach while minimizing model complexity.
Once such a framework is established, it is possible



to add/delete levels (or elements of the hierarchy) as
desired. Fig. 1 illustrates the developed hierarchy, and
the characteristic properties of each level are discussed
in subsequent sections.

A given SW FCM at a specified hierarchy level will
be created by making sure that the other FCMs it
might interact with (at all other levels of hierarchy)
are clearly isolated from it, satisfying restrictions on
how FCMs at the given level can be integrated. The
isolation techniques are different for different levels
(e.g., hiding variables at the procedure level, or sep-
arating memory at the process level). Once an FCM
has been created, verification tests are run to ensure
that its interactions with other FCMs do not violate
the restrictions and requirements of a FCM.

Hierarchy Level | SW Module Type
Top level Processes
Middle level Tasks
Lowest level Procedures

SW Function Set #1 SW Function Set #i

I
| vertical

| associations
acrossFCM's

horizontal associations across FCM's

Figure 1: The FCM Hierarchy

3.1 Process Level FCMs

FCMs).

The process level FCM is the topmost level in the hi-
erarchy of Fig. 1, and represents a heavyweight (e.g.,
UNIX-like) process. Each such process has its own
code and data, plus other associated characteristics;
e.g., criticality and timing constraints. The kinds of
fault that need to be handled at this level arise from
sharing of HW resources. Examples include mem-
ory space overlapping (“memory footprints”), timing,
scheduling, communication faults, etc.

Techniques for constraining fault scope are re-
quired, to ensure that a fault within one process does
not lead to a correlated fault in another. This may
require processes to be shielded, using techniques like

(Top Level

separating the memory blocks used for their execution,
or ensuring against overuse of resources (e.g., CPU).
3.2 Task Level (Mid-Level) FCMs

The task FCM is the middle level in the hierarchy
(Fig. 1). Tasks are lightweight threads which can share
data and memory, as in Mach OS, each with its own
stack and program counter. A group of tasks which
share data and text belong to the same process.

At task level, faults occurring in one task may af-
fect other tasks within the same process FCM. One
task’s delay in generating or communicating results
may cause another to miss its deadline. Also, many
problems faced at process level are faced as well at the
task level, e.g., memory footprints, priority inversion,
etc. Well-known SW techniques [1], such as N-version
programming, or Recovery Blocks to contain faults,
can be used at this level,

If two process level FCMs need to communicate,
they are converted into two (or more) task level FCMs
within the same process. Thus, faults transmissible
via direct communication need to be addressed only
at task level, not at process level.

3.3 Procedure Level (Low-Level) FCMs
The procedure level FCM is the lowest level of the
proposed hierarchy of Fig. 1. Since procedures cannot
have their own thread of control, a group of procedures
which combine to form a task or a process need to be
scheduled on the same HW module. At this level, the
only fault to be contained is passing of erroneous data
via variables or return values. A possible solution is
to use OO [2] techniques, such as information hiding.*

4 Integration of SW FCMs

Intuitively, the dependability-driven integration
problem takes a set of SW elements, most likely clus-
tered functionally, and partitions them into different
hierarchical FCMs. While these elements are likely to
be given as procedures or tasks, these may not, not
being designed for fault isolation, be identical to the
final procedure or task FCMs. In addition, the fault-
tolerance requirements of a given application may re-
quire redundancy at any level of the FCM hierarchy.
We now define rules of composition which ensure that
faults are not propogated but contained and tolerated,
with a specified and quantifiable degree of confidence.

We consider two kinds of SW integration: wvertical
integration and horizontal integration — see Fig. 1.
Vertical integration is hierarchical, integrating SW
modules (each a FCM at a fixed level) into a larger

40bject-oriented (OO) implementation, on the other hand,
introduces objects/classes as another natural level in the hier-
archy, with its own kinds of faults.



module within the defined FCM hierarchy. Horizon-
tal integration, in contrast, handles integration of sib-
ling SW FCMs at the same level. In either, there
are two possible ways of composing modules: merging
or grouping. In merging implies, boundaries between
constituent FCMs disappear: for example, extracting
the code of two or more procedures and merging to
create one procedure with all of the original function-
ality. In contrast, grouping allows FCM’s to retain
their mutual interface by simply including each proce-
dure in a single task. Merging is used only when two

FCMs have common functionality, and the overhead

of maintaining separate FCMs is unnecessary. Merg-

ing is primarily horizontal integration, while grouping
is usually vertical.

4.1 Vertical Integration of FCMs

Vertical integration involves FCMs at different lev-
els. The clustering of FCMs at one level into FCMs
at a higher level need satisfy the following rules.

R1: Any number of FCMs at one level can be inte-
grated to form an FCM at the next higher level.
For example, one or more procedures can be inte-
grated to create a task, and one or more tasks to
create a process. This creates a layered integra-
tion DAG®; we will use the terms parent, child,
and sibling in the context of that DAG, so that
the higher-level FCM is the parent.

R2: The integration DAG is a tree. An important
consequence of this rule is a severe constraint
on function reuse: to improve dependability of
higher level FCMs, the function must be sepa-
rately compiled with each FCM caller.

R3: Future integration by merging: An FCM can be
integrated only with its siblings. E.g., two proce-
dures in different tasks or two tasks in different
processes cannot be integrated.

The reasons for Rules R2 and R3 follow. As ex-
plained in Section 3, the hierarchy is created in order
to clearly define FCMs and their interactions. If an
FCM has two parents, or two FCMs share a lower-level
FCM, boundaries become unclear, and it becomes dif-
ficult to prove any properties. Furthermore, sharing of
a common code segment by two FCMs of different crit-
icality requirements is not desirable. Although reuse
by sharing of tested functions may be convenient for
the programmer, it is rarely desirable for fault toler-
ance due to possible propagation of a generic fault.b

Also, faults are allowed to propagate only in certain
predefined ways at each level; otherwise, the sorts of

5Directed Acyclic Graph
6Moreover, a source-to-source transformation can readily
clone the relevant (stateless) procedures.

faults affecting one level could possibly be propagated
out of its parent and affect higher levels. Due to this,
each level represents a different level of abstraction,
which simplifies V&V of FCMs at each level, by not
having to consider lower levels; in addition, V&V of
module dependability can be performed independently
of other modules at the same level.

If two or more child FCMs of different parent FCMs
need to be integrated due to a change in the require-
ments, or if a FCM requires the services of a lower level
FCM that is not its child, then this can be done in two
ways without violating Rules R2 and R3. First, the
lower level FCM(s) can be duplicated and integrated
separately with the two different parents. All asso-
ciated code, text and data of the child FCMs is du-
plicated. For example, if two tasks require the same
procedure, then a copy of the procedure can be inserted
separately into each. This method has high overhead,
and is generally not preferred, although it may be the
approach of choice for certain utility functions (e.g.,
those called by many modules).

Alternatively, the parent FCMs can also be inte-
grated to form a single parent FCM. For example, if
two tasks in different processes need to communicate,
all tasks of the two parent processes can be combined
into one parent FCM.

R4: If children of different parents are integrated, their
parents must be integrated.

R5: Whenever a FCM is modified, its parent FCM,
and only its parent, also needs to be tested, in-
cluding the interfaces with its siblings. This fol-
lows directly from rules R2 and R3.

4.2 Horizontal Integration Across FCMs

In Section 4.1, we considered issues involved in in-
tegrating modules at different levels, i.e., vertical inte-
gration. Now we consider the integration of modules
at the same level, i.e., horizontal integration, which
aids in understanding how FCMs at the same level in-
teract, and assists in determining how much a fault
in one FCM affects another FCM, by quantifying the
influence of one FCM on others.

Henceforth, we use the notation FCM; for the it?
FCM at the current level (where labels are arbitrary).
Influence of one FCM on another is the probability of
one FCM affecting another FCM at the same level if
no third FCM at that level is considered. Influence
of FCM; on FCM; is denoted by FCM; > FCM;.
Separation of FCMs is the probability of one FCM not
affecting another if all other FCMs at the same level
are considered. Separation between F'C'M; and F'CM;
is denoted by FCM; = FCM;.



4.2.1 Measuring Influence

To measure influence of an FCM on another, all factors
by which that FCM can affect others (e.g., through
shared memory) need to be determined, and a prob-
ability (p;) assigned for each; this probability, p;, in
turn, depends on several factors, such as:

pi,1 = prob. of fault occurring in one FCM
pi,2 = prob. of fault transmission to another FCM
pi,3 = prob. of resulting fault in second FCM

If the factors which cause faults are f1, fa, ..., fn,
and these factors can be considered jointly and inde-
pendently, then probability p; is given by:

Pi =Di1- Di2- Di3, where p; = Prob(f;) (1)

and the influence of FCM; on FCM; is:
FC’MlDFC’M] = 1—[(1—p1)(1—p2) . (l_pn)] (2)

The value of influence may not be symmetric, i.e.,
FCM;»>FCM; # FCM;>FCM,;. For example, range
checks are needed only when parameters are passed to
a procedure, and not in the other direction. If FCMs
are represented by nodes in a graph, then labeled uni-
directional edges can represent the influence between
them. The unidirectional nature of influence can dis-
tinguish a critical FCM from a non-critical one.

Minimization of the value of influence on FCMs at
each level of the hierarchy will maximize fault con-
tainment. But first, the values of influence need to
be measured. Influence values depend on the p; 1,p; 2,
and p; 3 described above. Since p; ; is the FCM falut
occurrence probability, it can be measured from previ-
ous usage of that FCM. If the FCM has not been used
previously, an equivalent probability can be derived
by extensive testing.

The value of p;» depends on both communication
medium, and data volume. For example, if data is be-
ing transmitted using shared memory, then the proba-
bility of the memory being corrupt can be determined
a priori.”

Finally, the value of p; 3 can be determined by in-
jecting faults into the target FCM, to estimate the
probability that a faulty input will cause a target fault.

Note that relative values of influence can sometimes
be as effective as absolute values. For example, if
FCM 1 and 2 interact with each other more than with

"The value of p; 2 can also be affected by the semantics of the
communication, particularly with respect to SW faults. If, as in
the above example, index values are being sent, the probability
of an erroneous value being received given that it was generated
is close to 1.

FCM 3, then the influence of FCM 1 and 2 on each
other is higher than that on FCM 3. If the FCMs must
be combined into two nodes, then FCM 1 and 2 should
be combined. These aspects of influence are explained
further using a concrete example in Section 6.

Once influence values are determined, the next step
is to reduce influence between FCMs so that system
dependability is increased. Techniques used to reduce
influence are described in the following sections.

4.2.2 Reducing Procedure-Level Influence

At the procedure level, a primary fault transmission
mechanism is passing of erroneous values through vari-
ables. There are two main factors which cause one
procedure to influence another: parameter passing (f1)
and global variables (f»). The probability of f; can
be made relatively low by OO design and redun-
dancy techniques. However, it is difficult to control
the spread of erroneous data through global variables;
thus, the probability of (f2) is higher due to the trans-
mission of fault component (ps2).

4.2.3 Reducing Task/Process-Level Influence

Factors at task level include (a) shared memory (fi),
(b) errors in message passing (f2), (c) timing faults
(f3), and others. f; depends on how much memory
is shared and how often; fo depends on how good the
recovery blocks are; and f3 depends on the schedul-
ing policy used. If non-preemptive scheduling is used,
then a timing fault (e.g., a task in an infinite loop)
can cause all other tasks also to fail. However, the
probability of transmission of the timing fault (ps32)
can be minimized by using preemptive scheduling.

Most of the techniques used at the task level are
also applicable at the process level.

4.2.4 Measuring Separation

To measure separation between FCMs at level i, a la-
beled directed graph is created; nodes represent FCMs
at that level, with an edge for each influence pair, from
the influencing FCM to the FCM influenced. Edge
labels include a tuple representing the factors in the
source FCM that influence the target, and an associ-
ated weight, quantifying that influence. Each node at
level ¢ expands to a graph at level ¢ + 1.

If the influence of FCM; on FCM; is given by
FCM; » FCM; = P;;, then the total separation,
including transitive contributions, can be calculated
as follows: n n n
FCM; b FCM; =1-Pij—Y PP~y Y PyPuPj—...

k=1 =1 k=1
(3)

(At some point, higher-order terms are likely to be
small enough to be neglected.) The separation value



gives an accurate estimate of the interaction between
FCMs, as all FCMs at the same level get considered.

Reduction in influence between two FCMs will in-
crease their separation; however, it is also possible to
increase separation by reducing the influence between
other FCMs through which the two interact.

4.3 FCM Attributes

Each FCM has an associated set of attributes, such
as criticality, fault tolerance requirements, timing con-
straints, and throughput. When SW FCMs are inte-
grated, their associated attributes also need to be com-
bined. Although different attributes get combined dif-
ferently; the resulting FCM will usually have the most
stringent component values (e.g, max criticality, min
deadline), or an aggregate (e.g., sum of throughputs).

Attributes must also be considered when integrat-
ing SW FCMs with HW. They can force (or forbid)
certain FCMs being combined, or require a particular
SW FCM to be mapped onto a specific HW module.
The use of FCM attributes while integrating SW and
HW is described below.

5 HW/SW Integration: Allocation

Realization of an integrated system in this approach
is a two-phase technique: first, clustering of SW ele-
ments into FCMs; second, assigning these elements to
processors. Collocation of HW and SW also requires
consideration of SW FCM attributes such as fault-
tolerance, criticality, and timing specifications, as they
relate to available HW paradigms. In a general sense,
the problem is of HW and SW resource mapping.

5.1 SW and HW Graphs

To facilitate the mapping, two graphs are created,
one for SW FCMs, and one for available HW resources,
which have been structured using a HW FCR model.
For HW, an interconnection graph is used; for sim-
plicity, we consider a generalized HW resource graph
and try to ascertain (a) if there is a feasible assign-
ment of SW onto HW resources meeting overall system
properties®, and, if that is possible, then (b) what is
a good mapping?

For SW, a weighted directed graph of process
FCMs is created, since by assumption all tasks and
procedures for a given process are necessarily collo-
cated. Nodes are the FCMs, with unidirectional edges
weighted by influence. Replicas are connected by
edges of weight 0; there is no edge in any other case
of non-influence. Each node has an associated list of
attributes, such as fault tolerance requirements, criti-

8For example, if SW fault-tolerance requires three concurrent
copies, then a 2-node HW configuration is a problem.

cality, timing, and communication requirements. We
use N; for the i*" node in the SW graph.

Each node in the graph has an importance value,
based on its attributes. The importance I; of node
N; is a weighted sum of its attribute values, using
predefined static relative weights.

5.2 Collocating SW nodes

The process of combining multiple SW nodes into
clusters to be collocated on a processor involves sev-
eral considerations. First, the attributes and overall
importance of each node must be derived, and the in-
fluence between the resulting cluster and its induced
neighbors recalculated. Internal influences disappear,
as in Fig. 2. When nodes 2 through 6 are combined,
their internal influences are no longer visible; how-
ever, the influence of the combined node on nodes 1
and 7 are still significant. If several cluster nodes had
individual influences on a common neighbor, those in-
fluence values need to be combined; for example, in
Fig. 2, the influences of nodes 2 and 4 on node 1 must
be combined. The resulting influence of the cluster C,
made up of nodes FFC'M;, on node F'C'M; is given by:

FCMC > FCMt =1- Hz (]. — (FCMZ > FCMt))
(4)

Figure 2: Combining SW nodes

However, this equation may not compute correct
values of influence if the corresponding FCMs are in-
tegrated (e.g., merged); in that case, the value of influ-
ence has to be recomputed from new attribute values.

Two nodes connected by an edge of weight of 0 can-
not be combined, as the nodes contain replicas of the
same module, which must be mapped onto different
HW nodes. Thus, in determining influence between
a combination of nodes and a neighbor, if any of the
component nodes had an influence of 0 on the neigh-
bor, then the final value is also 0.

5.3 “Good” HW ¢+ SW Mappings

Since there may be several ways in which a SW
graph can be mapped onto a HW graph, we need to
define what constitutes a “good” mapping. This helps



in making the right choices during the mapping process
and also in ascertaining tradeoffs. The importance of
various criteria may differ, depending on the applica-
tion under consideration, but these criteria include:

o Satisfaction of constraints: Absolute constraints
on behavior, whether semantic, temporal, or
other. While some constraints can be evaluated
a priori, others can only be checked after assign-
ment; if so, this is always the primary concern.

e Containment of faults: Mapping of FCMs which
influence each other strongly onto the same node
to ensure that the interaction between FCMs on
different nodes is minimized, and faults are not
propogated across HW nodes.

o Criticality: When criticality is significant, the
selected critical processes should be assigned to
distinct HW nodes, and only be combined with
other non-critical processes, irrespective of influ-
ence. This ensures that critical processes do not
affect each other when faults occur.

5.4 Mapping SW to HW Resources

We now describe the actual process of mapping the
SW graph onto the HW graph, based on the following
steps. Based on the fault tolerance requirements and
need for, say, threefold replication, then an equivalent
graph of three SW nodes with identical attributes and
0 edge weights is created; each of these SW nodes can
thereafter be treated independently.

Since, invariably, the SW graph has a much greater
number of nodes than the HW graph, the SW graph
must be condensed to construct a SW-to-HW assign-
ment consistent with the system specifications. The
problem to be solved is: Given a graph with directed
weighted edges, group the nodes into sets such that the
sum of weights between the sets is minimized. De-
terministic solutions to this problem do not exist, or
are analytically intractable. Some useful heuristics we
have investigated include:

e Heuristic H1: Combine the two nodes with the
highest value of mutual influence (which implies
a high level of interaction, and should be mapped
onto the same HW node). Repeat for the next
higher value of mutual influence, and continue
this process until the required number of nodes is
obtained. A variation of this is to pair all nodes
based on influence values and then to repeat the
process as needed.

o Heuristic H2: Find the min-cut of the graph.
Divide the graph into two parts along the cut.
Find the min-cut in each half and repeat the pro-
cess, until the requisite number of components

has been generated. Other variations include: cut
the portion with the largest number of nodes; and
to cut the graph using source and target nodes.

e Heuristic H3: Start with the most important
node, and combine it with any adjacent nodes
below a certain threshold of importance (and/or
above a certain influence). For n HW nodes, iden-
tify the n most important SW nodes, and define
their “spheres of influence”. Map each group onto
a different HW node.

Once a sufficiently small SW graph is obtained, the
next step is to determine the mapping satisfying the
constraints of the SW node with the HW resources.
For example, the processes in the cluster must all be
schedulable so that their timing requirements are met.
If this is not possible on any HW resource, the current
partition must be rejected.

Assuming there is a feasible mapping, we give two
satisficing heuristics for creating the mapping;:

e Approach A: (Importance of tasks.) Evaluate im-
portance of each SW node based on its attributes
(as described in Section 4.3). Map “most impor-
tant” SW node onto a HW node such that all its
resource requirements are satisfied, and feasible
values are assigned to its attributes.

e Approach B: (Importance of attributes.) List at-
tributes in decreasing importance, and proceed
lexicographically. The most important attribute
is considered first (say criticality). All SW nodes
are mapped onto HW nodes based on their crit-
icality. Once all FCMs have been assigned by
the most important attribute, the next most im-
portant attribute is considered (breaking ties, as-
signing non-critical nodes, and perhaps perturb-
ing others), and so on.

6 A SW < HW Mapping Using H1

We now consider a specific example based on
Heuristic H1 of Section 5.4, using a set of processes” to
demonstrate the general techniques. The same set of
example processes are used across techniques, to high-
light and compare different techniques for combining
nodes (Sections 5.1, 5.2 & 5.3).

We assume a predetermined HW graph!®. To cre-
ate a mapping, we need to reduce the number of nodes
in the SW graph by combining nodes. Once the re-
quired number of SW nodes is obtained, we match

9the same principles apply to tasks and procedures as well —
see Section 4.1.

10Tn a real application, the HW platform may be fixed, and
the objective can be to redefine the HW functionality through
the SW functions implemented on it.



nodes in the SW graph with nodes in the HW graph.
If HW nodes have identical characteristics, the ac-
tual mapping of the reduced SW graph onto the HW
graph is straightforward, unless communication costs
between SW modules (or between SW modules and
external resources) need to be considered. If commu-
nication costs are high, then dilation of the mapping
may be considered to address performance. Further
heuristics can be used to map to SW nodes with high
communication costs onto (the same or) neighboring
HW nodes.

While combining SW nodes, some tradeoffs might
be necessary. For example, it may be preferable to
map two critical processes onto different HW nodes,
but that may not be possible since both have to be
replicated, and the number of HW nodes is limited.
Specifically, if the HW has 4 nodes, and two criti-
cal processes need to be triplicated, then two sets of
these replicates must be mapped onto the same node.
(Other problems might include need for a resource
present on only one processor, or a very high com-
munication load.) This is the basis for considering
integration tradeoffs, i.e., “Is there a limit to the level
of integration one should design for?”.

We now describe the various node combination
techniques using an example. Consider a set of pro-
cesses pi, P2, --., pg- Process p1 has a high critical-
ity value (C), and has to be replicated three times
to be run in a TMR mode (FT = 3). Processes ps
and ps are of intermediate criticality, with FT = 2.
The rest of the tasks p4,...,ps require no duplica-
tion. The other attributes of each process are timing
constraints, including earliest start time (EST), task
completion deadline (TCD), and computation time
(CT). The parameters have been chosen to illustrate
limits on combining nodes. The timing constraints
might also prevent combining specific nodes. For ex-
ample, two nodes with timing constraints (2,5, 3) and
(3,5,2) (< begin, deadline, compute times >), can-
not be scheduled on the same processor, and therefore
cannot be combined. Table 1 lists all attribute values
of the eight processes.

Initially, 8 SW nodes are created, one for each pro-
cess. They are linked through edges based on their
influences on other processes (Fig. 3). Influences have
been randomly generated for this example; for a real
application, the values of influence would be deter-
mined using Equations 1 and 2 using field data and
estimations for the various fault probability factors.
As already indicated, even relative values of the influ-
ence parameter suffice at this stage.

Node p; is replicated 3 times to satisfy its fault

Process | C | FT | EST | TCD | CT
P 20| 3 3 10 2
D2 10| 2 7 10 1
3 10| 2 5 14 5
P4 4 1 2 10 4
D5 1 1 12 17 2
D 3 1 7 14 6
pr 1 1 10 15 1
s 1 1 12 20 4

Table 1: Example attributes of SW modules

tolerance requirements, and edges with neighbors are
also replicated. The three replicates are linked with
edges with an influence value of 0. The new graph
with replicated nodes is shown in Fig. 4. The total
number of nodes of this graph is now 12.

( pla, plb, plc) represent the replicated tasks for process p1
The unidirectional links represent the "influence” metric between nodes.

Figure 4: Illustrating “influence” in SW node linkage

Now assume there is a strongly connected network
with 6 HW nodes. The SW graph has thus to be re-
duced to six nodes, using techniques discussed in Sec-
tion 5.4; the technique used will depend on the most
important attribute of the application. When combin-



ing any two nodes, we must nonetheless check the val-
ues of all attributes, such as timing constraints, since
certain combinations of nodes may be infeasible. For
example, if ps and pg are scheduled on the same pro-
cessor, then p3 cannot be scheduled on that processor
due to conflicting timing requirements; as a result, the
corresponding nodes can never be combined. Several
well-known scheduling algorithms can be used to check
the feasibility of scheduling sets of these processes on
the same processor [10].

The next sections presents two possible approaches
for conducting the integration process.

6.1 Using Influence for
Nodes: Approach A

As provision of dependability is a primary concern,
the criteria for containing faults are important [3, 9].
As explained earlier, combining nodes with high val-
ues of mutual influence (the sum of influences in each
direction) reduces the probability of faults being trans-
mitted across HW nodes, and effectively creates fault
containment regions (FCRs) in HW. Thus, the graph
in Fig. 4 can be reduced using values of influence.

First, the two nodes with the highest mutual in-
fluence (p7 and pg) are combined. A portion of the
resulting graph is shown in Fig. 5. The new influ-
ence attributes for the combined processes are ob-
tained through iterative use of Equation 4. Next, the
two nodes with the next higher value of mutual influ-
ence are combined (ps and prg), and so on. Figs. 5
and 6 show successive stages of this process. Note that
the processes with 0 relative influence [(p1a, P1s, P1c),
(P24 P2v), & (P34, P3p)] get mapped to distinct HW
nodes. Fig. 6 shows a six-node HW graph after sev-
eral stages of SW node combinations. The resulting
mapped nodes in the graph satisfy overall objectives.
Depending on the size of the HW graph, the SW graph
can be further reduced; this however raises the issue
of tradeoffs in integrating SW beyond a HW resource
threshold. We defer details of the tradeoff analysis to
a later study.

Combining

.- HWnode

mappét]SWnod&s
0.37 =1-(1-Px).(1-Py)

Figure 5: Using “influence” to combine the SW nodes
to match the HW resources

Figure 6: Reducing SW graph to match HW resources

6.2 Scheduling Critical Processes on Sep-
arate Nodes: Approach B

Since mapping of more than one critical process on
the same HW node might lead to conflicts in resource
usage, a system might require extremely critical pro-
cesses to be mapped onto separate HW nodes. Min-
imizing the number of critical processes scheduled on
one processor also minimizes the number of processes
lost due to such a HW fault. These critical processes
can also be allocated a separate portion of memory
to avoid faults due to memory footprints. Thus, the
objective is to separate critical processes, so that the
same faults (in HW or SW) affect a minimal number
of such processes.

This guides the process by which the Fig. 4 graph
can be integrated into six nodes with total criticality
on each HW node reduced as much as possible. The
following steps are used to combine nodes:

e List processes in descending order of criticality.

e Combine most critical process with least critical
process, the second most critical process with the
second to last critical process, and so on.

e If there are no conflicts (attributes other than
criticality causing infeasibility, or attempts to
combine replicates), the resulting graph will have
half as many nodes as the original graph.

e If a high criticality process py, cannot be combined
with a low criticality process p; due to conflicts
(e.g., timing constraints), then combine p; with
the process preceding p; on the criticality list.

e In the next stage, the sets of processes can be or-
dered based on a summary criticality (e.g., high-
est criticality, or the sum). The previous steps
can then be repeated until a desired number of
nodes is obtained.

In the example, pi, is combined with pg, p1p with
pr and so on until the last two remaining nodes are ps3,



and psp. These two nodes are replicates and cannot be
combined thus leading to a conflict. To resolve this,
the next higher criticality process pap is combined with
p3p wWith ps, is combined with py. The resulting graph
is shown in Fig. 7.

Figure 7: Factoring Criticality into Integration

However, in some applications, the criticality of all
processes might be similar in value, and the influences
between processes might be small. For such applica-
tions, other attributes (such as timing) can be used
to generate the mapping. One such technique is as
follows: Compute an ordered list of SW nodes. Place
the nodes which should preferably be mapped onto
the same node adjacent to each other. Next, map
SW nodes onto a HW node starting at the top of the
list maintaining their compliance to the specified con-
straints.

HW node” 7
mapped SW node

0.832

Figure 8: A refined HW/SW mapping to 4 HW nodes

For example, the graph in Fig 4 can be straightfor-
wardly reduced to Fig. 8 if only the timing attributes
are considered.

7 Summary

Our approach to developing integrated dependable
SW makes the following contribution: (a) description
of a hierarchical structure for partitioning of SW mod-
ules, (b) composition strategies for creating larger and

complex SW modules,; (c) quantification of interac-
tion between SW modules, and (d) development of
processes of mapping SW modules onto HW. It needs
to be emphasized again that developing techniques to
determine and measure actual parameters such as “in-
fluence” across FCMs is crucial for the techniques to
be applied to real systems. This is also the focus of
our continuing work.

In the future we plan to address relative trade-
offs between approaches with more detailed models
and discussions, including domain/application-specific
tradeoffs. It is also of interest to develop a tradeoff
analysis between HW and SW requirements as they
affect one another, especially when design restrictions
are provided on the choice of an available HW plat-
form, yet some flexibility remains. Also, we plan to
apply the proposed techniques to development of a
new SW integration target system, and also to de-
velop techniques to ascertain SW characteristics using
analytical and/or experimental approaches [3].
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