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Abstract

The integration of system and SW functions for ef�

�ciency� performance and especially dependability is of

interest from a research and system design perspective�

In this paper� we propose a framework for directing the

process of integration of SW functions� with the objec�

tive of designing and maintaining desired dependabil�

ity attributes of the system over the integration pro�

cess� Rules of composition for integrated functions�

and measures to quantify the goodness of dependable

system integration are also addressed�

� Introduction

The design of a customized dependable ��� system
for each speci�c operational requirement is usually nei�
ther viable nor economically feasible� thus� develop�
ment of such systems tends to aim at integrating an
assortment of system SW functions onto a shared pro�
cessing platform� i�e�� HW resources� The SW func�
tions di	er not only by application and implementa�
tion� but also in diverse task criticality requirements�
di	erent fault�tolerance needs� and varied throughput�
timing and security constraints� among other charac�
teristics�

For example� the integration for 
ight control SW
involves display� sensor� collision avoidance� and nav�
igation SW onto a shared platform�� Realistically� a
limited set of viable HW options �paradigms� exist
to meet speci�c dependability objectives� and increas�
ingly� SW functionality de�nes the functional proper�
ties for a system 
 from not only an operational� but
also from a system dependability viewpoint�

This paper proposes design and composition strate�
gies to aid in systematic design of such integrated sys�
tems� while ensuring dependability of the overall sys�
tem functions as per desired requirements�
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�The AIMS system in the Boeing ��� addresses composite

information management functions�

��� Overall Problem Perspective

A central issue for complex reliable systems is
�nding good methodologies or frameworks for de�
sign and implementation of integrated dependable sys�
tems� Any such framework will need to support
dependability�aware speci�cation and integration of
SW� as well as provide assurance for the correctness of
design and implementation� Additional issues include
supporting SW evolution and recerti�cation� reuse�
and cross�platform portability� This paper suggests
a general framework for synthesis of dependable SW�
The set of strategies therein allow integration of SW
modules cognizant of module attributes including crit�
icality� timing constraints� and reliability�

Because dependability is a primary concern� the
framework puts emphasis on handling faults in SW�
and� where possible� on minimizing the number� scope�
and e	ect of such faults� In the HW arena� an estab�
lished design approach is to design the system based
on fault containment regions �FCRs�� at and across
the architectural� information 
ow� and timing levels�
We seek an analogous approach for SW partitioning
utilizing some of the established HW solutions such as
replication and design diversity� However� a number of
situations speci�c to the SW process� and to HW�SW
interactions� are of primary interest here� namely�

� Ensuring a desired level of non�interference of op�
eration between SW modules� and providing ef�
fective guidelines for support of non�interference�

� Delimiting the scope of a fault� restricting the
possible sites for correlated faults� In contrast
to the FCR approach for HW� the SW approach
must consider aspects such as process migration�
variable sharing� and inter�function logical and
temporal dependencies�

� Obtaining isolation of fault types into �xed levels
of a design�implementation hierarchy� ensuring
compatibility across assorted SW modules with
di	erent requirements for �a� criticality� �b� tim�

�An FCR depicts the system boundary where the e
ect of a
fault will be contained�



ing� �c� communication rates and formats� �d� nu�
merical content� and �e� security of information�

� Selecting an appropriate level of integration to de�
sign for� and ascertaining and quantifying trade�
o	s involved in the integration process�

��� Approach
The composition of dependable SW is a complex

process requiring several factors� possibly con
icting
one� to be handled concurrently� To reduce the com�
plexity of the dependable SW composition problem� it
is desirable to have SW partitioned into fault contain�
ment modules �FCMs��� which have associated char�
acteristics� and interact in a desired manner� Given
such a partitioning� systematic composition of par�
titions �into an integrated design� helps simplify the
study of fault containment �and veri�cation� over an
evolving design�

By analogy to the HW block�diagram design pro�
cess� we consider a modi�ed top�down design� �rst
partitioning into building blocks� characterizing each
block� developing the interactions across blocks� and
composing blocks along the developed guidelines to
meet the requirements� Overall� we develop system
SW composed of interacting blocks partitioned into
a hierarchy of FCMs� though the actual block imple�
mentation detail is not pertinent at this stage�

��� Paper Organization
Section � discusses the system model used in the

paper� In Section �� we present techniques for de�n�
ing and formulating the SW FCMs� The rules for in�
tegration of SW FCMs across the levels of hierarchy
appear in Section �� After SW FCMs have been cre�
ated� their mapping to the existing HW resources is
critical to ensure an integrated and dependable sys�
tem� This mapping process is described in Section ��
Finally� an example in Section � illustrates the con�
cepts introduced in this paper�

� System Model
For ease of presenting our approach� we utilize a

simpli�ed system model�
SW Model� To simplify the use of the SW integra�
tion framework� we have chosen a three�level model�
procedures� tasks� and processes 
 see Fig� �� We as�
sume a system consisting of multiple processes� with
little or no communication� executing in a multipro�
cessor environment� A process is a heavyweight thread
of control�

Each process consists of a set of singly�threaded
tasks� each with a separate conceptual code and data

�FCMs are
 at a general level
 analogous to the FCRs used
in a HW context� These are discussed in Section ��

space �most likely with physical overlays� at least in
cache�� and a private PC and stack� Processes may
send messages which use� reserve� or release resources
�e�g�� I�O�� Tasks are lightweight threads of control�
each task consists of a set of procedures� with calls only
within a task or from task procedures to per�processor
replicated system utilities with known behavior� Tasks
within the same process may communicate via mes�
sages� There is no dynamic task creation� tasks have
unique static names� and only one instance of a given
task can be live at any time�

A procedure is a named and callable SW module
with its own scope� Procedures communicate with
other procedures in the same task through parame�
ter passing and global variables� A procedure cannot
have an independent thread of control like a process
or a task� we also assume that procedures �other than
replicated system utilities� do not have persistent state
�that is� no static variables� and no procedure�valued
result parameters�� and have results independent of
invocation order� and thus may be freely replicated�

HWModel� While we envision our approach to aid
in HW�SW codesign� this paper considers only a �xed
topology� We assume homogeneous processors� with
access to equivalent sets of resources� All procedures
of each task� and all tasks in each process� can feasibly
be assigned to the same processor�

Attribute and Fault Model� Timing constraints
are global to tasks or procedures� Procedures also rep�
resent the smallest identi�able denomination of fault
containment� The fault tolerance requirements of a
given application may require redundancy of a task�
process� and�or procedure level FCM� Each level spec�
i�es a prede�ned class of faults which are handled
within each FCM level�

Fault introduction and transmission probabilities
can be taken to be independent of the locations of
the source and target processes� All faults occur in
single FCMs� or in communication between a pair of
FCMs� There is no fault which relies on interactions
from three unrelated FCMs� The probability of indi�
rect transmission of faults can be well�approximated
by direct fault introduction and transmission proba�
bilities� and the probabilities of faults can be approxi�
mated independently of dynamic context� that is� are
una	ected by the presence of uninvolved FCMs�

� Software FCMs
As mentioned above� we propose a three�level SW

FCM hierarchy� The choice of three levels �and the
elements used� is deliberate� illustrating the concep�
tual approach while minimizing model complexity�
Once such a framework is established� it is possible



to add�delete levels �or elements of the hierarchy� as
desired� Fig� � illustrates the developed hierarchy� and
the characteristic properties of each level are discussed
in subsequent sections�

A given SW FCM at a speci�ed hierarchy level will
be created by making sure that the other FCMs it
might interact with �at all other levels of hierarchy�
are clearly isolated from it� satisfying restrictions on
how FCMs at the given level can be integrated� The
isolation techniques are di	erent for di	erent levels
�e�g�� hiding variables at the procedure level� or sep�
arating memory at the process level�� Once an FCM
has been created� veri�cation tests are run to ensure
that its interactions with other FCMs do not violate
the restrictions and requirements of a FCM�

Hierarchy Level SW Module Type

Top level Processes

Middle level Tasks

Lowest level Procedures

Procedures

SW Function Set #1 SW Function Set #i

Tasks

Process FCM’s

horizontal associations across FCM’s

vertical
associations
across FCM’s

Figure �� The FCM Hierarchy

��� Process Level FCMs �Top Level
FCMs��

The process level FCM is the topmost level in the hi�
erarchy of Fig� �� and represents a heavyweight �e�g��
UNIX�like� process� Each such process has its own
code and data� plus other associated characteristics�
e�g�� criticality and timing constraints� The kinds of
fault that need to be handled at this level arise from
sharing of HW resources� Examples include mem�
ory space overlapping ��memory footprints��� timing�
scheduling� communication faults� etc�

Techniques for constraining fault scope are re�
quired� to ensure that a fault within one process does
not lead to a correlated fault in another� This may
require processes to be shielded� using techniques like

separating the memory blocks used for their execution�
or ensuring against overuse of resources �e�g�� CPU��

��� Task Level �Mid�Level� FCMs
The task FCM is the middle level in the hierarchy

�Fig� ��� Tasks are lightweight threads which can share
data and memory� as in Mach OS� each with its own
stack and program counter� A group of tasks which
share data and text belong to the same process�

At task level� faults occurring in one task may af�
fect other tasks within the same process FCM� One
task�s delay in generating or communicating results
may cause another to miss its deadline� Also� many
problems faced at process level are faced as well at the
task level� e�g�� memory footprints� priority inversion�
etc� Well�known SW techniques ���� such as N�version
programming� or Recovery Blocks to contain faults�
can be used at this level�

If two process level FCMs need to communicate�
they are converted into two �or more� task level FCMs
within the same process� Thus� faults transmissible
via direct communication need to be addressed only
at task level� not at process level�

��� Procedure Level �Low�Level� FCMs
The procedure level FCM is the lowest level of the

proposed hierarchy of Fig� �� Since procedures cannot
have their own thread of control� a group of procedures
which combine to form a task or a process need to be
scheduled on the same HW module� At this level� the
only fault to be contained is passing of erroneous data
via variables or return values� A possible solution is
to use OO ��� techniques� such as information hiding��

� Integration of SW FCMs
Intuitively� the dependability�driven integration

problem takes a set of SW elements� most likely clus�
tered functionally� and partitions them into di	erent
hierarchical FCMs� While these elements are likely to
be given as procedures or tasks� these may not� not
being designed for fault isolation� be identical to the
�nal procedure or task FCMs� In addition� the fault�
tolerance requirements of a given application may re�
quire redundancy at any level of the FCM hierarchy�
We now de�ne rules of composition which ensure that
faults are not propogated but contained and tolerated�
with a speci�ed and quanti�able degree of con�dence�

We consider two kinds of SW integration� vertical
integration and horizontal integration 
 see Fig� ��
Vertical integration is hierarchical� integrating SW
modules �each a FCM at a �xed level� into a larger

�Object�oriented �OO� implementation
 on the other hand

introduces objects�classes as another natural level in the hier�
archy
 with its own kinds of faults�



module within the de�ned FCM hierarchy� Horizon�

tal integration� in contrast� handles integration of sib�
ling SW FCMs at the same level� In either� there
are two possible ways of composing modules� merging

or grouping� In merging implies� boundaries between
constituent FCMs disappear� for example� extracting
the code of two or more procedures and merging to
create one procedure with all of the original function�
ality� In contrast� grouping allows FCM�s to retain
their mutual interface by simply including each proce�
dure in a single task� Merging is used only when two
FCMs have common functionality� and the overhead
of maintaining separate FCMs is unnecessary� Merg�
ing is primarily horizontal integration� while grouping
is usually vertical�

��� Vertical Integration of FCMs
Vertical integration involves FCMs at di	erent lev�

els� The clustering of FCMs at one level into FCMs
at a higher level need satisfy the following rules�

R�� Any number of FCMs at one level can be inte�

grated to form an FCM at the next higher level�

For example� one or more procedures can be inte�
grated to create a task� and one or more tasks to
create a process� This creates a layered integra�

tion DAG�� we will use the terms parent� child�
and sibling in the context of that DAG� so that
the higher�level FCM is the parent�

R�� The integration DAG is a tree� An important
consequence of this rule is a severe constraint
on function reuse� to improve dependability of
higher level FCMs� the function must be sepa�
rately compiled with each FCM caller�

R�� Future integration by merging� An FCM can be

integrated only with its siblings� E�g�� two proce�

dures in di	erent tasks or two tasks in di	erent
processes cannot be integrated�

The reasons for Rules R� and R� follow� As ex�
plained in Section �� the hierarchy is created in order
to clearly de�ne FCMs and their interactions� If an
FCM has two parents� or two FCMs share a lower�level
FCM� boundaries become unclear� and it becomes dif�
�cult to prove any properties� Furthermore� sharing of
a common code segment by two FCMs of di	erent crit�
icality requirements is not desirable� Although reuse
by sharing of tested functions may be convenient for
the programmer� it is rarely desirable for fault toler�
ance due to possible propagation of a generic fault��

Also� faults are allowed to propagate only in certain
prede�ned ways at each level� otherwise� the sorts of

�Directed Acyclic Graph
�Moreover
 a source�to�source transformation can readily

clone the relevant �stateless� procedures�

faults a	ecting one level could possibly be propagated
out of its parent and a	ect higher levels� Due to this�
each level represents a di	erent level of abstraction�
which simpli�es V�V of FCMs at each level� by not
having to consider lower levels� in addition� V�V of
module dependability can be performed independently
of other modules at the same level�

If two or more child FCMs of di	erent parent FCMs
need to be integrated due to a change in the require�
ments� or if a FCM requires the services of a lower level
FCM that is not its child� then this can be done in two
ways without violating Rules R� and R�� First� the
lower level FCM�s� can be duplicated and integrated
separately with the two di	erent parents� All asso�
ciated code� text and data of the child FCMs is du�
plicated� For example� if two tasks require the same
procedure� then a copy of the procedure can be inserted
separately into each� This method has high overhead�
and is generally not preferred� although it may be the
approach of choice for certain utility functions �e�g��
those called by many modules��

Alternatively� the parent FCMs can also be inte�
grated to form a single parent FCM� For example� if
two tasks in di	erent processes need to communicate�
all tasks of the two parent processes can be combined
into one parent FCM�

R�� If children of di�erent parents are integrated� their

parents must be integrated�

R�� Whenever a FCM is modi�ed� its parent FCM�

and only its parent� also needs to be tested� in�

cluding the interfaces with its siblings� This fol�
lows directly from rules R� and R��

��� Horizontal Integration Across FCMs
In Section ���� we considered issues involved in in�

tegrating modules at di	erent levels� i�e�� vertical inte�
gration� Now we consider the integration of modules
at the same level� i�e�� horizontal integration� which
aids in understanding how FCMs at the same level in�
teract� and assists in determining how much a fault
in one FCM a	ects another FCM� by quantifying the
in
uence of one FCM on others�

Henceforth� we use the notation FCMi for the i
th

FCM at the current level �where labels are arbitrary��
In�uence of one FCM on another is the probability of
one FCM a	ecting another FCM at the same level if
no third FCM at that level is considered� In
uence
of FCMi on FCMj is denoted by FCMi � FCMj �
Separation of FCMs is the probability of one FCM not

a	ecting another if all other FCMs at the same level
are considered� Separation between FCMi and FCMj

is denoted by FCMi � FCMj �



����� Measuring In�uence

Tomeasure in
uence of an FCM on another� all factors
by which that FCM can a	ect others �e�g�� through
shared memory� need to be determined� and a prob�
ability �pi� assigned for each� this probability� pi� in
turn� depends on several factors� such as�

pi�� � prob� of fault occurring in one FCM

pi�� � prob� of fault transmission to another FCM

pi�� � prob� of resulting fault in second FCM

If the factors which cause faults are f�� f�� � � �� fn�
and these factors can be considered jointly and inde�
pendently� then probability pi is given by�

pi � pi�� � pi�� � pi��� where pi � Prob�fi� ���

and the in
uence of FCMi on FCMj is�

FCMi�FCMj � �� ����p�����p�� � � � ���pn�� ���

The value of in
uence may not be symmetric� i�e��
FCMi �FCMj �� FCMj �FCMi� For example� range
checks are needed only when parameters are passed to
a procedure� and not in the other direction� If FCMs
are represented by nodes in a graph� then labeled uni�
directional edges can represent the in
uence between
them� The unidirectional nature of in�uence can dis�

tinguish a critical FCM from a non�critical one�

Minimization of the value of in
uence on FCMs at
each level of the hierarchy will maximize fault con�
tainment� But �rst� the values of in
uence need to
be measured� In
uence values depend on the pi��� pi���
and pi�� described above� Since pi�� is the FCM falut
occurrence probability� it can be measured from previ�
ous usage of that FCM� If the FCM has not been used
previously� an equivalent probability can be derived
by extensive testing�

The value of pi�� depends on both communication
medium� and data volume� For example� if data is be�
ing transmitted using shared memory� then the proba�
bility of the memory being corrupt can be determined
a priori��

Finally� the value of pi�� can be determined by in�
jecting faults into the target FCM� to estimate the
probability that a faulty input will cause a target fault�

Note that relative values of in
uence can sometimes
be as e	ective as absolute values� For example� if
FCM � and � interact with each other more than with

�The value of pi�� can also be a
ected by the semantics of the
communication
 particularly with respect to SW faults� If
 as in
the above example
 index values are being sent
 the probability
of an erroneous value being received given that it was generated

is close to ��

FCM �� then the in
uence of FCM � and � on each
other is higher than that on FCM �� If the FCMs must
be combined into two nodes� then FCM � and � should
be combined� These aspects of in
uence are explained
further using a concrete example in Section ��

Once in
uence values are determined� the next step
is to reduce in
uence between FCMs so that system
dependability is increased� Techniques used to reduce
in
uence are described in the following sections�

����� Reducing Procedure�Level In�uence

At the procedure level� a primary fault transmission
mechanism is passing of erroneous values through vari�
ables� There are two main factors which cause one
procedure to in
uence another� parameter passing �f��
and global variables �f��� The probability of f� can
be made relatively low by OO design and redun�
dancy techniques� However� it is di�cult to control
the spread of erroneous data through global variables�
thus� the probability of �f�� is higher due to the trans�
mission of fault component �p�����

����� Reducing Task�Process�Level In�uence

Factors at task level include �a� shared memory �f���
�b� errors in message passing �f��� �c� timing faults
�f��� and others� f� depends on how much memory
is shared and how often� f� depends on how good the
recovery blocks are� and f� depends on the schedul�
ing policy used� If non�preemptive scheduling is used�
then a timing fault �e�g�� a task in an in�nite loop�
can cause all other tasks also to fail� However� the
probability of transmission of the timing fault �p����
can be minimized by using preemptive scheduling�

Most of the techniques used at the task level are
also applicable at the process level�

����� Measuring Separation

To measure separation between FCMs at level i� a la�
beled directed graph is created� nodes represent FCMs
at that level� with an edge for each in
uence pair� from
the in
uencing FCM to the FCM in
uenced� Edge
labels include a tuple representing the factors in the
source FCM that in
uence the target� and an associ�
ated weight� quantifying that in
uence� Each node at
level i expands to a graph at level i� ��

If the in
uence of FCMi on FCMj is given by
FCMi � FCMj � Pij � then the total separation�
including transitive contributions� can be calculated
as follows�

FCMi � FCMj � ��Pij�

nX

k��

PikPkj�

nX

l��

nX

k��

PikPklPlj�� � �

���

�At some point� higher�order terms are likely to be
small enough to be neglected�� The separation value



gives an accurate estimate of the interaction between
FCMs� as all FCMs at the same level get considered�

Reduction in in
uence between two FCMs will in�
crease their separation� however� it is also possible to
increase separation by reducing the in
uence between
other FCMs through which the two interact�

��� FCM Attributes

Each FCM has an associated set of attributes� such
as criticality� fault tolerance requirements� timing con�
straints� and throughput� When SW FCMs are inte�
grated� their associated attributes also need to be com�
bined� Although di	erent attributes get combined dif�
ferently� the resulting FCM will usually have the most
stringent component values �e�g� max criticality� min
deadline�� or an aggregate �e�g�� sum of throughputs��

Attributes must also be considered when integrat�
ing SW FCMs with HW� They can force �or forbid�
certain FCMs being combined� or require a particular
SW FCM to be mapped onto a speci�c HW module�
The use of FCM attributes while integrating SW and
HW is described below�

� HW�SW Integration� Allocation
Realization of an integrated system in this approach

is a two�phase technique� �rst� clustering of SW ele�
ments into FCMs� second� assigning these elements to
processors� Collocation of HW and SW also requires
consideration of SW FCM attributes such as fault�
tolerance� criticality� and timing speci�cations� as they
relate to available HW paradigms� In a general sense�
the problem is of HW and SW resource mapping�

	�� SW and HW Graphs

To facilitate the mapping� two graphs are created�
one for SW FCMs� and one for available HW resources�
which have been structured using a HW FCR model�
For HW� an interconnection graph is used� for sim�
plicity� we consider a generalized HW resource graph
and try to ascertain �a� if there is a feasible assign�
ment of SW onto HW resources meeting overall system
properties�� and� if that is possible� then �b� what is
a good mapping�

For SW� a weighted directed graph of process
FCMs is created� since by assumption all tasks and
procedures for a given process are necessarily collo�
cated� Nodes are the FCMs� with unidirectional edges
weighted by in
uence� Replicas are connected by
edges of weight �� there is no edge in any other case
of non�in
uence� Each node has an associated list of
attributes� such as fault tolerance requirements� criti�

	For example
 if SW fault�tolerance requires three concurrent
copies
 then a ��node HW con�guration is a problem�

cality� timing� and communication requirements� We
use Ni for the i

th node in the SW graph�
Each node in the graph has an importance value�

based on its attributes� The importance Ii of node
Ni is a weighted sum of its attribute values� using
prede�ned static relative weights�

	�� Collocating SW nodes
The process of combining multiple SW nodes into

clusters to be collocated on a processor involves sev�
eral considerations� First� the attributes and overall
importance of each node must be derived� and the in�

uence between the resulting cluster and its induced
neighbors recalculated� Internal in
uences disappear�
as in Fig� �� When nodes � through � are combined�
their internal in
uences are no longer visible� how�
ever� the in
uence of the combined node on nodes �
and � are still signi�cant� If several cluster nodes had
individual in
uences on a common neighbor� those in�

uence values need to be combined� for example� in
Fig� �� the in
uences of nodes � and � on node � must
be combined� The resulting in
uence of the cluster C�
made up of nodes FCMi� on node FCMt is given by�

FCMC � FCMt � � � �i �� � �FCMi � FCMt��
���

3

5

6

2

1

7

4
SW nodes

Figure �� Combining SW nodes

However� this equation may not compute correct
values of in
uence if the corresponding FCMs are in�
tegrated �e�g�� merged�� in that case� the value of in
u�
ence has to be recomputed from new attribute values�

Two nodes connected by an edge of weight of � can�
not be combined� as the nodes contain replicas of the
same module� which must be mapped onto di	erent
HW nodes� Thus� in determining in
uence between
a combination of nodes and a neighbor� if any of the
component nodes had an in
uence of � on the neigh�
bor� then the �nal value is also ��

	�� 
Good� HW � SW Mappings
Since there may be several ways in which a SW

graph can be mapped onto a HW graph� we need to
de�ne what constitutes a �good� mapping� This helps



in making the right choices during the mapping process
and also in ascertaining tradeo	s� The importance of
various criteria may di	er� depending on the applica�
tion under consideration� but these criteria include�

� Satisfaction of constraints� Absolute constraints
on behavior� whether semantic� temporal� or
other� While some constraints can be evaluated
a priori� others can only be checked after assign�
ment� if so� this is always the primary concern�

� Containment of faults� Mapping of FCMs which
in
uence each other strongly onto the same node
to ensure that the interaction between FCMs on
di	erent nodes is minimized� and faults are not
propogated across HW nodes�

� Criticality� When criticality is signi�cant� the
selected critical processes should be assigned to
distinct HW nodes� and only be combined with
other non�critical processes� irrespective of in
u�
ence� This ensures that critical processes do not
a	ect each other when faults occur�

	�� Mapping SW to HW Resources
We now describe the actual process of mapping the

SW graph onto the HW graph� based on the following
steps� Based on the fault tolerance requirements and
need for� say� threefold replication� then an equivalent
graph of three SW nodes with identical attributes and
� edge weights is created� each of these SW nodes can
thereafter be treated independently�

Since� invariably� the SW graph has a much greater
number of nodes than the HW graph� the SW graph
must be condensed to construct a SW�to�HW assign�
ment consistent with the system speci�cations� The
problem to be solved is� Given a graph with directed

weighted edges� group the nodes into sets such that the

sum of weights between the sets is minimized� De�
terministic solutions to this problem do not exist� or
are analytically intractable� Some useful heuristics we
have investigated include�

� Heuristic H�� Combine the two nodes with the
highest value of mutual in
uence �which implies
a high level of interaction� and should be mapped
onto the same HW node�� Repeat for the next
higher value of mutual in
uence� and continue
this process until the required number of nodes is
obtained� A variation of this is to pair all nodes
based on in
uence values and then to repeat the
process as needed�

� Heuristic H	� Find the min�cut of the graph�
Divide the graph into two parts along the cut�
Find the min�cut in each half and repeat the pro�
cess� until the requisite number of components

has been generated� Other variations include� cut
the portion with the largest number of nodes� and
to cut the graph using source and target nodes�

� Heuristic H
� Start with the most important
node� and combine it with any adjacent nodes
below a certain threshold of importance �and�or
above a certain in
uence�� For n HW nodes� iden�
tify the n most important SW nodes� and de�ne
their �spheres of in
uence�� Map each group onto
a di	erent HW node�

Once a su�ciently small SW graph is obtained� the
next step is to determine the mapping satisfying the
constraints of the SW node with the HW resources�
For example� the processes in the cluster must all be
schedulable so that their timing requirements are met�
If this is not possible on any HW resource� the current
partition must be rejected�

Assuming there is a feasible mapping� we give two
satis�cing heuristics for creating the mapping�

� Approach A� �Importance of tasks�� Evaluate im�
portance of each SW node based on its attributes
�as described in Section ����� Map �most impor�
tant� SW node onto a HW node such that all its
resource requirements are satis�ed� and feasible
values are assigned to its attributes�

� Approach B� �Importance of attributes�� List at�
tributes in decreasing importance� and proceed
lexicographically� The most important attribute
is considered �rst �say criticality�� All SW nodes
are mapped onto HW nodes based on their crit�
icality� Once all FCMs have been assigned by
the most important attribute� the next most im�
portant attribute is considered �breaking ties� as�
signing non�critical nodes� and perhaps perturb�
ing others�� and so on�

� A SW � HW Mapping Using H�
We now consider a speci�c example based on

Heuristic H� of Section ���� using a set of processes	 to
demonstrate the general techniques� The same set of
example processes are used across techniques� to high�
light and compare di	erent techniques for combining
nodes �Sections ���� ��� � �����

We assume a predetermined HW graph�
� To cre�
ate a mapping� we need to reduce the number of nodes
in the SW graph by combining nodes� Once the re�
quired number of SW nodes is obtained� we match


the same principles apply to tasks and procedures as well �
see Section ����
��In a real application
 the HW platform may be �xed
 and

the objective can be to rede�ne the HW functionality through
the SW functions implemented on it�



nodes in the SW graph with nodes in the HW graph�
If HW nodes have identical characteristics� the ac�
tual mapping of the reduced SW graph onto the HW
graph is straightforward� unless communication costs
between SW modules �or between SW modules and
external resources� need to be considered� If commu�
nication costs are high� then dilation of the mapping
may be considered to address performance� Further
heuristics can be used to map to SW nodes with high
communication costs onto �the same or� neighboring
HW nodes�

While combining SW nodes� some tradeo	s might
be necessary� For example� it may be preferable to
map two critical processes onto di	erent HW nodes�
but that may not be possible since both have to be
replicated� and the number of HW nodes is limited�
Speci�cally� if the HW has � nodes� and two criti�
cal processes need to be triplicated� then two sets of
these replicates must be mapped onto the same node�
�Other problems might include need for a resource
present on only one processor� or a very high com�
munication load�� This is the basis for considering
integration tradeo	s� i�e�� �Is there a limit to the level

of integration one should design for�
�

We now describe the various node combination
techniques using an example� Consider a set of pro�
cesses p�� p�� � � �� p�� Process p� has a high critical�
ity value �C�� and has to be replicated three times
to be run in a TMR mode �FT � ��� Processes p�
and p� are of intermediate criticality� with FT � ��
The rest of the tasks p��� � � �p� require no duplica�
tion� The other attributes of each process are timing
constraints� including earliest start time �EST�� task
completion deadline �TCD�� and computation time
�CT�� The parameters have been chosen to illustrate
limits on combining nodes� The timing constraints
might also prevent combining speci�c nodes� For ex�
ample� two nodes with timing constraints h�� �� �i and
h�� �� �i �� begin� deadline� compute times ��� can�
not be scheduled on the same processor� and therefore
cannot be combined� Table � lists all attribute values
of the eight processes�

Initially�  SW nodes are created� one for each pro�

cess� They are linked through edges based on their
in
uences on other processes �Fig� ��� In
uences have
been randomly generated for this example� for a real
application� the values of in
uence would be deter�
mined using Equations � and � using �eld data and
estimations for the various fault probability factors�
As already indicated� even relative values of the in
u�
ence parameter su�ce at this stage�

Node p� is replicated � times to satisfy its fault

Process C FT EST TCD CT
p� �� � � �� �
p� �� � � �� �
p� �� � � �� �
p� � � � �� �
p� � � �� �� �
p� � � � �� �
p� � � �� �� �
p� � � �� �� �

Table �� Example attributes of SW modules

tolerance requirements� and edges with neighbors are
also replicated� The three replicates are linked with
edges with an in
uence value of �� The new graph
with replicated nodes is shown in Fig� �� The total
number of nodes of this graph is now ���
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Figure �� Illustrating �in
uence� in SW node linkage

Now assume there is a strongly connected network
with � HW nodes� The SW graph has thus to be re�
duced to six nodes� using techniques discussed in Sec�
tion ���� the technique used will depend on the most
important attribute of the application� When combin�



ing any two nodes� we must nonetheless check the val�
ues of all attributes� such as timing constraints� since
certain combinations of nodes may be infeasible� For
example� if p� and p� are scheduled on the same pro�
cessor� then p� cannot be scheduled on that processor
due to con
icting timing requirements� as a result� the
corresponding nodes can never be combined� Several
well�known scheduling algorithms can be used to check
the feasibility of scheduling sets of these processes on
the same processor �����

The next sections presents two possible approaches
for conducting the integration process�

��� Using In
uence for Combining
Nodes� Approach A

As provision of dependability is a primary concern�
the criteria for containing faults are important ��� !��
As explained earlier� combining nodes with high val�
ues of mutual in
uence �the sum of in
uences in each
direction� reduces the probability of faults being trans�
mitted across HW nodes� and e	ectively creates fault
containment regions �FCRs� in HW� Thus� the graph
in Fig� � can be reduced using values of in
uence�

First� the two nodes with the highest mutual in�

uence �p� and p�� are combined� A portion of the
resulting graph is shown in Fig� �� The new in
u�
ence attributes for the combined processes are ob�
tained through iterative use of Equation �� Next� the
two nodes with the next higher value of mutual in
u�
ence are combined �p� and p����� and so on� Figs� �
and � show successive stages of this process� Note that
the processes with � relative in
uence ��p�a� p�b� p�c��
�p�a� p�b�� � �p�a� p�b�� get mapped to distinct HW
nodes� Fig� � shows a six�node HW graph after sev�
eral stages of SW node combinations� The resulting
mapped nodes in the graph satisfy overall objectives�
Depending on the size of the HW graph� the SW graph
can be further reduced� this however raises the issue
of tradeo	s in integrating SW beyond a HW resource
threshold� We defer details of the tradeo	 analysis to
a later study�
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��� Scheduling Critical Processes on Sep�
arate Nodes� Approach B

Since mapping of more than one critical process on
the same HW node might lead to con
icts in resource
usage� a system might require extremely critical pro�
cesses to be mapped onto separate HW nodes� Min�
imizing the number of critical processes scheduled on
one processor also minimizes the number of processes
lost due to such a HW fault� These critical processes
can also be allocated a separate portion of memory
to avoid faults due to memory footprints� Thus� the
objective is to separate critical processes� so that the
same faults �in HW or SW� a	ect a minimal number
of such processes�

This guides the process by which the Fig� � graph
can be integrated into six nodes with total criticality
on each HW node reduced as much as possible� The
following steps are used to combine nodes�

� List processes in descending order of criticality�

� Combine most critical process with least critical
process� the second most critical process with the
second to last critical process� and so on�

� If there are no con
icts �attributes other than
criticality causing infeasibility� or attempts to
combine replicates�� the resulting graph will have
half as many nodes as the original graph�

� If a high criticality process ph cannot be combined
with a low criticality process pl due to con
icts
�e�g�� timing constraints�� then combine ph with
the process preceding pl on the criticality list�

� In the next stage� the sets of processes can be or�
dered based on a summary criticality �e�g�� high�
est criticality� or the sum�� The previous steps
can then be repeated until a desired number of
nodes is obtained�

In the example� p�a is combined with p�� p�b with
p� and so on until the last two remaining nodes are p�a



and p�b� These two nodes are replicates and cannot be
combined thus leading to a con
ict� To resolve this�
the next higher criticality process p�b is combined with
p�b with p�a is combined with p�� The resulting graph
is shown in Fig� ��
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Figure �� Factoring Criticality into Integration

However� in some applications� the criticality of all
processes might be similar in value� and the in
uences
between processes might be small� For such applica�
tions� other attributes �such as timing� can be used
to generate the mapping� One such technique is as
follows� Compute an ordered list of SW nodes� Place
the nodes which should preferably be mapped onto
the same node adjacent to each other� Next� map
SW nodes onto a HW node starting at the top of the
list maintaining their compliance to the speci�ed con�
straints�

p1a,2a

p6,7,8

p1b,2b
3b3a

p1c,4,5

0

0

0.832

0

HW node

mapped SW node

Figure  � A re�ned HW�SW mapping to � HW nodes

For example� the graph in Fig � can be straightfor�
wardly reduced to Fig�  if only the timing attributes
are considered�

	 Summary
Our approach to developing integrated dependable

SW makes the following contribution� �a� description
of a hierarchical structure for partitioning of SW mod�
ules� �b� composition strategies for creating larger and

complex SW modules� �c� quanti�cation of interac�
tion between SW modules� and �d� development of
processes of mapping SW modules onto HW� It needs
to be emphasized again that developing techniques to
determine and measure actual parameters such as �in�

uence� across FCMs is crucial for the techniques to
be applied to real systems� This is also the focus of
our continuing work�

In the future we plan to address relative trade�
o	s between approaches with more detailed models
and discussions� including domain�application�speci�c
tradeo	s� It is also of interest to develop a tradeo	
analysis between HW and SW requirements as they
a	ect one another� especially when design restrictions
are provided on the choice of an available HW plat�
form� yet some 
exibility remains� Also� we plan to
apply the proposed techniques to development of a
new SW integration target system� and also to de�
velop techniques to ascertain SW characteristics using
analytical and�or experimental approaches ����
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