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Abstract— Fault-injection (FI) based techniques for de-
pendability assessment of distributed protocols face certain
limitations in providing state-space coverage and also incur
high operational cost. This is primarily due to lack of
complete knowledge of fault-distribution at the protocol
level which in turn limits the use of statistical approaches
in deriving and estimating the number of test cases to
inject. In practice, formal techniques have effectively being
used in proving the correctness of dependable distributed
protocols, and these techniques traditionally have not been
directly associated with experimental validation techniques
such as FI-based testing. There exists a gap between these
two well-established approaches, viz. formal verification
and FI-based validation techniques. If there exists an
approach which utilizing a rich set of information per-
taining to the protocol operation generated through formal
verification process can provide guided-support to perform
FI-based validation, then the overall effectiveness of such
validation techniques can be greatly improved. With this
viewpoint, in this paper, we propose a methodology which
utilizes the theorem-proving technique as an underlying
formal-engine, and is composed of two novel structured
and graphical representation schemes (interactive user-
interfaces) for (a) capturing/visualizing information gen-
erated over the formal verification process, (b) facilitat-
ing interactive analysis through the chosen formal-engine
(specifically, any theorem-proving tool) and database, and
(c) user-guided identification of influential parameters,
those eventually used for generating test cases for FI-based
testing. A case study of an on-line diagnosis protocol is
used to illustrate and establish the viability of the proposed
methodology.

Index Terms— Dependable Distributed Protocols, Fault
Injection, Formal Techniques, Verification and Validation.

I. Introduction
Computers for critical applications increasingly rely

on dependable protocols to deliver the specified services.
Consequently, the high (and often unacceptable) costs
of incurring operational disruptions become a significant
consideration. Thus, following the design of dependable
protocols, an important objective is toverify the cor-
rectness of the design andvalidatethe correctness of its
actual implementation in the desired operational environ-
ment, i.e., to establish confidence in the system’s actual

ability to deliver the desired services. As systems grow
more complex with composite real-time and depend-
ability [33] specifications, the operational state space
grows rapidly, and the conventional verification and
validation (V&V) techniques face growing limitations,
including prohibitive costs and time needed for testing.
Fault injection (FI) techniques have commonly been
used in practice for validating system’s dependability.
Although a wide variety of techniques and tools exist for
FI [31], the limitations are the cost, time complexity and
actual coverage of the state space to be tested. In these
respects, the challenges are to (a) identify relevant test
cases spanning the large operational state space of the
system, and (b) do this in a cost-effective manner, i.e.,
a limited number of specific and realizable tests. It has
been analytically shown in [19] that deterministic fault
injection provides benefits over random fault injection in
protocol testing. In this context, a pre-injection analysis
that aims at identifying a key set of variables/parameters
of the given dependable protocol which would consti-
tute test cases for FI experiments can strongly help to
minimize/reduce the number of test cases.

Typical examples of protocols widely used in depend-
able distributed systems include: clock synchronization,
consensus, checkpointing & recovery, and diagnosis,
etc. [39], [49]. For V&V purposes, algorithmic descrip-
tion of these dependable distributed protocols can be
specified using a formal specification language that sup-
ports high-level modeling constructs including hierarchi-
cal decomposition, recursion, parameterized functions,
etc. With proof-of-correctness of the algorithm estab-
lished using inference-rules of the chosen logic, we aim
at exploiting this verification information to support and
supplement FI-based validation of dependable distributed
protocols1. Our specific objective is to systematically de-
termine fault-cases by looking into various assumptions
which influence the protocol operation and also inter-
dependencies among different system components. This

1It is to emphasize that a successful formal verification is a pre-
requisite for our proposed methodology for pre-injection analysis.
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particular aspect forms the basis for our proposed pre-
injection analysis. The novel contribution of our pro-
posed techniques is in developing usable links across for-
mal verification and experimental validation approaches.
Specifically, to demonstrate the viability of our proposed
research in formal-method-guided pre-injection analysis,
we have:

• Developed two novel representation schemes (Infer-
ence Tree (IT) and Dependency Tree (DT)) to visu-
alize protocol verification information and facilitate
interactions with the underlying formal engine and
database for analysis.

• Based on the IT/DT, (a) outlined the deductive capa-
bilities of our formal-method-based query process-
ing mechanisms, and (b) developed a methodology
to select and identify parameters which would con-
stitute test cases for FI experiments for validation.

• Discussed a tool implementation which generates
test cases for FI experiments, i.e., formally driven
pre-injection analysis.

• Demonstrated the practical effectiveness of formal
techniques for guiding classical FI experimentation
through identification of pertinent test cases for
validating an online diagnosis protocol.

Organization: Section II presents an overview of FI-
based dependability validation as well as a short note
on formal methods highlighting key aspects of formal
modeling of distributed protocols. Our proposed ap-
proach for pre-injection analysis is described in Sec-
tion III. Section IV presents a case study of a dependable
distributed protocol, namely online diagnosis protocol
demonstrating the effectiveness of our proposed pre-
injection analysis for identifying test cases to guide FI-
based protocol testing. Section V provides a comparative
view with other related work. We conclude with discus-
sions in Section VI.

II. Background
In this section, we first provide a background on fault-

injection based dependability validation and then give an
introduction to formal methods.
A. An Overview of Fault-Injection based Depend-
ability Validation

Validation techniques typically entail approaches such
as modeling, simulating, stress testing, life testing, and
fault-injection (FI)2 based testing. FI involves the process
of deliberately injecting faults (into the actual system or
system model/simulation) to test the effectiveness of the
dependability mechanisms designed to contain the errors
resulting from the injected fault. From the perspective of
experimental validation, classical FI is extensively used

2The survey chapter in [31] provides an extensive discussionon FI
processes.

in establishing confidence in the operation of the fault-
tolerance mechanisms of a dependable system. FI based
validation is very effective provided (a) accurate and
detailed representation of the system and its operations
is available, and (b) the selection of FI experiments is
appropriate to stimulate the system to ascertain a desired
level of testing confidence. It has been shown in [31] that
usually an extremely large number of faults need to be
injected in order to obtain a small interval estimate at a
high confidence level, particularly if the desired coverage
value is very high. Thus, from a realistic viewpoint, a
basic issue in FI-based approaches is the selection of
specific (ideally, a minimum number of) test cases to
inject as it is not possible to carry out an extremely
large number of fault injection within practical time/cost
constraints.

For specific systems where the nature of the workload
(e.g., real applications, selected benchmarks or synthetic
programs), nature of fault distribution and operation
domain is well defined, the random FI techniques work
quite effectively [31], [59]. The realism and accuracy
of the state space model for timing and message traffic
degrades rapidly if the fault distributions are not known
or characterizable at the protocol level. This is either due
to low probability of occurrence of rare but significant
fault types (e.g., Byzantine faults), or due to lack of
an established fault model. In such cases, the premise
of random FI breaks down as the statistical basis of
selecting random test cases is no longer valid. This
aspect thus precludes the use of existing FI techniques
that use distributions to derive maximum likelihood
estimates to determine the number of test cases for a
desired confidence interval.

B. A Short Introduction to Formal Methods
Formal methods provide extensive support for auto-

mated and exhaustive state explorations over the formal
verification to systematically analyze the operations of a
given protocol. To deal with large (potentially infinite)
state exploration, we choose proof-theoretic formal ap-
proaches which utilize logical reasoning, derivations as
well as rules of induction to obtain a formal proof basis
of the desired system operation. The primary reason
for using theorem proving approaches is that a proof-
tree can be obtained and associated proof-analysis can
facilitate identification of relevant set of variables. For
more details we refer the reader to [47, Section 2.2]
for detailed comparison of proof- and model-theoretic
approaches.

Formal Methods for Distributed Actions
Distributed protocols can be seen, from a modeling

point of view, as sequences of deterministic operations
interleaved with branching points, where theFunction
(or algorithm) takes decisions based on the actual infor-
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mation it has obtained. We can call such sequences of
deterministic operations asActions. In a proof-theoretic
context3 we can prove the fact that an action implements
the specified behavior as a theorem. That is, for each
action we can try to build a proof that, starting from
some given axioms orConditionalscertain Inferences
can be drawn out, which correspond to the possibility of
operations, assertions, and/or usage of event conditional
variables. Each action, being deterministically defined,
can be modeled as a set of predicates. Using these
predicates, we can try to prove certain conjectures (i.e.,
unproven theorem) starting form the conditions given as
hypothesis. Using the resulting inferences, it is possible
to determine: (a) which alternative branch will be chosen
after an action completes; (b) which are the conditions
for the next action; (c) whether the protocol implements
the specified and desired properties.
PVS Tool Support

At the protocol level, the need is to be able to support
hierarchical operations and hierarchical decomposition
of functional blocks. Thus, a high-level logic4 which
can facilitate such a decomposition structure is required.
For our studies, we used SRI’s Prototype Verification
System (PVS)5 tool [41] for our research, although our
approaches are applicable to any higher order logic based
formal environment. PVS provides a powerful interactive
proof-checker with the ability to store and replay proofs.
The PVS system provides several commands for deter-
mining the status of theories, such as whether a proof
has been performed/completed. Proof-chain analysis, an
important form of status report, assures that all the
proof obligations are fulfilled. The output of this analysis
also identifies the axiomatic foundation of the given
theorem, i.e., it analyzes a given proof to determine its
dependencies.

III. Proposed Approach for Pre-Injection
Analysis

Formal methods have primarily been used as verifica-
tion techniques (i.e., to capture conformance to design
specification) in establishing correctness of the design.
On the other hand, experimental testing targets actual
implementations. Obviously a gap exists to transcend

3An axiomatic theory consists of a number of primitive terms and set
of statements which are true within that theory (known as axioms). A
proof in a theory is a finite sequenceS1, S2, S3, . . . , Sn of statements
in the theory such that eachS is an axiom, or can be derived from
any of the preceding statements by applying a rule of inference (such
statements are known as theorems).

4In higher-order logic, functions can take functions as arguments
and return them as values, and quantification can be applied to function
variables.

5PVS was used both for its public domain availability and for
its comprehensive theorem proving environment. Any other theorem-
proving environment can be used as an underlying formal engine in
our proposed approach.

from abstract properties to implementation details. Our
aim in this research is to bridge the gap between formal
verification and experimental validation/testing. Towards
this aim, our key contributions in this research include
development of:

• A methodology for pre-injection analysis which
involves techniques for representation and visual-
ization of verification information to establish the
dependency of operations on specific variables as
represented in formal specification of the proto-
col. Moreover, the developed techniques provide
mechanisms for modifying parameters, variables
and decision operations to enumerate the relevant
execution paths of the protocol. This is achieved
by updating the formal specification of the protocol
and verifying the properties of interests through the
underlying formal-tool .

• An approach for identification/creation of suitable
and specific FI test cases. It is achieved by utilizing
representation of execution paths as well as prop-
agation paths depicting the scope of influence of
parameters and variables on the protocol operations.

Before describing the proposed methodology for
formal-methods driven FI-based validation process, it
is necessary to briefly introduce the two key structured
verification-information representation schemes.
A. Representation and Visualization of Verification
Information

Typically, after developing the formal specification of
a protocol and its subsequent formal verification, the
information at the verification stage is in the form of
mathematical logic in a syntax appropriate to the chosen
formal tool-set. As our interest is in protocol validation,
we need to transform and utilize the information gen-
erated by the specification and verification process to
aid the identification of system states, and to be able to
track the influence path of a variable or implementation
parameter to construct a FI test case. Towards this
objective, we have developed two structured represen-
tation and visualization schemes to encapsulate various
information attributes. We label them as (a)Inference
Tree (IT)or “forward propagation implication tree”, and
(b) Dependency Tree (DT)or “backward propagation
deductive tree”. An IT outlines the inference conditions
and the actions taken during the verification process,
while a DT captures the variable/functional block that
the protocol/specification rely on. Moreover, DT facili-
tates query processing and/or ‘what-if’ analysis on the
information accumulated over the verification process.
We present some basic features of these structures prior
to discussing their complementary use in validation.

We observe that most dependable protocols consist of
decision stages leading to branches processing specific
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error-handling cases [5], [10], [19], [20], [56]. This is a
key concept behind validation, which tries to investigate
all the possible combinations of branching over time and
with parametric information (examples include numeric
bounds for variables, round number, processor attributes,
communication bandwidth, etc.). The proposed IT struc-
ture elucidates the protocol operations visually, and has
the capabilities to capture various subtleties (set of vari-
ables/ event-conditionals, inferences, etc.) being gener-
ated over each round for round-based protocols obtained
via formally verifying the protocol specification. The
complementary structure DT establishes the dependency
of the protocol operations on these variables /conditions.
The set of variables appearing in the dependency list is
essentially used in formulating the FI experiments.

B. Proposed Methodology for FI-based Validation
Process

Fig. 1 depicts the overall process of FI experimenta-
tion using the IT and DT approach. We emphasize that
our pre-injection analysis isiterative in nature primarily
to work with different levels of abstraction as well as to
facilitate speculative or “what-if” type of analysis.

The following steps are utilized in our approach to aid
the FI process:

Step 1: Formally specify the protocol operations
and desired properties of interests.
Step 2: Perform initial formal verification to
demonstrate that the specification conforms to the
system requirements.
Step 3: Generate the IT/DT utilizing the veri-
fication information and generated inferences to
enumerate the execution paths and establish the
dependency of the operations on design variables
through DT.
If any new information pertaining to spe-
cific implementation-level details (e.g., list of
variables/event-conditionals) is added in the for-
mal specification of the protocol, the specification
needs to be verified to flag any inconsistencies.
Step 4: Analyze IT/DT to identify deductively
dependencies of these variables/conditionals and
based on this information select parameters and/or
functional blocks to generate test cases for FI.
The resulting test cases form the basis for FI
experiments. It is to note that the output of (or
observations from) the FI experiments could also
trigger addition/deletion of certain constraints on
variables or implementation-specific details about
the variables in the formal specification. This then
needs to be followed up with the iterative verifi-
cation process to sustain consistency at all levels

of representation
Step 5: Design FI experiments from these test
cases based on the chosen FI tool-set.
Note that our main intent is pre-injection analysis
in identifying the test cases. For completeness,
fault-injection related steps have been mentioned.
Feedback obtained over the actual FI experiment
can be fed back to the IT/DT process. Observa-
tions from FI experiments could also guide addi-
tion/deletion of implementation-specific informa-
tion in the formal specification of the protocol.

Inference Trees (IT): Visualizing Protocol Execution
IT outlines the governing conditions, inferences and

the actions taken during the verification process. This
representation structure is developed to depict these
key aspects over the execution of a protocol. We next
describe the process to generate the IT, that is,Step 3
mentioned above. Recall that successful completion of
formal verification through the underlying formal engine
is a pre-requisite for generation of IT.

Step A: Based on the verification process, for a
particular round of protocol operation and a spe-
cific functional block, outline governing conditions,
resulting inferences and an action taken or an alter-
native action to be taken.

Step A.1: Repeat the same for subsequent
rounds of the protocol operation based on the
verification process. Stop after the final round
of the operation.
Step A.2: If no new information to be
added/incorporated, Stop.

Step B: For speculative “what-if” analysis, interac-
tively add new conditionals in terms of new timing,
parametric or operation information in the specifica-
tion language of the underlying formal engine and
perform formal verification of the modified formal
specification of the protocol.

Step B.1: Based on the verification process,
update the resultant inferences, newly added
conditionals and actions taken.
Step B.2: If no new information to be
added/incorporated, Stop.

Step C: IterateStep Bfor each new condition being
introduced.

We first present a generic description of the IT and
then follow up with detailing different aspects of it
through a specific case study. Please refer to Figure 2
to relate the terms described next. Each node of the
tree represents a primitive FUNCTION (or a functional
block/ an algorithmic step of the protocol) at a given
level of abstraction. Associated with each node is a set
of CONDITIONALS (assumptions specified as axioms
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Fig. 1. Overall Process of Generating FI Experiments

in the formal specification) which dictate the flow of op-
eration to the subsequent ACTION(s) as defined for the
protocol. Also associated with each node is the INFER-
ENCES space which details the possibility of operation
(or sequence of operations), assertions, and/or usage of
event-conditional variables which can be inferred from
the node/operation specification. A particular inference
could potentially update the conditionals for the subse-
quent round of protocol execution where a specific action
will be taken. Note that FUNCTION, CONDITIONALS,
INFERENCES and ACTION are constituent part of the
IT structure. Furthermore, a connection (edge) between
two nodes/functional blocks represents a logical or tem-
poral relation in terms of algorithmic actions/steps taken
based on the prevailing conditions. A path between two
nodes comprising of multiple connections represents a
set of actions taken up by the protocols.

The set of CONDITIONALS consists of two parts:
(i) the basic algorithm (definitions), assumptions, and
constraints, and (ii) postulated properties (claims) about
the protocol. Thus, initially, the CONDITIONAL space
contains only the basic assumptions and constraints
for the given protocol, and basic derivative proper-
ties. Over subsequent verification rounds, the CONDI-
TIONAL space is enhanced with more information about
parameters that may impact the behavior of the protocol.
Note that both CONDITIONALS and INFERENCES are
formally obtained from the protocol specifications. In
fact the theorem prover process defines the conditionals
as requisite stopping conditions to be satisfied prior to
proceeding to a subsequent step in a proof. Using func-
tional level specification of the protocol, an IT represents

the complete set of activation paths of the protocol (i.e.,
enumeration of all operations). It is important to point
out that the process of generating CONDITIONAL and
INFERENCE spaces are semi-automatic and involves
users intuitions and understanding of formal specifica-
tion, and the implications of the proofs. Moreover, it
is notable that both CONDITIONAL and INFERENCE
spaces can grow or shrink depending on the protocol and
its operating conditions, though the growth of these two
spaces are linearly bounded by the system parameters.

In order to keep track of influences of newly added
conditionals on the protocol operation, the IT structure
facilitates recording of inference(s) leading to specific
action(s) (we label them as “leads to this action”) as
well as resulting inference(s) updating the conditionals
for the subsequent round of protocol execution (we label
them as “updates. . . operation”).

Another key feature of the IT is that it provides for
mixed levels of abstraction, as a function block can be
represented as a complete graph by itself. For example,
the voter function can be represented at the circuit level
abstraction and modeled in say RTL-level specification
as shown in Fig. 2 (the lower right-most node).
An Illustration of the Inference Tree – Example of the
2/3 Majority Voter

After having given a generic description of the IT, we
illustrate the development of the inference tree through
an example of a majority voter. Consider a triple modular
redundant (TMR) system, where three process repli-
cas produce results for a voter to generate a majority
response. Request ordering is a critical issue, that is,
we want all replicas to process the same sequence of
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requests. One way to handle this is to allow each client
to attach a timestamp to each request. Another key issue
in the voter is that of vote synchronization, i.e., ensuring
that the tabulated result is based on a set of votes that
are all responses to the same request. Communication
delays or other problems may prevent some votes for
a particular request from reaching the voter in a timely
manner. As we do not impose any constraints on the
voter itself, the voter must rely on other information for
synchronization. Moreover, a voting session takes place
whenever there are sufficient number of votes for a given
failure class (e.g., fail-stop) for a particular request. If a
replica’s vote misses its intended voting round, the vote
is treated as an obsolete vote.

Fig. 2 represents the generation of an IT for a majority
(2/3) voter. Each node of the tree represents a primitive
FUNCTION (or functional block of the protocol) at a
given level of abstraction. Here, FUNCTION is the 2/3
voter, i.e., 2 out of 3 nodes need to agree for a result.

Further, in Fig. 2, a set of CONDITIONALSC[· · · ]
describes the various conditions (actual or speculative)
imposed on the voter. As examples,C[T ime Window]
indicates a condition that a message will be processed
by the voter only if it arrives in a specified time window,
say[t − ∆, t + ∆], C[Sequence] indicates the condition
on the sequence of message arrival,C[Count] denotes
the number of votes received for a particular round, and
C[Round] imposes constraints that all the messages are
from the same roundn. Based on the inputs to the
voter and the governing conditions mentioned above,
specific ACTIONS such as the voter outputs a result (and
proceeds to the next round) or a repeat of the voting
process, and corresponding operational INFERENCES
are generated. In the INFERENCE space,t(Round)
denotes that the conditionC[Round] is true whereas
?(Count) reflects the fact that the conditionC[Count]
is not satisfied.

Based on inferences, a specific action is taken. These
resulting inferences in turn get reflected in the CONDI-
TIONAL space of the IT depicting information for the
next round of operation, to govern the subsequent rounds
of protocol operation. In Fig. 2, we also highlight which
inference(s) leads to which action(s) (depicted with
arrows labeled “leads to this action”) as well as which
resulting inference(s) causes updating of the conditionals
for the subsequent round of protocol execution (depicted
by arrows labeled “updates. . . operation”). Note that
based on the prior inference (first instance of round #
n) of C[Count] not being satisfied, during the second
instance (repeat) of round #n if sufficient number of
votes are not received, then an action such as “Declare

Error” could be taken.C[Org Cond of round # n]
captures all the conditions that were imposed during the
first instance of round #n.

ACTIONS are protocol-related. For example, for a 2/3
voter as depicted in Fig. 2, we outline two potential AC-
TIONS that could be taken after round #n. If a sufficient
number of votes and all other related conditions were
satisfied, the voter proceeds with the next round of voting
process, otherwise, the voter may repeat the operation for
round #n. These can be considered as branching points
where the protocol takes a decision based on information
it has gathered.

A novel property of the IT structure is that it allows
for refinements in specification. Initially, the IT represen-
tation is at the protocol level. Over subsequent iterations,
parametric/implementation information is added. For ex-
ample, in Fig. 2, in the CONDITIONAL space of the IT
depicting the second instance of round #n activities,
a conditionC[V oter Rate], indicating TMR voting rate
to be greater than or equal to the message input rate, can
be added as an implementation detail (beyond the tradi-
tional descriptions of TMR) to the specification. As new
conditional or parametric information is incorporated, a
complete verification (and inference) cycle is performed
to highlight any inconsistency the new parameters might
generate. It is of interest to note that the conditional and
inference space is dynamically re-generated over each
round of verification. Moreover, as we only functionally
enumerate the operations of a protocol, the size of the
IT is bounded by the inference space and actions. Thus,
each stage of IT refinement only linearly adds more pa-
rameters in the CONDITIONAL or INFERENCE space.
For example, adding a conditional of “timing” to the 2/3
voter results in a consequent inference list that enumerate
the list of operations on/from which “timing” could have
a potential effect on the IT.

Although, the IT visually outlines the protocol op-
erations, it does not (in itself) provide any FI related
information. However, the deductive capabilities of for-
mal methods permit us to pose queries and identify
the dependencies based on the verification information
acquired within the IT structure. The DT structure,
described next, utilizes the IT generated inferences to
facilitate query mechanisms to identify FI test cases.

Dependency Tree (DT): Query Engine
Deductive logic used by the verifier is applied to

determine the actual dependency of the function on each
individual variable, thus determining the actual subset
of variables that influence the protocol operation. The
DT is generated by identifying all functional blocks of
a protocol, and ascertaining the set of variables (also
function variables) that directly or indirectly influence
the protocol operation. The set of conditions in the IT
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Fig. 2. The Inference Tree for a 2/3 Voter Protocol

(appearing the CONDITIONAL space) forms the initial
set of variables in the DT. This initial set of conditionals
serve as an actual (or speculative) list of variables for
the DT. If the verification process at a particular level of
abstraction completes successfully, as per our intended
objectives, we make use of the DT to identify the list
of assumptions, variables and functions on which the
overall protocol operation or a specific aspect of the
protocol operation depends on. Pertinent information for
these dependencies are essentially captured in our IT
structure. This dependency list along with constraints
(conditionals) is then passed on to the test cases gener-
ation tool to construct specific tests for FI experiments.
On the other hand, if a conflicting condition is flagged
and gets reflected in the IT INFERENCE space, we
initiate deductive reasoning through the DT. The DT
allows queries6 about the protocol behavior to be posed
following the inconsistency to determine the dependency

6It is to note that queries in the DT’s can be formulated as (a)
conjectures and posed to the theorem prover of the underlying formal
engine to ascertain dependencies of the protocol operationon certain
variables or (b) simple database operations to retrieve list of variables
from the tables storing verification information.

over certain variables i.e., we try to uncover the reason(s)
that causes the inconsistency. If the “inconsistency” is
dependent on a given set of variables, then we can inject
faults into these variables to observe the behavior of the
protocol in such faulty cases.

In case a protocol involves operations over multiple
rounds, the corresponding DT also is iteratively gener-
ated over rounds. At each iteration, the dependency list
is pruned as one progresses along a reachability path.
In the absence of any new conditionals being added, the
dependency list of the DT is monotonically decreasing.
In case new conditionals are specified, variables which
were pruned earlier from the dependency list may re-
appear in the next DT iteration. The leaves of the tree
represent the minimal set of variables that are associated,
or provide influence7 on the operation of each primitive
function of the protocol.

7In case dependencies in the protocol arise due to subtle lower
level details which have not been specified, then naturally these
dependencies will not be uncovered. It is important to consider that
the “completeness” of the variables set is complete only to the “level
of specification” actually specified.
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                  various operational constraints. Generated via a Test Case Generation Tool
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Fig. 3. The Dependency Tree : Highlights of Key Processes Involved in a Round-based Protocol

Fig. 3 depicts a general working of the DT for
a round-based protocol and highlights key processes
involved. The actual dependency of the functionP (n)
on individual variables, assumptions, etc. as determined
by the verifier is stored in some form of a database.
The actual or speculative list of variables or conditionals
as specified and captured in the IT (CONDITIONAL
space) forms the input for querying the dependency of
the function on them. The output of a query provides
the dependency of the protocol on either variables or
conditionals. Inferences and associated actions taken at
a round link the DT process at the next round of protocol
operation. In case new information has been introduced,
query output would produce a refined list indicating
dependency on newly added variables/conditionals. At
the terminal round, the DT process provides a complete
dependency list of variables/conditionals required for
ascertaining correctness of a specific property of the
protocol. Different pairing/combinations and orderings
of variables8 appearing in this identified list constitute
distinct fault-injection experiments. Note that axioms and
theorems required for establishing the correctness of a
specific property of the protocol are important inputs for
formulating FI experiments, as these sets of statements
provide insights to basic conditions which need to be
validated in an implementation also.

Next, we illustrate how the DT for a 2/3 voter can be
processed (Refer to Fig. 4). Based on the information
captured in the IT (See Fig. 2), in order to identify key

8This step requires thorough understanding of the working principles
of the protocol.

variables and parameters, we initiate the query process-
ing mechanism in the DT. For round #n activities, we
evaluate the dependency of different assumptions and
variable definitions by parsing the information generated
over the verification process9. In Fig. 4, predicatevoted?
returns true if the given replica voted,vote ok? returns
true if the vote is not obsolete, andfail-stop maj ok?
returns true if sufficient non-obsolete votes are there
for finding majority. Note that the DT points out that
the chosen implementation of the 2/3 majority voter
does not depend onC[Sequence]. Note that for other
fault-tolerant majority voting schemes such as a function
which discards topk and bottomk values and then takes
the median of the remaining values, the correctness of
such a voter depends on the sequencing of the requests
as governed byC[Sequence].

We emphasize that the DT may not fully represent
all possible variable dependencies as it will always
be limited to the amount of operational information
actually modeled into the formal specification. At any
desired level, the elements of the current dependency list
provides us with a (possibly) minimal set of parameters
which shouldhelp formulate the FI experiments via all
permutations and combinations, andideally should gen-
erate specific (or a family of) test cases. We repeat that
our intent is pre-injection analysis in identifying specific
test cases. The actual FI experiments are implemented
from these test cases based on the chosen FI tool-set(s).

9Due to space limitations, we are not providing complete formal
treatment of the voter example.
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round # n

2/3 Voter

2/3 Voter

2/3 Voter
FI Experiment for validating voter’s operation at round # n would entail variables
related to definitions of C[Count], C[Round], C[Time_Window], C[Voter−Rate].
These variable definitions are extracted from the formal specification.

ACTION: Repeat operation for round # n
INFERENCE: Insufficient number of vote counts

            Dependency on variable definitions: [voted?, vote_ok?, fail−stop_maj_vote?]?
Output: Not on C[Sequence]; Dependent on C[Time_Window]

Dependent on [voted?, vote_ok?, fail−stop_maj_vote?]

INFERENCE: Sufficient number of vote counts
New operational constraints
C[Voter_Rate] added in the specs.

New timing constraints
C[Time_Window] added in the specs

Terminal round # m

round # n
Query: Dependency on C[Count], C[Sequence], C[Round], C[Time_Window]?

ACTION: Proceed to round # n+1

Output: Dependent on C[Voter_Rate]
Query: Dependency on C[Org_Cond], C[Voter_Rate]?(repeated)

Fig. 4. The Dependency Tree : 2/3 Majority Voter

C. Overall Process of Identifying the Influential Set
of Protocol Variables/Conditions

In order to realize our proposed methodology for
pre-injection analysis, we have used PVS specifica-
tion language to specify the protocol operation and its
theorem prover to establish the correctness of various
properties of interests. The construction of IT/DT and
subsequent analysis in the DT as discussed earlier is
essentially carried out by exploiting the information that
gets generated as part of verification process. The derived
dependency-list gets stored in the DT and subsequently
used to perform certain queries for our proposed pre-
injection analysis.

In order to prune the list of variables (and in turn
state-space associated with them), we compare the list
provided by the DT process with the actual or speculative
list of variables/conditional specified in the IT. Utilizing
the DT information and comparison results, we iden-
tify the redundant variables and/or conditionals speci-
fied/used in the initial specification of the protocol. These
redundant variables (those variables that are specified but
are not influencing in anyway the protocol operation)
are then eliminated from the IT CONDITIONAL space
and the verification process is repeated again to ensure
that the specification and the corresponding verification
are consistent and up-to-date. Upon completion of these
steps, test cases for an FI experiment for a chosen tool-
set can be constructed using the identified minimal set
of variables.

D. Generation of Test Suites for Fault-Injection Ex-
periments

In order to support the test generation aspect of our
proposed methodology, we have developed a tool called

Sampurna [58] which generates a comprehensive set of
test suites by eliminating the variable-value pairs that
are not attainable/possible with respect to the protocol
specification by usinga priori knowledge of the system.
The concept of cross product is introduced to capture all
the possible combination of variables so as to generate
set of test case scenarios. The constraints are applied
over this cross product to restrict the irrelevant test cases
thus achieving comprehensiveness and still satisfying
test coverage. After obtaining the final constraint-cross
product, based ona priori knowledge of the working
principle of the protocol, the redundant and irrelevant
test cases are being removed. The expected output of the
tool is test cases containing variables and their associated
values that would steer the system through different
states so as to detect any discrepancies with respect to
the expected correct behavior of the protocol.

The Sampurna tool utilizes the dependency list ob-
tained in the DT to generate test cases for guiding the FI-
based validation. The steps of the test cases generation
procedure are as follows:

Step I: Assimilate the complete (or a part of;
based on user’s intuition) set of variables and their
associated values/ranges. These variables are part
of a minimal set of variables on which a particular
stage of the protocol operation depends on.
Step II: Eliminate redundant and unattainable test
cases using the information captured in the IT
conditional space and/ora priori knowledge of the
protocol operational behavior.
Step III: Reduce further the number of the resulting
test cases by applying additional constraints, if there
are any, that a user may want to impose on the
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system.

In Sampurna, variables identified by the DT are stored
in different tables depending upon their functionalities
and queries are formulated considering the tables as its
input and using logical relations among variables. Multi-
ple queries could possibly be formulated to generate the
desired set of test cases. The final output of these queries
are stored in the table and reports can be generated to
be used by a tester or user of the system.

After having described the overall IT/DT based ap-
proach for generating FI experiments, we now present a
case study of a basic online diagnosis protocol (hereafter
referred as the WLS Algorithm) introduced in [60],
where we highlight the construction of IT and DT struc-
tures for the same, and discuss how relevant test cases
were generated to validate an implementation of this
diagnosis algorithm against these specific though critical
tests. Note that we utilize PVS-based formal theories
developed in [60]. A description of the protocol along
with its formal treatment is presented in subsequent
sections.

IV. Pre-Injection Analysis for FI-Based Val-
idation of the Online Diagnosis Protocol
A. An Overview of the WLS Algorithm and its For-
mal Specification and Verification

In [60], authors have presented comprehensive online
diagnosis algorithms capable of handling a continuum of
faults of varying severity at the node and link level. The
WLS algorithm which deals with node (benign) faults
utilizes a two-phase diagnostic approach:phase 1:local
syndrome formulation based on a node’s local perception
of other nodes; this is based on that node’s analysis of
incoming message traffic from other nodes, andphase 2:
global syndrome formulation through exchange of local
syndrome information to all other nodes. In subsequent
discussions, terminologies and algorithm description are
taken directly from [60].

Terminology
Let N be the number of processors in the system

andmessj represent a message sent by processorj. As
the communication model is frame based with messages
sent/received by nodes at the frame boundaries, the frame
number is also a useful component in identifying a
message. LetM n

i (j) define the set of allmessj received
by processori as composed/sent byj during frame
n. Fault categories for the messages are based on the
receiver’s observations on these messages. Two such
fault categories are: (a) The set ofmissing messages,
MMn

i (j), are those messages whichi believesj failed
to issue during framen, and (b) The set ofimproper
logical messages, ILMn

i (j), are those messages which
are correctly delivered but disagree withVi, the result

of i’s own voting process on inputs received. Thesyn-
drome S n

i (j), ∀i, j represents the union ofILMn
i (j)

andMMn
i (j). S n

i (j) is represented in vector form for
each value ofi, with vector entries corresponding to all
j values from whichi receives messages. The vector
entry corresponding to any nodej is a binary input: 0
corresponding to a fault-free input received fromj as
perceived byi, and 1 representing a fault being perceived
by i.

Each node maintains its perception of the system
state using a system level error report,Fn

i (j), consisting
of an ordered quadruple〈i, j, n, S n

i (j)〉. The function
Fn

tot(j) = |
⋃

i∈N,i6=j Fn
i (j)| is used to count the number

of accusations on processorj by all other monitoring
processors during framen. Thus,Fn

tot(j) is an integer
where0 ≤ Fn

tot(j) ≤ (N − 1).

Diagnosing Benign Faults
The model of the diagnosis algorithm is referred to as

the processor–processor (PP)model since it is assumed
that all the communication links are non-faulty and that
processors are the only potentially faulty units.

Algorithm PP (WLS)

D1.0 For all i, j ∈ N , each processori monitors eachmessj ∈
M n

i (j).

D1.1 If the valuevj contained inmessj does not agree
with Vi, thenmessj ∈ ILMn

i (j),
D1.2 If messj is missing, thenmessj ∈ MMn

i (j),
D1.3 Update the syndrome information:S n

i (j) =
ILMn

i (j) ∪ MMn
i (j).

D2.0 At the completion of framen, for every j, each i will
determine if an error report should be issued:
if S n

i (j) 6= ∅ then send reportF n
i (j) (as composed/sent

by i) to other processors, else do not sendF n
i (j).

D3.0 For eachj, as framen + 1 completes, computeF n
tot(j).

D3.1 If F n
tot(j) ≥ dN/2e then declarej as faulty.

D3.1.1 If processork failed to reportF n
k

(j) = ∅

thenmessk ∈ MMn+1

i
(k)

D3.2 If F n
tot(j) < dN/2e then

D3.2.1 If k reportedF n
k

(j) 6= ∅ then messk ∈

ILMn+1

i (k)

D4.0 Increment frame countern and proceed to step D1.

The error detection process is summarized by step
D1.0. During framen, each processor monitors the mes-
sages received and performs error checking. The logical
content errors identified in step D1.1 are detected by
voting on the inputs and then checking the inputs against
the voted value (i.e. deviance checking). Omissions of
expected messages are also detected and recorded in
D1.2. In step D1.3, these errors are written into a local
error log to be processed at the completion of framen.
In step D2.0, if any errors have been logged, a system
level report is issued accusing the suspected processor.
These reports are counted in step D3.0 and the accused
processor is declared faulty provided at least half of



11

the system agrees on the accusation. The diagnostic
processors are thus also checked as part of the algorithm.
In D3.1.1, ifj is determined to be faulty but a monitoring
processork failed to report an error onj, processork
will be accused as faulty in the succeeding round of
diagnosis. In D3.2.1, if only a minority of processors
accusedj, they will be accused as faulty in the next
round.
Formal Treatment of Algorithm PP (WLS)

In order to facilitate formal analysis, in [60] the
authors have simplified the algorithm emphasizing the
operations being performed and the properties that are
needed to be formally specified and verified. The sim-
plified form is as follows:

PP(0)
1) All accusations of faults are cleared.

PP(n), n > 0
1) Each processori executes one frame

of the workload, arriving at some value
V aln(i).

2) Each processor sendsV aln(i) to all other
processors.

3) Each processori compares incoming
messages to its own value:

a) If the value fromj does not match,
is missing, or is otherwise detectably
benign, or there is an accusation from
the last frame ofi againstj, i records
that j is BAD.

b) Otherwise,i records thatj is GOOD.

4) Each processor sends its report on each
other processor to all processors.

5) Each processori collects all votes regard-
ing each other processorj:

a) If the majority of votes are BAD,
then processori declaresj faulty.
Furthermore,i records an accusation
against any processork that votedj
GOOD.

b) If the majority of votes are GOOD,
then i records an accusation against
any processork that votedj BAD.

In this rewriting of the algorithm, the initial frame,
referred to as PP(0), simply initializes the data struc-
tures appropriately. Next, a workload frame is executed
(Step 1), arriving at some value,V al. Processors then
exchange values (Step 2). All good processors should
then have exchanged identical values. Faulty processors
may have exchanged corrupted values that are locally
detectable; the possibility of faulty processors delivering

different values to different receivers is not considered.
All processors then compare the exchanged values with
their own. Any discrepancy is recorded as an accusation
against the sending processor.

Developing the Formal Specification of PP
The formal specification of PP is specified in a single

PVS theory calledpp. In the theorypp, some other
predefined theories are explicitly imported10. This theory
takes several parameters which includem, the maximum
number of periods,n, the number of processors, and
T , the type values that are passed between processors.
The termerror represents values that are benign upon
local receipt, such as missing values, values failing parity
check, values failing digital signature checks, and so on.
BAD and GOOD are the values of accusations sent by
processors over the network. Finally, the functionVal is
assumed to return the correct value for each frame of
computation, and that the correct value is never any of
the special valueserror, BAD, or GOOD.

The typestatusesis defined to be an enumeration of
three constants, corresponding to three of the categories
of behavior:symmetric-value faulty, benign, and good.
The functionstatusreturns the status of a given processor
(or fault containment unitfcu).

Some notations are used for describing statuses:s,
c, and g are predicates recognizing the symmetric-
value faulty, benign, and good processors, respectively.
Similarly, given a setcaucus, as(caucus) is the set of
arbitrary-faulty processors incaucus. The functionsss,
cs and gs similarly select the symmetric-value faulty,
benign, and good processors, respectively.

The functionsendcaptures the properties of sending
values from one processor to another. This function takes
a value to be sent, a sender, and a receiver as arguments;
it returns the value thatwould bereceived if the receiver
were a good processor. The behavior ofsendis axiom-
atized according to the status of the sender. The first
axiom simply says that a good processor sends correct
values to all (good) receivers:g(p) ⊃ send(t,p,q)= t.
The second axiom says that a benign faulty processor
always delivers values that are recognized as erroneous
by good receivers:c(p) ⊃ send(t,p,q) = error. The
third axiom says that a symmetric-value faulty processor
sends the same value to all good receivers, although
that value is otherwise unconstrained (i.e., it may be
any possible value, including those that are recognized
as erroneous)s(p) ⊃send(t,p,q) = send(t,p,z). Nothing
is specified for the behavior of asymmetric-value faulty
senders. A lemma (calledsend5) is stated and proved
that all receivers obtain the same value no matter what

10The complete theory specification adapted from [60] is presented
in the Appendix and we refer the reader to [60] for further details.



12

the status of the sender (here, the possibility of link and
arbitrary faults is discounted)send(t,p,q) = send(t,p,z).

The functionHybridMajority is intended to be similar
to the standardMajority function, except that allerror
values are excluded. The functionHybridMajority takes
two arguments, a set of processors (i.e., anfcuset), which
we call the caucus, and a vector mapping processors
to values (i.e., anfcuvector). Several properties related
to HybridMajority that are of particular interests are
described below:

The first property states that if the vector records
the same non-error value for all good processors in
the caucus, and the vector records an error value for
all benign-faulty (benign) processors in the caucus, and
there are more good processors than symmetric-value
faulty processors in the caucus, thenHybridMajority
returns the same value as that recorded in the vector
for the good processors.

The second property states that the value returned
depends only on the values recorded in the vector for
the processors in the caucus.

The final property deals with the fact that if there
are more good than symmetric-faulty processors and all
good processors agree on some non-error value, and the
HybridMajority function returns a value, then that value
is the value of each good processor.

Next, the definition of some of the key functions of
the actual algorithm is discussed.

Syndrome(R,j,i,OldAccuse):T =
IF OldAccuse(i,j) OR (NOT Val(R)=
send(Val(R),j,i)) THEN BAD

ELSE GOOD
ENDIF

The Syndromefunction above is meant to capture the
property that in periodR, i believesj is faulty. The
parameterOldAccuseessentially records old accusations
from earlier periods. The only other reason to accuse
a processor of faulty behavior is if that processor sent
some value that does not correspond to the correct value.
The next functionKDeclareJ (i.e.,k declaresj faulty)
is built using theSyndromefunction. The definition is:

KDeclareJ(pset,R,OldAccuse,j,k):bool=
HybridMajority(pset, LAMBDA i:
send(Syndrome(R,j,i,OldAccuse),i,k))=BAD

This predicate is meant to capture the idea that
processork will gather all accusations against some
processorj, and then take theHybridMajority of that
set. If most processors accusej, then this predicate is
true, i.e., k declaresj faulty. The main function, for
“processor-processor model” based diagnostic algorithm,
PP is specified below:

PP(pset,R,OldAccuse)(i,j):RECURSIVE bool =
IF R=0 THEN FALSE
ELSE KDeclareJ(pset,R,OldAccuse,j,i) OR
PP(pset, R-1, (lambda i2,k: OldAccuse(i2,k) OR

EXISTS j2: (KDeclareJ(pset,R,OldAccuse,j2,i2) /=
(send(Syndrome(R,j2,k,OldAccuse),k,i2)=BAD))))(i,j)

ENDIF MEASURE (LAMBDA pset, R, OldAccuse : R)

The intended meaning of this formal description is
that afterR periods, starting withOldAccuseaccusations,
processori believes that processorj is faulty. The
function PP is defined as a recursive function. If the
number of periodsR is zero, theni will not accuse
j. If KDeclareJ(pset,R,OldAccuse,j,i), that is, if after
gathering votes for periodR, a (hybrid) majority of other
processors sendi an accusation ofj, then i believesj
is faulty. Otherwise,PP is called recursively, using one
less period. The recursive call also updatesOldAccuseto
include the case that some processor misdiagnosed some
other processor. That is, an accusation is added to the
localOldAccusefor the next period if the voted diagnosis
KDeclareJ(pset,R,OldAccuse,j2,i2)of some processorj2
does not agree with the individual accusation sent from
k to i2.

The two properties dealing withsoundnessandcom-
pletenessare formally specified and verified using PVS
in [60]. We have added (and at places modified) a few
specifications as needed. The first requirement that of
Soundnessstates if the algorithmPP declares a processor
to be faulty, then it is indeed faulty. The key property
being addressed here is that all good processors accuse
only faulty processors of being faulty. Essentially, we
want to prove that ifi is good, and afterR periods of PP,
i accusesj, then eitherj is benign or symmetric-value
faulty. The second property,Completeness, states that if
a processor is faulty, then algorithmPP will determine
this.

B. Visualization: IT/DT for the WLS Fault-
Diagnosis Algorithm

The formal verification of the two properties stated
above is based on the prove-by-induction on the number
of rounds. The PVS tool allows the user to conduct
partial proofs under different assumptions and special
cases of interests.

The objective of the formal verification and repre-
sentation of verification information in the IT structure
is to guide the selection of appropriate queries to be
posed in the DT. It is important to note that the selection
and formal representation of queries to be posed is still
an interactive process. This is typical for any theorem
proving (proof theoretic) environment where the user’s
knowledge of the specified protocol activities guides the
process of query formulation. Note that for both IT and
DT, we describe them in simple English as depicting the
information in the formal syntax of PVS would not be
appropriate for general readers.
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Development of the IT Structure
In Fig. 5, we depict the operational flow of the PP

(WLS) algorithm for a particular node for three rounds
of activities starting with round #n. The initial set of
conditionals on which the protocol operation begins with
is listed below.

• g(p) → send(t, p, q) = t
• c(p) → send(t, p, q) = error
• s(p) → send(t, p, q) = send(t, p, z)
• send(t, p, q) = send(t, p, z)
• ∀p : g(p) ∧ p ∈ caucus → v(p) = t ∧ t 6= error [A ]
• ∀p : c(p) ∧ p ∈ caucus → v(p) = error [B]
• ‖caucus‖ = ‖cs(caucus)‖+‖ss(caucus)‖+‖gs(caucus)‖
• ‖gs(caucus)‖ > ‖ss(caucus)‖ ∧ A ∧ B → HybridMajor-

ity(caucus, v) = t
• N ≥ 3 andE < dN/2e whereN andE are the total number

of nodes and the number of faulty nodes, respectively in the
system.

• Syndromen
i (j) = BAD → ¬(V aln(j) =

send(V aln(j), j, i)) ∨ OldAccuse(i, j)

As a general rule, to guide the proof process to
proceed in a desired way, we add conditions as the proof-
steps are taken. For processori to judge processorj in
round # n, it looks at either the value sent by processor
j (i.e., send(V aln(j), j, i)) or an old accusation about
processorj (i.e., OldAccuse). By setting the predicate
OldAccuse(i,j)to be true, we let the functionPP to return
true by setting the predicateKDeclareJ to true over the
round #n + 1. KDeclareJbeing true indicates that after
n rounds, starting withOldAccuseaccusations, processor
i believes that processorj is faulty.

Similarly, for a processork to be declared faulty by
processori over round #n + 2 as it could not diagnose
processorj to be faulty as majority of processors did
declarej to be a faulty processor, in the recursive part
of PP with one less round (i.e., for round #R-1), the
second clause (that is,EXISTS j2... appearing in a
snippet of formal specification ofPP ) need to be set true
in order to updateOldAccuseto reflect that processork
misdiagnosed processorj.

We now describe the IT for the WLS algorithm
depicting the operational flow for a node ‘i’ in the
system (See Fig. 5). This can be constructed for other
nodes as well. The ways of triggering or setting various
conditions to steer the flow of protocol operation have
been discussed in the preceding paragraphs. During the
execution over roundn, nodei receives a message from
nodej and also a syndrome ofj from nodex as prepared
by it after round #n−1. C[Set] in theCONDITIONALS
space reflects the initial set of conditions. Over round
n, based on the value received from nodej and a
syndrome from nodex reflecting that it suspectsj to
be faulty, nodei suspectsj to be faulty, informs other
nodes about its assessment and then proceeds to the
next round. These inferences have been captured in the

INFERENCESspace. They in turn update theCONDI-
TIONALSspace for the next round (n+1) and also lead
to the specific action of recordingj ‘BAD’ and sending
a report. Based on the notations introduced in Fig. 2,
we have highlighted these in Fig. 5 with arrows labeled
“Updates...” and “Leads to...”, respectively. Over round #
n+1, based on the reports from other nodes about node
j after roundn, node i collates this information and
performs the majority voting. If the majority of nodes
voted nodej to be faulty, then nodei also declares
node j to be faulty. If a nodek fails to find j faulty,
then nodei prepares a syndrome for nodek and sends
that to other nodes. Over round #n + 2, based on
the reports from other nodes about nodek after round
n + 1, nodei collates this information and performs the
majority voting. If majority of nodes found nodek to
be faulty, then nodei also declares nodek to be faulty.
In the event, if one of the conditions were not satisfied,
alternate actions could have been taken as marked in
Fig. 5.
Development of the DT Structure

In Fig. 6, we illustrate how the DT of the WLS
algorithm can be processed. Based on the information
captured in the IT (Fig. 5), in order to identify key vari-
ables and conditionals, we initiate the query processing
in the DT. For roundn activities, we determine the actual
and lack of dependency on the conditionals/variables as
listed in the CONDITIONAL space of the IT. At each
iteration, the dependency list is pruned as one progresses
over multiple rounds of protocol execution. Moreover,
in case new conditionals are specified, variables which
were pruned earlier from the dependency list may re-
appear in the next iteration. As illustrated in Fig. 6,
round n of the protocol operation does not depend
on assumptionHybridMajority, however, upon adding
timeoutas a new condition for the subsequent rounds of
operation, the assumptionHybridMajority re-appears in
the dependency list for rounds #n+1 andn+2. Below
we highlight the complete list of dependencies for the
completenesspropertyPP (i.e., if a processor is faulty,
then thePP will determine this) to hold. Please refer to
the PVS specification in the Appendix for definitions of
these terms.

Dependency List:s, g, c, gs, cc, ss, send1, send2,
PP, Empty, HybridMajority, KDeclareJ, Syndrome,
OldAccuse

FI experiments for validating thePP (WLS) algo-
rithm at roundsn, n+1 andn+2 would entail variables
related to the definition of the terms listed above. We
provide further details on this aspect in Section IV-C
where we discuss validation of a Java implementation
of the WLS algorithm.
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INFERENCES

Reports from other nodes about ’j’

PP

PP

PP

i

i

i
round # n

round # n+2

CONDITIONALS

CONDITIONALS

INFERENCES

INFERENCES

CONDITIONALS

Message from node ’j’

round # n+1

for round # n

Reports from other nodes about ’k’

Majority voted
’k’ faulty

’i’ declares ’k’
faulty

’x’ suspected

’i’ records ’j’

Majority voted
’j’ faulty

’k’ finds ’j’
non−faulty

’i’ declares ’j’
faulty

BAD
’i’ records ’k’
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after round # n

after round # n+1

Syndrome of ’j’ from

node ’x’ after round # n−1

C[Set]: Initial set of Conditionals
as listed in the text.

C[Set]

C[Set]

’i’ suspects ’j’
faulty ’j’ faulty

Updates Conditionals space
for the next round

for the next round
Updates Conditionals space

Leads to this action

Leads to this action

ACTION: Record ’k’ BAD and send report

ACTION: Record ’j’ GOOD and send report

ACTION: Record ’j’ BAD and send report

Fig. 5. The IT for the WLS Online Diagnosis Algorithm – Operational Flow Illustrated for Node ‘i’

A new condition

PP

i
PP

i
PP

INFERENCE: ’i’ suspects ’j’ being faulty

INFERENCE: ’i’ declared ’j’ faulty and suspects ’k’ being faulty

round # n+2

round # n+1

round # n

Output: Depedency on {KDeclareJ, HybridMajority, Syndrome...}

Output: Depedency on {KDeclareJ, HybridMajority, Syndrome...}

Query: Dependency on {List}? (List = C[S] : initial list in IT)
Output: Depedency on {OldAccuse,send,Val,timeout...}

Not on {HybridMajority}

INFERENCE: ’i’ declares ’k’ faulty

C[Timeout] added

i

Fig. 6. The DT for WLS Online Diagnosis Algorithm – Process Illustrated for Node ‘i’

C. Validation of a Java Implementation of the WLS
Algorithm

We have implemented the online diagnosis algorithm
(PP) in Java. A requirement was that a user can verify if
a processor was declared as being faulty by monitoring
the outputs on the command line. Instead of a processor
receiving values for a workload and computing majority
to obtain a value, we decided that each node would send
only one value per frame. This helps in determining

when to end a frame, as we would wait for a defined
time period in order to receive messages from all the
other processors in the network. Also, as per the original
description of the algorithm if there were no errors then
there would be no error reports sent. However, there is
no specification on how long a processor should wait for
an error report. So, we included a timeout so that error
reports received before the timeout would be processed
and error reports received afterward would be considered
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as being lost message and gets discarded.
As the protocol operation essentially depends on as-

sumptions relating tosendOldAccuse, Syndrome, caucus
andHybridMajority, the key test cases for three specific
rounds of operations are generated using the Sampurna
tool. The description of fault-injection scenarios to be
executed is given below:

• For round #n

– Corrupt the variable containingVal.
– Delay the message containingVal to get it

recorded as amissingmessage.
– Corrupt the variable containingSyndrome
– Corrupt the variable containingOldAccuse
– Delay the message containing error report to

force it to get accused in the subsequent round.

• For round #n + 1

– Corrupt the variable containingFn
tot(j).

– Even if Fn
tot(j) ≥ dN/2e, corrupt the variable

containing processork’s Syndromegenerated
with respect toj; that is changeOldAccusefor
the next round.

– Even if Fn
tot(j) ≤ dN/2e, corrupt the variable

containing processork’s Syndromegenerated
with respect toj; that is changeOldAccusefor
the next round.

– Increase the number of faulty processor
such that the condition‖gs(caucus)‖ >
‖ss(caucus)‖ no longer holds.

• For round #n + 2

– Corrupt the variable containingFn+1
tot (j).

The parametersVal, Syndromen, Syndromen+1,
OldAccuse, and HybridMajority take Boolean values.
Fn

tot(j) and Fn+1
tot (j) can have the value either more

or less than the majority value. Three combinations
relating variablesVal, OldAccuseandSyndromeare not
attainable, e.g., a combination such asVal being false,
OldAccusebeing eithertrue or falseandSyndromebeing
false is not valid. Subsequently, we have a set of 21
FI scenarios. Further, two delay operations and a case
causing the number ofgood processors to be less than
that of faulty ones result in a total of 24 tests for fault
injection experiments.

Our Java implementation of the WLS (PP) algorithm
was subjected to a total of 24 test cases, and we were
able to identify 3 software design faults that were causing
the program to not get executed as per the specified
requirements. We describe these findings below:

• One of the design fault had to do with the omission
of ‘timeout’ notion in our initial specification that
was causing the program to wait for an arbitrarily
long time for either the message or an error report
to arrive. This case was simulated by inserting a

perturbeddelay function that permits us to selec-
tively delay, or fail to delay, at the point where it
is inserted.

• Related to the previous finding, via the per-
turbeddelay function, we also discovered a syn-
chronization problem which was caused by having
the processor do the sending, receiving, and pro-
cessing of messages thereby leading to concurrency
issues in the case when the processor got interrupted
while processing a message. Later on we rectified
this problem by using a message container for the
messages to which both the processor and threads
responsible for receiving and delivering the message
to the processor would read and write.

• Another interesting case that revealed the deficiency
in our implementation was that we had missed out
the checking of the processor’s health to determine
whether it is a healthy or faulty processor. At
times, in our system the number of faulty processors
would be more than the good or healthy processors
and still we would perform majority and take the
votes of faulty processors to get a majority vote.
This sometimes led to declaration of a healthy
processor as a faulty in a caucus of three processors.
From our viewpoint, this case would not have
been identified via classical testing techniques. This
became a trivial test to conduct as the dependency
list included termsgs and ss, and the condition
‖gs(caucus)‖ > ‖ss(caucus)‖ was also captured
in the IT conditional space.

Discussions
Formal methods require the right mix of effort, exper-

tise, and knowledge. Interactive theorem proving pro-
vides a general approach to modeling and verification
but requires significant human efforts to deal with many
tedious proofs. In this particular case study, we leveraged
from the work already done as part of the development
of online diagnosis algorithms [60]. However, in our
other case studies [52], [50], substantial efforts (about
1 man-year) were put in developing the formal specifi-
cation and subsequently verifying desired properties of
the protocols used therein. It is to emphasize that any
introduction of new information in the specification as
part of speculative experiments, often lead to extra effort
in proving the conjectures posed for different properties
of interests. However, it is important to emphasize that
nowadays protocols developed for highly dependable
systems typically go through formal verification, and it
would be ideal to exploit (and reuse in a meaningful
way) the information generated over the verification
process to guide the validation of an implementation of
that protocol. With this viewpoint, we have introduced
and presented a comprehensive methodology for formal-
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methods driven pre-injection analysis to generate tests
for FI-based testing of dependable distributed protocols.

V. Comparative View with Related Work
The classical use of formal methods has been for

the verification of protocols, and specifically, on finding
design stage flaws in the protocols. In [6], the focus
of the work is on the verification of fault-tolerance
properties using model-based formalisms, specifically
an executable specification has been developed to es-
tablish the tolerated behavior of the spacecraft com-
puters in presence of faults. In literature, a variety of
approaches have developed excellent concepts in linking
formal approaches to testing (See [2], [4], [7], [8], [12],
[16], [22], [24], [29], [30], [36], [40], [53], [57], [62]
among others). While there has been a lot of work on
specification-based testing and test case generation [15],
[23], not much work has focused on bridging the gap
between theorem proving and testing. In [13], authors
have presented the HOL-TestGen system that generates
unit tests from Isabelle specifications. In [9], a tool that
uses HOL specifications for testing protocols has been
discussed. In [42], the author has presented PVS [41]
strategies to create random test cases directly from PVS
specifications.

In particular, to the best of our knowledge, the key
distinction of our approach from others is that we make
prominent use of proof-theoretic-based reasoning, and
link/analyze the inferences generated over the verifica-
tion process to determine key assumptions and the set
of (implementation) parameters to derive scenarios to
drive FI experiments. Though our approach is proof-
theoretic, we could potentially utilize (and interface)
model theoretic approaches as well. In [46], the authors
have developed a unified framework to provide support
for both proof-theoretic as well as model-theoretic ap-
proaches. As mentioned in Section III-B, our approach
allows for mixed level of abstraction. For example, at the
circuit level abstract, a function can be modeled in say
RTL-level specification. Such a low-level abstraction of
the program is useful to reason about hardware errors.
The formal model can then be rigorously analyzed under
error conditions against the above specifications using
techniques such as model checking and theorem proving.

Existing efforts [1], [5], [10], [16], [18], [19], [21],
[54], [56] have explored deterministic approaches for
test case identification for validation. The work reported
in [16], [19], [21] have exploited some typical prop-
erties of fault tolerant protocols (e.g., decision stages,
chain of furcated fault-handling actions, etc.) to model
complex distributed protocols. Our proposed represen-
tation schemes (the IT/DT structures) share properties
with other state-transition representations like assertion
trees [5], [56] or Petri nets [20]. We point out that [20]

uses a formal specification of the protocol and it is pro-
cessed using some heuristic to identify influence param-
eters in an automated manner. In particular, reachability
analysis is performed to identify fault cases and their
corresponding activation paths. In order to reduce the
size of the reachability graph certain restrictions on the
protocol behavior is assumed. This scheme works well
for bounded systems, however, for protocols dealing with
real-time and non-deterministic attributes, this approach
is limited.

Similar to our proposed approach, the work reported
in [34] presents a symbolic approach for injecting faults
(those relating to HW errors only) into programs written
in Java and considers the effect of bit-flips in program
variables. However, HW errors which can alter the con-
trol flow of the program have not been considered by the
technique. In [45], the authors have presented a program
level framework that allows specification of arbitrary
detectors and their verification against transient HW
errors using symbolic execution and model checking.
In a recent paper [27], the authors have proposed a
framework for generating test vectors from specifications
written in the Prototype Verification System (PVS) [41].
The methodology uses a translator to produce a Java
prototype from a PVS specification. Symbolic (Java)
PathFinder [44] is then employed to generate a collection
of test cases. The combination of these two existing tools
enables this process by automating much of the task.
A simple example has been considered to illustrate the
proposed framework.

Finally, it is worth to note that in a simplistic FI-
based testing, it is necessary to inject all possible values
for system variables to uncover faults that we have been
able to detect/identify in case studies considered in our
research. However, with our proposed pre-injection anal-
ysis technique, this can be done in a controlled manner
with guided search in the space of influential set of
variables and their values which led to specific protocol
actions at particular stages of the protocol execution.

VI. Conclusions, Summarizing Past Work
and Future Directions

The conventional FI approaches are facing growing
limitations in handling the large state space involved
in the operations of dependable distributed and real-
time protocols. We have shown the efficacy of formal
techniques as an supplement for FI-based validation
of dependable distributed protocols that have a formal
specification and whose models have been validated. In
this paper, we have applied our approach to an online
diagnosis algorithm and illustrated the effectiveness of
the proposed pre-injection analysis in identifying rele-
vant though critical test cases against which an imple-
mentation of the diagnosis protocol must be validated.
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In [52], we introduced the basic idea of using formal
methods for pre-injection analysis to derive a set of
parameters to describe fault-injection scenarios. With the
case study of clock synchronization [52], we highlighted
the following key capabilities of our proposed pre-
injection analysis approach: (a) support for traceabil-
ity of fault-propagation over different functional block,
(b) identification of a specific functional block which
need to be further examined depending upon the infer-
ences captured (via IT) and corresponding dependency
list generated (via DT) for that block, and (c) support for
modeling (or incorporating specification) of a specific
functional block at a refined level of abstraction. Over
this case study we also demonstrated the capabilities
of IT/DT approaches to pinpoint a specific block (e.g.,
2/3 Voter) which needed to be modeled to identify the
cause of a failure (partial ordering problem of messages
arriving at a specific node). In this case, 3827 tests were
needed using classical FI versus 24 tests identified by our
proposed approach. In both cases, the implementation
had 3 fault cases and both techniques were correctly
able to identify them. The identified parametric attributes
include: round number, concurrency time-window, vot-
ing rate and numeric range for message sequences. It
is to note that such information resulting over a pre-
injection analysis facilitate (or guide) intelligent ways
of determining influential (or key) variables to generate
FI experiments for validating protocol operations.

In [50], [51], we demonstrated the effectiveness and
efficiency of our approaches through the example of
FT clock synchronization and FT Rate Monotonic Al-
gorithm (FT-RMA) [26]. In the case of the fault-
tolerant real-time task scheduling algorithm namely FT-
RMA [50], [51], we were able to identify flaws in the
analysis, and using IT/DT obtain the specific conditions
to constitute effective FI test cases which, in fact,
confirmed our identification of flaws. As a comparative
analysis of our proposed pre-injection analysis technique
with conventional approaches, we showed that even
though FT-RMA protocols had gone through extensive
simulation and random FI experiments, fault cases be-
longing to one of our derived equivalence classes of fault
types were not identified. Typically, for simulations, task
sets are randomly generated and due to their limitations
in considering factors involving key schedulability crite-
ria, these task sets would have a low probability to cover
all key aspects of fault-tolerance and timing issues which
we were able to capture during the formal treatment of
pre-injection analysis of FT-RMA protocols.

Though the formal approach for analysis appears to
be very attractive and effective, it has its own limi-
tations. The foremost limitation is in the capabilities
of formal techniques for representation of parametric

attributes (e.g., specifying numeric bounds for variables,
processor attributes, etc.), real-time deadlines, system
workload conditions, etc. Furthermore, associated with
these attributes, the corresponding formal verification
process also needs to be developed. We have yet to
fully incorporate the specification of system load (and
stress) into the formal engine. At present we are limited
to approximating these conditions using distributions; in
the future we are looking at approaches to model stress
and load as parametric inputs.

An inherent limitation of the proposed IT/DT-based
pre-injection analysis is that the formal proof of the
protocol specification must be availablea priori or car-
ried out by the user. Given the features of our proposed
approach, we envision our techniques to complement
existing FI tool-sets such as DEPEND [28] or Cesium [1]
to provide improved protocol validation. We acknowl-
edge that further enhancement of the proposed pre-
injection analysis is required to broaden the applicability
of the approach. As theorem proving is a cumbersome
and also an incomplete approach, we envision that the
development of automated formal methods (like invisible
formal methods [55]) definitely enhances the applicabil-
ity of the approach. We believe, however, that we have
presented a novel technique to bridge the gap between
formal method based verification, which is applied on
the specification of the protocol, and experimental test
cases.
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Rate Monotonic Scheduling.”Real-Time Systems,, vol. 15, no. 2,
pp. 149–181, Sept. 1998.

[27] A. Goodloe, C. Pasareanu, D. Bushnell, P. Miner, “A TestGener-
ation Framework for Distributed Fault-Tolerant Algorithms,” 4th
Workshop on Automated Formal Methods (AFM09), 2009.

[28] K.K. Goswami, R.K. Iyer, L. Young, “DEPEND: A Simulation-
Based Environment for System Level Dependability Analysis,”
IEEE Trans. on Computers, 46(1), pp. 60–74, Jan. 1997.

[29] W. Gujjahr et al., “Partition Testing vs. Random Testing: The
Influence of Uncertainity,”IEEE Trans. on SE, pp. 661–674,
Sept/Oct. 1999.

[30] L. Heerink et al., “Formal Test Automation: The Conf. Protocol
with Phact,”Proc. of Test Conf., pp. 211–220, 2000.

[31] R. Iyer, D. Tang, “Experimental Analysis of Computer System
Dependability,”Book chapter in ‘Fault Tolerant Computer System
Design’, editor: D.K. Pradhan, Prentice Hall, pp. 282–392, 1996.

[32] M. Joseph,Real-time Systems: Specification, Verification and
Analysis. Prentice Hall, London, 1996.

[33] J-C. Laprie, “Dependable Computing and Fault Tolerance: Con-
cepts and Terminology.”FTCS-15, pp. 2–11, 1985.

[34] D. Larsson, R. Hahnle, “Symbolic Fault-Injection,”International
Verification Workshop (Verify), vol. 259, pp. 85–103, 2007.

[35] J. Lehoczky, L. Sha, Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior.”
Proceedings of IEEE RTSS, pp. 166–171, December 1989.

[36] Yu Lei, D. Kung, Qizhi Ye, “A blocking-based approach toproto-
col validation.”Computer Software and Applications Conference,
COMPSAC 2005, pp. 301–306, July 2005.

[37] R.Lent, “A testbed validation tool for MANET implementations.”
MASCOTS 2005, pp. 381–388, Sept. 2005.

[38] C.L. Liu, J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment.”Journal of the
ACM, 20(1), pp. 46–61, January 1973.

[39] S. Mullender (Ed.),Distributed Systems, Addision-Wesley, 1993.
[40] V. Okun, P.E. Black, Y. Yesha, “Testing with Model Checker:

Insuring Fault Visibility.” WSEAS Transactions, 2003.
[41] S. Owre, J. Rushby, N. Shankar, F. von Henke, “Formal Verifica-

tion for Fault-Tolerant Architectures: Prolegomena to theDesign
of PVS,” IEEE Trans. Software Engineering, SE 21(2), pp. 107–
125, February 1995.Note: see http://pvs.csl.sri.com for updated
information about recent releases and documentation for PVS.

[42] S. Owre, “Random Testing in PVS,” InWorkshop on Automated
Formal Methods, 2006.

[43] M. Pandya, M. Malek,“Minimum Achievable Utilization for
Fault-Tolerant Processing of Periodic Tasks,”IEEE Trans. on
Computers, 47(10), pp. 1102–1112, Oct. 1998.

[44] C. Pasareanu, et al., “Combining Unit-Level Symbolic Execution
and System-Level Concrete Execution for Testing NASA Soft-
ware,”Proc. of International Symposium on Software Testing and
Analysis, pp. 15–26. ACM Press, 2008.

[45] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, R. Iyer, “Sym-
PLFIED: Symbolic Program-Level Fault-Injection and Error-
Detection Framework,”IEEE DSN, June 2008.

[46] S. Rajan, N. Shankar, M.K. Srivas, “An Integration of Model-
Checking with Automated Proof Checking,”Computer-Aided
Verification, CAV ’95, LNCS 939, pp. 84–97, 1995.

[47] J. Rushby, “Formal Methods and the Certification of Critical
Systems,”SRI-TR CSL-93-7, Dec. 1993.

[48] J. Rushby, F. von Henke, “Formal Verification of Algorithms
for Critical Systems.”IEEE Trans. on Software Engineering, SE
19(1), pp. 13–23, 1993.

[49] M. Singhal, N.G. Shivaratri,Advanced Concepts in Operating
Systems, McGraw Hill, 1994.

[50] P. Sinha, N. Suri, “Identification of Test Cases Using a Formal
Approach,”Proc. of FTCS–29, pp. 314–321, 1999.

[51] P. Sinha, N. Suri, “ On the Use of Formal Techniques for
Analyzing Dependable RT Protocols,”Proc. of RTSS, pp. 126–
135, Dec. 1999.

[52] N. Suri, P. Sinha, “On the Use of Formal Techniques for
Validation.” Proc. of FTCS-28, pp. 390–399, 1998.

[53] T. Suzuki et al., “Murate: A Protocol Modeling & Verification
Approach Based on a Specification language and Petri Nets,”
IEEE Trans. on SE, SE 16, pp. 523–536, May 1990.

[54] S. Tao, P. Ezhilchelvan, R. Shrivastava, “Focused Fault Injection
of Software Implemented Fault Tolerance Mechanisms of Voltan
TMR Nodes.”Distributed Systems Engineering, 2(1), pp. 39–49,
March 1995.

[55] A. Tiwari, N. Shankar, R. Rushby, “Invisible Formal Methods for
Embedded Control Systems,”Proc. of IEEE, 91(1), pp. 29–39,
2003.

[56] T. Tsai, S.J. Upadhaya, H. Zhao, M.-C. Hsueh, R.K. Iyer,“Path-
Based Fault Injection,”Proc. 3rd ISSAT Conf. on R&Q in Design,
pp. 121–125, 1997.

[57] J. Tretmans, “Specification Based testing with Formal Methods:
From Theory via Tools to Applications,”Proc. of FORTE 2000,
Tutorial Notes, 2000.

[58] N. Varma, S. Kanade, P. Sinha, R. Dssouli, “CAGILY: An
Approach for Developing Test Suites for Component-Based Sys-
tems,” Proc. of IASTED SEA, Nov. 2003.

[59] J. Voas, G. McGraw,Software Fault Injection: Inoculating Pro-
grams Against Errors, John Wiley & Sons Ltd, New York, 1998

[60] C.J. Walter, P. Lincoln, N. Suri, “Formally Verified On-Line
Diagnosis” IEEE Trans. on Software Engg., Nov. 1997.

[61] W. Wang, K.S. Trivedi, B.V. Shah, J.A. Profeta, III, “The Impact
of Fault Expansion on the Interval Estimate for Fault Detection
Coverage,”Proc. of FTCS–24, pp. 330–337, 1994.

[62] Shu Xiao, Lijun Deng, Sheng Li, Xiangrong Wang, “Integrated
TCP/IP Protocol Software Testing for Vulnerability Detection.”
ICCNMC, Oct. 2003.



19

Appendix: PVS Specification of PP (WLS) Algorithm [60]
pp[m: posnat, n: posnat, T: TYPE, error: T, BAD: {x: T | ¬ x = error}, GOOD:

{x: T | (¬ x = error) ∧ (¬ x = BAD)}, Val:
[upto[m] → {x: T | ¬ (x = error ∨ x = BAD ∨ x = GOOD)}]]: THEORY

BEGIN

rounds: TYPE = upto[m]
t: VAR T
fcu: TYPE = below[n]
fcuset: TYPE = setof[fcu]
fcuvector: TYPE = [fcu → T]
G, p, q, z: VAR fcu
v, v1, v2: VAR fcuvector
caucus: VAR fcuset
r, R, R2: VAR rounds
PSET: TYPE = fcu
pset: VAR setof[PSET]
i, j, k, i2, j2: VAR PSET
Accuse, OldAccuse: VAR [PSET, PSET → bool]
AllDeclare: VAR [PSET, PSET → bool]
IMPORTING card set[fcu, n, identity[fcu]], finite cardinality[fcu, n, identity[fcu]],

filters[fcu], hybridmjrty[T, n, error]
statuses: TYPE = {symmetric, manifest, good}
status: [fcu → statuses]
g(z): bool = good?(status(z))
s(z): bool = symmetric?(status(z))
c(z): bool = manifest?(status(z))
cs(caucus): fcuset = filter(caucus, c)
ss(caucus): fcuset = filter(caucus, s)
gs(caucus): fcuset = filter(caucus, g)
fincard all: LEMMA

fincard(caucus) = fincard(cs(caucus)) + fincard(ss(caucus)) + fincard(gs(caucus))
send: [T, fcu, fcu → T]
send1: AXIOM g(p) ⊃ send(t, p, q) = t
send2: AXIOM c(p) ⊃ send(t, p, q) = error
send4: AXIOM s(p) ⊃ send(t, p, q) = send(t, p, z)
send5: LEMMA send(t, p, q) = send(t, p, z)
HybridMajority(caucus, v): T = PROJ1(Hybrid mjrty(caucus, v, n))

HybridMajority1: LEMMA

fincard(gs(caucus)) > fincard(ss(caucus)) ∧
(∀ p: g(p) ∧ (p ∈ caucus) ⊃ v(p) = t) ∧
t 6= error ∧ (∀ p: c(p) ∧ (p ∈ caucus) ⊃ v(p) = error)

⊃ HybridMajority(caucus, v) = t

HybridMajority2: LEMMA

(∀ p: (p ∈ caucus) ⊃ v1(p) = v2(p)) ⊃
HybridMajority(caucus, v1) = HybridMajority(caucus, v2)

HybridMajority3: LEMMA

HybridMajority(caucus, v) = t ∧
(∀ p, q: g(p) ∧ g(q) ∧ (p ∈ caucus) ∧ (q ∈ caucus) ⊃ (v(p) = v(q) ∧ v(p) 6= error)) ∧

fincard(gs(caucus)) > fincard(ss(caucus)) ∧ (∀ p: c(p) ∧ (p ∈ caucus) ⊃ v(p) = error)
⊃ (∀ p: g(p) ∧ (p ∈ caucus) ⊃ v(p) = t)

Syndrome(R, j, i, OldAccuse): T =
IF OldAccuse(i, j) ∨ (¬ Val(R) = send(Val(R), j, i)) THEN BAD
ELSE GOOD ENDIF

KDeclareJ(pset, R, OldAccuse, j, k): bool =
HybridMajority(pset, λ i: send(Syndrome(R, j, i, OldAccuse), i, k)) = BAD

PP(pset, R, OldAccuse)(i, j): RECURSIVE bool =
IF R = 0 THEN FALSE

ELSE KDeclareJ(pset, R, OldAccuse, j, i) ∨
PP(pset, R − 1,(λ i2, k: OldAccuse(i2, k) ∨

(∃ j2 (KDeclareJ(pset, R, OldAccuse, j2, i2) 6=
(send(Syndrome(R, j2, k, OldAccuse), k, i2) = BAD))))) (i, j)

ENDIF

MEASURE (λ pset, R, OldAccuse: R)

SoundnessProp(R): bool =
(∀ i, j, pset, OldAccuse: g(i) ∧ (i ∈ pset) ∧ (j ∈ pset) ∧

fincard(gs(pset)) > fincard(ss(pset)) + 1 ∧
PP(pset, R, OldAccuse)(i, j) ∧
(∀ p, q, k: ((g(p) ∧ g(q) ∧ OldAccuse(p, k)) ⊃ OldAccuse(q, k) ∧ (c(k) ∨ s(k))))

⊃ c(j) ∨ s(j))
Soundness: LEMMA SoundnessProp(R)

CompletenessProp(R): bool =
(∀ i, j, pset, OldAccuse: g(i) ∧ (i ∈ pset) ∧ (j ∈ pset) ∧

(c(j) ∨ (s(j) ∧ (∀ t, p: send(t, j, p) 6= t))) ∧ fincard(gs(pset)) > fincard(ss(pset)) + 1
⊃ PP(pset, R, OldAccuse)(i, j))

Completeness: LEMMA (∀ R: CompletenessProp(R) ∨ R = 0)
Empty(i, j): bool = FALSE

Final Soundness: THEOREM

(∀ i, j: g(i) ∧ fincard(gs(fullset[fcu])) > fincard(ss(fullset[fcu])) + 1 ∧
PP(fullset[fcu], R, Empty)(i, j) ⊃ c(j) ∨ s(j))

Final Completeness: THEOREM

(∀ i, j: g(i) ∧ (c(j) ∨ (s(j) ∧ (∀ t, p: send(t, j, p) 6= t))) ∧
fincard(gs(fullset[fcu])) > fincard(ss(fullset[fcu])) + 1 ∧ R > 0

⊃ PP(fullset[fcu], R, Empty)(i, j))
END pp


