A Pre-Injection Analysis for Identifying

Fault-Injection Tests

for Protocol Validation

N. Suri* and P. Sinh&a
x TU Darmstadt, Germany
1 GM R&D, India

Abstract— Fault-injection (FI) based techniques for de-
pendability assessment of distributed protocols face ceatn
limitations in providing state-space coverage and also ing
high operational cost. This is primarily due to lack of
complete knowledge of fault-distribution at the protocol
level which in turn limits the use of statistical approaches
in deriving and estimating the number of test cases to
inject. In practice, formal techniques have effectively bang
used in proving the correctness of dependable distributed
protocols, and these techniques traditionally have not bee
directly associated with experimental validation technigies

ability to deliver the desired services. As systems grow
more complex with composite real-time and depend-
ability [33] specifications, the operational state space
grows rapidly, and the conventional verification and
validation (V&V) techniques face growing limitations,

including prohibitive costs and time needed for testing.
Fault injection (FI) techniques have commonly been
used in practice for validating system’s dependability.
Although a wide variety of techniques and tools exist for

such as Fl-based testing. There exists a gap between thesé™! [31], the limitations are the cost, time complexity and

two well-established approaches, viz. formal verification
and Fl-based validation techniques. If there exists an
approach which utilizing a rich set of information per-
taining to the protocol operation generated through formal
verification process can provide guided-support to perform
Fl-based validation, then the overall effectiveness of siic
validation techniques can be greatly improved. With this
viewpoint, in this paper, we propose a methodology which
utilizes the theorem-proving technique as an underlying
formal-engine, and is composed of two novel structured
and graphical representation schemes (interactive user-
interfaces) for (a) capturing/visualizing information gen-
erated over the formal verification process, (b) facilitat-
ing interactive analysis through the chosen formal-engine
(specifically, any theorem-proving tool) and database, and
(c) user-guided identification of influential parameters,
those eventually used for generating test cases for Fl-bade
testing. A case study of an on-line diagnosis protocol is
used to illustrate and establish the viability of the propogd
methodology.

Index Terms— Dependable Distributed Protocols, Fault
Injection, Formal Techniques, Verification and Validation.

[. Introduction

actual coverage of the state space to be tested. In these
respects, the challenges are to (a) identify relevant test
cases spanning the large operational state space of the
system, and (b) do this in a cost-effective manner, i.e.,
a limited number of specific and realizable tests. It has
been analytically shown in [19] that deterministic fault
injection provides benefits over random fault injection in
protocol testing. In this context, a pre-injection anadysi
that aims at identifying a key set of variables/parameters
of the given dependable protocol which would consti-
tute test cases for FI experiments can strongly help to
minimize/reduce the number of test cases.

Typical examples of protocols widely used in depend-
able distributed systems include: clock synchronization,
consensus, checkpointing & recovery, and diagnosis,
etc. [39], [49]. For V&V purposes, algorithmic descrip-
tion of these dependable distributed protocols can be
specified using a formal specification language that sup-
ports high-level modeling constructs including hieraschi
cal decomposition, recursion, parameterized functions,
etc. With proof-of-correctness of the algorithm estab-
lished using inference-rules of the chosen logic, we aim

Computers for critical applications increasingly relat exploiting this verification information to support and
on dependable protocols to deliver the specified servicgsipplement Fi-based validation of dependable distributed
Consequently, the high (and often unacceptable) copi®tocold. Our specific objective is to systematically de-
of incurring operational disruptions become a significamérmine fault-cases by looking into various assumptions
consideration. Thus, following the design of dependabighich influence the protocol operation and also inter-

protocols, an important objective is teerify the cor-
rectness of the design andlidatethe correctness of its

dependencies among different system components. This

actual _|mplementat|pn In the_ des're(_j operational environ- is g emphasize that a successful formal verification isrex p
ment, i.e., to establish confidence in the system’s actuadyisite for our proposed methodology for pre-injectioralgsis.

particular aspect forms the basis for our proposed prie establishing confidence in the operation of the fault-
injection analysis. The novel contribution of our protolerance mechanisms of a dependable system. Fl based
posed techniques is in developing usable links across feglidation is very effective provided (a) accurate and
mal verification and experimental validation approachedetailed representation of the system and its operations
Specifically, to demonstrate the viability of our proposeid available, and (b) the selection of FI experiments is
research in formal-method-guided pre-injection anajysiappropriate to stimulate the system to ascertain a desired
we have: level of testing confidence. It has been shown in [31] that

« Developed two novel representation schemes (Infd¢sually an extremely large number of faults need to be
ence Tree (IT) and Dependency Tree (DT)) to visuhjected in order to obtain a small interval estimate at a
alize protocol verification information and facilitatehigh confidence level, particularly if the desired coverage
interactions with the underlying formal engine angalue is very high. Thus, from a realistic viewpoint, a
database for analysis. basic issue in Fl-based approaches is the selection of

. Based on the IT/DT, (a) outlined the deductive cap&pecific (ideally, a minimum number of) test cases to
bilities of our formal-method-based query procesdnject as it is not possible to carry out an extremely
ing mechanisms, and (b) developed a methodolodgrge number of fault injection within practical time/cost
to select and identify parameters which would corfonstraints.
stitute test cases for FI experiments for validation. For specific systems where the nature of the workload

. Discussed a tool implementation which generatd§-g., real applications, selected benchmarks or syntheti
test cases for Fl experiments, i.e., formally drive@rograms), nature of fault distribution and operation
pre-injection analysis. domain is well defined, the random FI techniques work

« Demonstrated the practical effectiveness of formauite effectively [31], [59]. The realism and accuracy
technigues for guiding classical FI experimentatiofif the state space model for timing and message traffic
through identification of pertinent test cases fofegrades rapidly if the fault distributions are not known
validating an online diagnosis protocol. or characterizable at the protocol level. This is either due

Organization: Section Il presents an overview of pito low probability of occurrence of rare but significant

based dependability validation as well as a short not@ult types (e.g., Byzantine faults), or due to lack of

on formal methods highlighting key aspects of formatn established fault model. In such cases, the premise

modeling of distributed protocols. Our proposed aﬁ?f random Fl breaks down as the statistical basis of

proach for pre-injection analysis is described in SeS€l€cting random test cases is no longer valid. This

tion I1l. Section IV presents a case study of a dependafi§Pect thus precludes the use of existing FI techniques

distributed protocol, namely online diagnosis protocd@t use distributions to derive maximum likelihood

demonstrating the effectiveness of our proposed pr%gtlmates to_ detern_une the number of test cases for a

injection analysis for identifying test cases to guide FA€sired confidence interval.

based protocol testing. Section V provides a comparati#e A Short Introduction to Formal Methods

view with other related work. We conclude with discus- Formal methods provide extensive support for auto-

sions in Section VI. mated and exhaustive state explorations over the formal

Il. Back verification to systematically analyze the operations of a
: a_C grqund i . given protocol. To deal with large (potentially infinite)

~ Inthis section, we first provide a background on faultste exploration, we choose proof-theoretic formal ap-

injection based dependability validation and then give gf}oaches which utilize logical reasoning, derivations as

introduction to formal methods. well as rules of induction to obtain a formal proof basis
A. An Overview of Fault-Injection based Dependys the desired system operation. The primary reason
ability Validation for using theorem proving approaches is that a proof-

Validation techniques typically entail approaches suakee can be obtained and associated proof-analysis can
as modeling, simulating, stress testing, life testing, angcilitate identification of relevant set of variables. For
fault-injection (FI} based testing. Fl involves the procesgore details we refer the reader to [47, Section 2.2]
of deliberately injecting faults (into the actual system ofor detailed comparison of proof- and model-theoretic
system model/simulation) to test the effectiveness of thgproaches.
dependability mechanisms designed to contain the err¢t§mal Methods for Distributed Actions

resulting from the injected fault. From the perspective of Distributed protocols can be seen, from a modeling

experimental validation, classical Fl is extensively used_. . L .
P ’ y oint of view, as sequences of deterministic operations

2The survey chapter in [31] provides an extensive discussiofrl interleav_ed with branchin_g points, where tﬁemCtior_]
processes. (or algorithm) takes decisions based on the actual infor-

mation it has obtained. We can call such sequencesfodm abstract properties to implementation details. Our
deterministic operations a&ctions In a proof-theoretic aim in this research is to bridge the gap between formal
context we can prove the fact that an action implementgerification and experimental validation/testing. Towsard
the specified behavior as a theorem. That is, for eattis aim, our key contributions in this research include
action we can try to build a proof that, starting frondevelopment of:

some given axioms oConditionalscertain Inferences , A methodology for pre-injection analysis which
can be drawn out, which correspond to the possibility of jnvolves techniques for representation and visual-
operations, assertions, and/or usage of event conditional jzation of verification information to establish the
variables. Each action, being deterministically defined, dependency of operations on specific variables as
can be modeled as a set of predicates. Using these represented in formal specification of the proto-
predicates, we can try to prove certain conjectures (i.e., col. Moreover, the developed techniques provide
unproven theorem) starting form the conditions given as mechanisms for modifying parameters, variables
hypothesis. Using the resulting inferences, it is possible and decision operations to enumerate the relevant
to determine: (a) which alternative branch will be chosen execution paths of the protocol. This is achieved
after an action completes; (b) which are the conditions py updating the formal specification of the protocol
for the next action; (c) whether the protocol implements and verifying the properties of interests through the
the specified and desired properties. underlying formal-tool .
PVS Tool Support « An approach for identification/creation of suitable
At the protocol level, the need is to be able to support and specific Fl test cases. It is achieved by utilizing
hierarchical operations and hierarchical decomposition representation of execution paths as well as prop-
of functional blocks. Thus, a high-level lodiavhich agation paths depicting the scope of influence of
can facilitate such a decomposition structure is required. parameters and variables on the protocol operations.
For our studies, we used SRI's Prototype Verification gefgre describing the proposed methodology for
System (PVS) tool [41] for our research, although ourformal-methods driven Fl-based validation process, it
approaches are applicable to any higher order logic baggthecessary to briefly introduce the two key structured
formal environment. PVS provides a powerful interactivgerification-information representation schemes.

proof-checker with the ability to store and replay proofss - Renresentation and Visualization of Verification
The PVS system provides several commands for det?ﬁ’formation

mining the status of theories, such as whether a proof . . e
. ; Typically, after developing the formal specification of
has been performed/completed. Proof-chain analysis, an , e
. a protocol and its subsequent formal verification, the
important form of status report, assures that all the . e _
S ! : .iInformation at the verification stage is in the form of
proof obligations are fulfilled. The output of this analysis . o :
. o . ; . 7~ “athematical logic in a syntax appropriate to the chosen
also identifies the axiomatic foundation of the give . o S
grmal tool-set. As our interest is in protocol validation,
We need to transform and utilize the information gen-

erated by the specification and verification process to
lll. Proposed Approach for Pre-Injection aid the identification of system states, and to be able to
Analysis track the influence path of a variable or implementation

Formal methods have primarily been used as verificRarameter to construct a Fl test case. Towards this
tion techniques (i.e., to capture conformance to desi@ipiective, we have developed two structured represen-
specification) in establishing correctness of the desighftion and visualization schemes to encapsulate various
On the other hand, experimental testing targets actdaformation attributes. We label them as (mference

implementations. Obviously a gap exists to transcerde€ (IT)or “forward propagation implication tree”, and
(b) Dependency Tree (DTdr “backward propagation
3An axiomatic theory consists of a number of primitive termd aet deductive tree”. An IT outlines the inference conditions

of statements which are true within that theory (known asmasi). A : : P
Droof in a theory s a finite sequenda, Sa, Ss. . .. Sy of statements and the actions taken during the verification process,

in the theory such that eachl is an axiom, or can be derived from While a DT captures the variable/functional block that
any of the preceding statements by applying a rule of infeefsuch the protocol/specification rely on. Moreover, DT facili-
Stitleme.”ts are known as theorems). . tates query processing and/or ‘what-if’ analysis on the
n higher-order logic, functions can take functions as argots . . e .
and return them as values, and quantification can be applietetion information accumulated over the verification process.
variables. We present some basic features of these structures prior
‘ 5PVS was u_sed both for its‘public ‘domain availability and fogq discussing their complementary use in validation.
its comprehensive theorem proving environment. Any otheotem- .
proving environment can be used as an underlying formalnengi We observe that most dependable prOtOCOIS consist of
our proposed approach. decision stages leading to branches processing specific

theorem, i.e., it analyzes a given proof to determine i
dependencies.

error-handling cases [5], [10], [19], [20], [56]. This is a
key concept behind validation, which tries to investigate
all the possible combinations of branching over time and
with parametric information (examples include numeric
bounds for variables, round number, processor attributes,
communication bandwidth, etc.). The proposed IT struc-
ture elucidates the protocol operations visually, and has
the capabilities to capture various subtleties (set ofvari
ables/ event-conditionals, inferences, etc.) being gener
ated over each round for round-based protocols obtained
via formally verifying the protocol specification. The

of representation

Step 5: Design Fl experiments from these test
cases based on the chosen FI tool-set.

Note that our main intent is pre-injection analysis
in identifying the test cases. For completeness,
fault-injection related steps have been mentioned.
Feedback obtained over the actual FI experiment
can be fed back to the IT/DT process. Observa-
tions from FI experiments could also guide addi-
tion/deletion of implementation-specific informa-
tion in the formal specification of the protocol.

complementary structure DT establishes the dependeng¥erence Trees (IT): Visualizing Protocol Execution
of the protocol operations on these variables /conditions.|t o tiines the governing conditions, inferences and

The set of variables appearing in the dependency list
essentially used in formulating the FI experiments.

tife actions taken during the verification process. This
representation structure is developed to depict these

B. Proposed Methodology for Fl-based Validatioey aspects over the execution of a protocol. We next
Process describe the process to generate the IT, thaGisp 3

Fig. 1 depicts the overall process of Fl experimentanentioned above. Recall that successful completion of
tion using the IT and DT approach. We emphasize th&drmal verification through the underlying formal engine
our pre-injection analysis igerative in nature primarily is a pre-requisite for generation of IT.

to work with different levels of abstraction as well as to
facilitate speculative or “what-if” type of analysis.

The following steps are utilized in our approach to aid
the FI process:

Step 1: Formally specify the protocol operations
and desired properties of interests.

Step 2: Perform initial formal verification to
demonstrate that the specification conforms to the
system requirements.

Step 3: Generate the IT/DT utilizing the veri-
fication information and generated inferences to
enumerate the execution paths and establish the
dependency of the operations on design variables
through DT.

If any new information pertaining to spe-
cific implementation-level details (e.g., list of
variables/event-conditionals) is added in the for-
mal specification of the protocol, the specification
needs to be verified to flag any inconsistencies.
Step 4: Analyze IT/DT to identify deductively
dependencies of these variables/conditionals and
based on this information select parameters and/or
functional blocks to generate test cases for FI.

Step A: Based on the verification process, for a
particular round of protocol operation and a spe-
cific functional block, outline governing conditions,
resulting inferences and an action taken or an alter-
native action to be taken.

Step A.l: Repeat the same for subsequent
rounds of the protocol operation based on the
verification process. Stop after the final round
of the operation.

Step A.2: If no new information to be
added/incorporated, Stop.

Step B: For speculative “what-if” analysis, interac-
tively add new conditionals in terms of new timing,
parametric or operation information in the specifica-
tion language of the underlying formal engine and
perform formal verification of the modified formal
specification of the protocol.

Step B.1: Based on the verification process,
update the resultant inferences, newly added
conditionals and actions taken.

Step B.2: If no new information to be
added/incorporated, Stop.

Step C: IterateStep Bfor each new condition being
introduced.

The resulting test cases form the basis for FI We first present a generic description of the IT and
experiments. It is to note that the output of (othen follow up with detailing different aspects of it
observations from) the Fl experiments could alsthrough a specific case study. Please refer to Figure 2
trigger addition/deletion of certain constraints oo relate the terms described next. Each node of the
variables or implementation-specific details aboutee represents a primitive FUNCTION (or a functional
the variables in the formal specification. This theblock/ an algorithmic step of the protocol) at a given
needs to be followed up with the iterative verifidlevel of abstraction. Associated with each node is a set
cation process to sustain consistency at all levetd CONDITIONALS (assumptions specified as axioms

(Specification could be refined to a
different level of abstraction) .

BN
additions of (new) o
implementation timing info. —=

information to initial} parameter info—=>
protocol specificati

A

Feedback to IT

START

Protocol Level
Specifications

S

Basic Protocol
Formal Verification

S

IT/DT Generation

N I

Analyze IT/DT to
Identify Dependency Se

Iterative verification following
incorporation of timing
and parametric information

Conditional and DT
Variable Specification

! Test Case | dentification/Generation
1

Feedback based on Pl
experiment results : |
l

[-

FI Toolset

FI Experiments

Fig. 1. Overall Process of Generating FI Experiments

in the formal specification) which dictate the flow of opthe complete set of activation paths of the protocol (i.e.,
eration to the subsequent ACTION(s) as defined for tlemumeration of all operations). It is important to point
protocol. Also associated with each node is the INFERut that the process of generating CONDITIONAL and
ENCES space which details the possibility of operatiofNFERENCE spaces are semi-automatic and involves
(or sequence of operations), assertions, and/or usageusérs intuitions and understanding of formal specifica-
event-conditional variables which can be inferred frortion, and the implications of the proofs. Moreover, it
the node/operation specification. A particular inferende notable that both CONDITIONAL and INFERENCE
could potentially update the conditionals for the subsepaces can grow or shrink depending on the protocol and
guent round of protocol execution where a specific actidts operating conditions, though the growth of these two
will be taken. Note that FUNCTION, CONDITIONALS, spaces are linearly bounded by the system parameters.
INFERENCES and ACTION are constituent part of the In order to keep track of influences of newly added
IT structure. Furthermore, a connection (edge) betweennditionals on the protocol operation, the IT structure
two nodes/functional blocks represents a logical or terfacilitates recording of inference(s) leading to specific
poral relation in terms of algorithmic actions/steps takeaction(s) (we label them as “leads to this action”) as
based on the prevailing conditions. A path between tweell as resulting inference(s) updating the conditionals
nodes comprising of multiple connections representsfar the subsequent round of protocol execution (we label
set of actions taken up by the protocols. them as “updates. . operation”).

The set of CONDITIONALS consists of two parts: Another key feature of the IT is that it provides for
(i) the basic algorithm (definitions), assumptions, an@tixed levels of abstraction, as a function block can be
constraints, and (i) postulated properties (claims) abotgpresented as a complete graph by itself. For example,
the protocol. Thus, initially, the CONDITIONAL spacethe voter function can be represented at the circuit level
contains only the basic assumptions and constrair@gstraction and modeled in say RTL-level specification
for the given protocol, and basic derivative prope@s shown in Fig. 2 (the lower right-most node).
ties. Over subsequent verification rounds, the CONDARN lllustration of the Inference Tree — Example of the
TIONAL space is enhanced with more information aboud/3 Majority Voter
parameters that may impact the behavior of the protocol.After having given a generic description of the IT, we
Note that both CONDITIONALS and INFERENCES ardllustrate the development of the inference tree through
formally obtained from the protocol specifications. Iran example of a majority voter. Consider a triple modular
fact the theorem prover process defines the conditionaéziundant (TMR) system, where three process repli-
as requisite stopping conditions to be satisfied prior ttas produce results for a voter to generate a majority
proceeding to a subsequent step in a proof. Using furresponse. Request ordering is a critical issue, that is,
tional level specification of the protocol, an IT representge want all replicas to process the same sequence of

requests. One way to handle this is to allow each cliektror” could be takenC[Org_-Cond of round # n]

to attach a timestamp to each request. Another key isstaptures all the conditions that were imposed during the

in the voter is that of vote synchronization, i.e., ensurinfiyst instance of round #.

that the tabulated result is based on a set of votes thalACTIONS are protocol-related. For example, for a 2/3

are all responses to the same request. Communicati@ter as depicted in Fig. 2, we outline two potential AC-

delays or other problems may prevent some votes f@tONS that could be taken after rounch#lf a sufficient

a particular request from reaching the voter in a timelyumber of votes and all other related conditions were

manner. As we do not impose any constraints on thsatisfied, the voter proceeds with the next round of voting

voter itself, the voter must rely on other information foprocess, otherwise, the voter may repeat the operation for

synchronization. Moreover, a voting session takes plaggund #n. These can be considered as branching points

whenever there are sufficient number of votes for a givavhere the protocol takes a decision based on information

failure class (e.g., fail-stop) for a particular requeta | it has gathered.

replica’s vote misses its intended voting round, the vote A novel property of the IT structure is that it allows

is treated as an obsolete vote. for refinements in specification. Initially, the IT represen
tation is at the protocol level. Over subsequent iterations
parametric/implementation information is added. For ex-

Fig. 2 represents the generation of an IT for a majori§MPIe, in Fig. 2, in the CONDITIONAL space of the IT
(2/3) voter. Each node of the tree represents a primiti#epPicting the second instance of roundu#activities,
FUNCTION (or functional block of the protocol) at a@ conditionC[V oter_Ratel, indicating TMR voting rate
given level of abstraction. Here, FUNCTION is the 2/30 be greater than or equal to the message input rate, can
voter, i.e., 2 out of 3 nodes need to agree for a resyltoe added as an implementation detail (beyond the tradi-

Further, in Fig. 2, a set of CONDITIONALS[- - -] tional descriptions of TMR) to the specification. As new

describes the various conditions (actual or speculativgznd't'Onal or parametric information is incorporated, a

imposed on the voter. As exampl&s|T'ime_Window] m_p'eFe verificgtion (gnd inference) cycle is performed
%hlgh“ght any inconsistency the new parameters might

indicates a condition that a message will be process i X "

by the voter only if it arrives in a specified time windowd€enerate. Itis of interest to note that the conditional and

say[t — A, t + Al, C[Sequence] indicates the condition inference space is dynamically re-generated over each

on the seauence of message arriv@lCount] denotes round of verification. Moreover, as we only functionally
flumerate the operations of a protocol, the size of the

the number of votes received for a particular round, ang" bounded by the inf d acti Th
C[Round] imposes constraints that all the messages dre's bounded by the inference space and actions. Thus,

from the same round:. Based on the inputs to theeach stage of IT refinement only linearly adds more pa-
voter and the governing conditions mentioned abovmeters in the CONDITIONAL or INFERENCE space.

specific ACTIONS such as the voter outputs a result (arll:(fyl)r example,_ adding a condit_ional of “timing” to the 2/3
proceeds to the next round) or a repeat of the votirk te_r resultsin a.consequentlnfe:'renc_e I_|st that enumerate
process, and corresponding operational INFERENCE list Of operations on/from which *timing” could have
are generated. In the INFERENCE spa¢€Round) a potential effect on the IT.)

denotes that the conditio@'[Round] is true whereas Although, the IT visually outlines the protocol op-

?(Count) reflects the fact that the conditiafi{Count] ETations, it does not (in itself) provide any Fl related
is not satisfied. information. However, the deductive capabilities of for-

. - . mal methods permit us to pose queries and identify
Based on inferences, a specific action is taken. These ; e .
L : . thé dependencies based on the verification information
resulting inferences in turn get reflected in the CONDI-"" ™ -
L . acquired within the IT structure. The DT structure,
TIONAL space of the IT depicting information for the . I~)
. described next, utilizes the IT generated inferences to
next round of operation, to govern the subsequent rounp%. ; : . .
. : S . facilitate query mechanisms to identify FI test cases.
of protocol operation. In Fig. 2, we also highlight which _
inference(s) leads to which action(s) (depicted witRPependency Tree (DT): Query Engine
arrows labeled “leads to this action”) as well as which Deductive logic used by the verifier is applied to
resulting inference(s) causes updating of the condit®naletermine the actual dependency of the function on each
for the subsequent round of protocol execution (depictéudividual variable, thus determining the actual subset
by arrows labeled “updates.. operation”). Note that of variables that influence the protocol operation. The
based on the prior inference (first instance of round BT is generated by identifying all functional blocks of
n) of C[Count] not being satisfied, during the secon@ protocol, and ascertaining the set of variables (also
instance (repeat) of round # if sufficient number of function variables) that directly or indirectly influence

votes are not received, then an action such as “Declahe protocol operation. The set of conditions in the IT

functional level incoming messages (votes)
specification o

CONDITIONALS round #n
2/3 votef FUNCTION

Initial Information - e
TR - C[Count]
New/added Info. i | ClSequence]
e . C[Round]
 C[Time_Window] ._.-—-._ _

\
S ACTION: Repsat operation for round # n
w | (Insufficient numker of vote counts;
Majority not found)
N

Leads to this -~ |\\FERENCES
action 7

A \

E‘ 2(Count) 'E t(Round) t(Sequence) t(Time_Window)

\
\ ACTION: Proceed for round #n+1
\

7aporty) round #n \ o
""" [': CONDITIONALS 2/3 vote} FUNCTION \\' (Sufficient number of vote counts
! > . | >\ Majority found)
e CVoter_Rate] | Count_Low 1 C{Org_Cond | J ' \\\
New/added Info', 1 No_Majority | of round #in] X ; .
o g I ACTION: Deglare Error

.~ INFERENCES : (if no majority is found after P ~. round #n+l

- N ,
Updates the conditional space ! repeatlng/round #n) — 2/3 voter FUNCTION

L |
for the next round of operation t(Majo\r\lty) \V/ e / ~ J; P

Leads to this
action

(Can be specified at a varied level of abstraction
(e.g., RTL level of specification))

LEGENDS

—mm—3> Incoming message Q A functional specification of a protocol operatign
— Actual flow of operation

! Y A functional specification at a different
....... >
Alternate flow of operation \) level of abstraction

N
—-—= ===~ Resulting inference leads to an action C[] Operating condition

~~=7=7=====> Resulting inference updates/adds a condiliolr(. .) Operating condition being true

~~= New Information to CONDITIONAL space ';() Operating condition NOT being true

Fig. 2. The Inference Tree for a 2/3 Voter Protocol

(appearing the CONDITIONAL space) forms the initialover certain variables i.e., we try to uncover the reason(s)
set of variables in the DT. This initial set of conditionalshat causes the inconsistency. If the “inconsistency” is
serve as an actual (or speculative) list of variables folependent on a given set of variables, then we can inject
the DT. If the verification process at a particular level ofaults into these variables to observe the behavior of the
abstraction completes successfully, as per our intendaebtocol in such faulty cases.

objectives, we make use of the DT to identify the list In case a protocol involves operations over multiple
of assumptions, variables and functions on which theunds, the corresponding DT also is iteratively gener-
overall protocol operation or a specific aspect of thated over rounds. At each iteration, the dependency list
protocol operation depends on. Pertinent information fég pruned as one progresses along a reachability path.
these dependencies are essentially captured in our lfiTthe absence of any new conditionals being added, the
structure. This dependency list along with constraintependency list of the DT is monotonically decreasing.
(conditionals) is then passed on to the test cases genarcase new conditionals are specified, variables which
ation tool to construct specific tests for Fl experimentsvere pruned earlier from the dependency list may re-
On the other hand, if a conflicting condition is flagge@ppear in the next DT iteration. The leaves of the tree
and gets reflected in the IT INFERENCE space, wepresent the minimal set of variables that are associated,
initiate deductive reasoning through the DT. The D®r provide influencéon the operation of each primitive
allows querie% about the protocol behavior to be posedunction of the protocol.

following the inconsistency to determine the dependency

51t is to note that queries in the DT’s can be formulated as (a) ’In case dependencies in the protocol arise due to subtler lowe
conjectures and posed to the theorem prover of the undgriginmal level details which have not been specified, then naturdilgse
engine to ascertain dependencies of the protocol operatiocertain dependencies will not be uncovered. It is important to abersihat
variables or (b) simple database operations to retrietefisariables the “completeness” of the variables set is complete onhyhéo“tevel
from the tables storing verification information. of specification” actually specified.

P: a round-based protocol

Query: Depends on which assumptions? . Query: Depends on which variable definitions?

Input: Speculative or actual list of axioms/theorems. P(n) Input: Speculative or actual list of variable definitions
obtained from the IT CONDITIONALS space obtained from the IT CONDITIONALS space

Output: List of dependent axioms/theorems Output: List of dependent variables over round # n

Inferences/Action link the two nodes

| New timing/parametric information !
. and assumption added in the specs.]\ -

P(n+1
G) Output: Refined output list is produced indicating

dependency (or lack of it) on newly incorporated
variable definitions/axioms/theorems over round # n+1

Terminal round @\
A complete dependency list of variable definitions,

axioms, theorems required for establishing correctness
of a specific property.

| FI Experiment: Combinations of "variable—-value" pairs out of the dependency list satisfying ,
| various operational constraints. Generated via a Test Case Generation Tool !

Fig. 3. The Dependency Tree : Highlights of Key Processesitiad in a Round-based Protocol

Fig. 3 depicts a general working of the DT forvariables and parameters, we initiate the query process-
a round-based protocol and highlights key processigg mechanism in the DT. For round# activities, we
involved. The actual dependency of the functiBin) evaluate the dependency of different assumptions and
on individual variables, assumptions, etc. as determingdriable definitions by parsing the information generated
by the verifier is stored in some form of a databasever the verification procesin Fig. 4, predicateoted?

The actual or speculative list of variables or conditional®turns true if the given replica votedote_ok? returns

as specified and captured in the IT (CONDITIONALrue if the vote is not obsolete, arfdil-stop.maj.ok?
space) forms the input for querying the dependency ofturns true if sufficient non-obsolete votes are there
the function on them. The output of a query providefor finding majority. Note that the DT points out that
the dependency of the protocol on either variables thie chosen implementation of the 2/3 majority voter
conditionals. Inferences and associated actions takendaes not depend ofi[Sequence]. Note that for other
around link the DT process at the next round of protocédult-tolerant majority voting schemes such as a function
operation. In case new information has been introducedhich discards tof: and bottomk values and then takes
query output would produce a refined list indicatinghe median of the remaining values, the correctness of
dependency on newly added variables/conditionals. &tch a voter depends on the sequencing of the requests
the terminal round, the DT process provides a compless governed by’ [Sequence].

dependency list of variables/conditionals required for

ascertaining correctness of a specific property of the

protocol. Different pairing/combinations and orderings We emphasize that the DT may not fully represent
of variable§ appearing in this identified list constituteall possible variable dependencies as it will always
distinct fault-injection experiments. Note that axiomslanbe limited to the amount of operational information
theorems required for establishing the correctness ofagtually modeled into the formal specification. At any
specific property of the protocol are important inputs fodesired level, the elements of the current dependency list
formulating Fl experiments, as these sets of statemeprovides us with a (possibly) minimal set of parameters
provide insights to basic conditions which need to be&hich shouldhelp formulate the FI experiments via all
validated in an implementation also. permutations and combinations, aideéally should gen-

Next, we illustrate how the DT for a 2/3 voter can b&rate specific (or a family of) test cases. We repeat that

processed (Refer to Fig. 4). Based on the informatidi!r intentis pre-injection analysis in identifying specifi

captured in the IT (See Fig. 2), in order to identify keyest cases. The actual FI experiments are implemented
from these test cases based on the chosen FI tool-set(s).

8This step requires thorough understanding of the workiimgiples 9Due to space limitations, we are not providing complete frm
of the protocol. treatment of the voter example.

Query: Dependency on C[Count], C[Sequence], C[Round], C[Time_Window]?
Dependency on variable definitions: [voted?, vote_ok?, fail-stop_maj_vote
\Output: Not on C[Sequence]; Dependent on C[Time_Window]
Dependent on [voted?, vote_ok?, fail-stop_maj_vote?]

round # n

INFERENCE: Insufficient number of vote counts
ACTION: Repeat operation for round # n

Query: Dependency on C[Org_Cond], C[Voter_Rate]?
Output: Dependent on C[Voter_Rate]

INFERENCE: Sufficient number of vote counts
ACTION: Proceed to round # n+1

Terminal round # m @

Fig. 4. The Dependency Tree : 2/3 Majority \Voter

| FI Experiment for validating voter's operation at round # n would entail variable

L) . I
| related to definitions of C[Count], C[Round], C[Time_Window], C[Voter-Rate].
. These variable definitions are extracted from the formal specification.)

C. Overall Process of Identifying the Influential SeSampurna [58] which generates a comprehensive set of
of Protocol Variables/Conditions test suites by eliminating the variable-value pairs that
In order to realize our proposed methodology foare not attainable/possible with respect to the protocol
pre-injection analysis, we have used PVS specificapecification by using priori knowledge of the system.
tion language to specify the protocol operation and itEhe concept of cross product is introduced to capture all
theorem prover to establish the correctness of variotl#e possible combination of variables so as to generate
properties of interests. The construction of IT/DT andet of test case scenarios. The constraints are applied
subsequent analysis in the DT as discussed earlieroier this cross product to restrict the irrelevant test gase
essentially carried out by exploiting the information thathus achieving comprehensiveness and still satisfying
gets generated as part of verification process. The deriviégt coverage. After obtaining the final constraint-cross
dependency-list gets stored in the DT and subsequenifeduct, based om priori knowledge of the working
used to perform certain queries for our proposed prefinciple of the protocol, the redundant and irrelevant
injection analysis. test cases are being removed. The expected output of the
In order to prune the list of variables (and in turrfool is test cases containing variables and their assaciate
state-space associated with them), we compare the Welues that would steer the system through different
provided by the DT process with the actual or speculatiates so as to detect any discrepancies with respect to
list of variables/conditional specified in the IT. Utilign the expected correct behavior of the protocol.
the DT information and comparison results, we iden- The Sampurna tool utilizes the dependency list ob-
tify the redundant variables and/or conditionals spediained in the DT to generate test cases for guiding the FlI-
fied/used in the initial specification of the protocol. Theskased validation. The steps of the test cases generation
redundant variables (those variables that are specified bubcedure are as follows:
are not influencing in anyway the protocol operation)
are then eliminated from the IT CONDITIONAL space
and the verification process is repeated again to ensure
that the specification and the corresponding verification
are consistent and up-to-date. Upon completion of these
steps, test cases for an FI experiment for a chosen tool-
set can be constructed using the identified minimal set

Step I: Assimilate the complete (or a part of;
based on user’s intuition) set of variables and their
associated values/ranges. These variables are part
of a minimal set of variables on which a particular
stage of the protocol operation depends on.

Step Il: Eliminate redundant and unattainable test
cases using the information captured in the IT

of variables.
D. Generation of Test Suites for Fault-Injection Ex-
periments

In order to support the test generation aspect of our
proposed methodology, we have developed a tool called

conditional space and/ar priori knowledge of the
protocol operational behavior.

Step lll: Reduce further the number of the resulting
test cases by applying additional constraints, if there
are any, that a user may want to impose on the

10

system. of i's own voting process on inputs received. THen-

In Sampurna, variables identified by the DT are storédlome " (j), Vi, j represents the union ofZM"(j)
in different tables depending upon their functionalitiednd MM (j). .#"(j) is represented in vector form for
and queries are formulated considering the tables as §@ch value of, with vector entries corresponding to all
input and using logical relations among variables. Multi; values from which: receives messages. The vector
ple queries could possibly be formulated to generate tR8try corresponding to any nodeis a binary input: 0
desired set of test cases. The final output of these queri@$responding to a fault-free input received fromas
are stored in the table and reports can be generatedPgiceived by, and 1 representing a fault being perceived
be used by a tester or user of the system. by i.

After having described the overall IT/DT based ap- Each node maintains its perception of the system
proach for generating Fl experiments, we now presenstate using a system level error repdif;(j), consisting
case study of a basic online diagnosis protocol (hereafffran ordered quadrupl@, j,n, ;" (j)). The function
referred as the WLS Algorithm) introduced in [60],F7et(J) = |Uien,iz; £7'(4)] is used to count the number
where we highlight the construction of IT and DT strucOf accusations on processgrby all other monitoring
tures for the same, and discuss how relevant test caf&@cessors during frame. Thus, Fy;,(j) is an integer
were generated to validate an implementation of thighere0 < Fji,(j) < (N —1).
diagnosis algorithm against these specific though criticBliagnosing Benign Faults
tests. Note that we utilize PVS-based formal theories The model of the diagnosis algorithm is referred to as
developed in [60]. A description of the protocol alonghe processor—processor (PP)odel since it is assumed
with its formal treatment is presented in subsequetiat all the communication links are non-faulty and that
sections. processors are the only potentially faulty units.

IV. Pre-Injection Analysis for Fl-Based Val- Algorithm PP (WLS)

idation of the Online Diagnosis Protocol

D1.0 For alli,j € N, each processar monitors eachness; €

A. An Overview of the WLS Algorithm and its For- A (7).
mal Specification and Verification D1.1 If the valuev; contained inmess; does not agree
. . with V;, thenmess; € ILM(j),
In [60], authors have presented comprehensive online D12 If mess; is missing, thenness; € MM?(j),
diagnosis algorithms capable of handling a continuum of D1.3 Update the syndrome information?*(j) =
faults of varying severity at the node and link level. The ILM (5) U MM ().

WLS algorithm which deals with node (benign) faults D20 At the completion of framen, for every j, each: will
determine if an error report should be issued:

utilizes a two-phase diagnostic approaphase 1:local it .#"(j) # 0 then send reporf™(j) (as composed/sent
syndrome formulation based on a node’s local perception by) to other processors, else do not sefl(j).

of other nodes; this is based on that node’s analysis ofP3-0 For eachy, as framen + 1 completes, computé, (7).
incoming message traffic from other nodes, phdse 2: D3.1 If K, (j) = [N/2] then declarej as faulty.
global syndrome formulation through exchange of local

D3.1.11f processok failed to reportF}* (j) = 0
) . thenmessy € MJ\/[,L."+1(I€)
syndrome information to all other nodes. In subsequent

D3.2 If F{,(j) < [N/2] then

o

dlscuss!ons, terminologies and algorithm description are D3.2.11f k reported " (j) # 0 then mess;, €
taken directly from [60]. LM (k)
Terminology D4.0 Increment frame counter and proceed to step D1.

Let N be the number of processors in the system
andmess; represent a message sent by procegséis The error detection process is summarized by step
the communication model is frame based with messages.0. During frame:, each processor monitors the mes-
sent/received by nodes at the frame boundaries, the fragages received and performs error checking. The logical
number is also a useful component in identifying aontent errors identified in step D1.1 are detected by
message. Letz* (j) define the set of alhess; received voting on the inputs and then checking the inputs against
by processori as composed/sent by during frame the voted value (i.e. deviance checking). Omissions of
n. Fault categories for the messages are based on #xpected messages are also detected and recorded in
receiver’'s observations on these messages. Two suizh.2. In step D1.3, these errors are written into a local
fault categories are: (a) The set ofissing messagges error log to be processed at the completion of frame
MM (j), are those messages whitlbelieves; failed In step D2.0, if any errors have been logged, a system
to issue during framen, and (b) The set ofmproper level report is issued accusing the suspected processor.
logical messagesILM*(j), are those messages whiclThese reports are counted in step D3.0 and the accused
are correctly delivered but disagree with, the result processor is declared faulty provided at least half of

11

the system agrees on the accusation. The diagnodtifferent values to different receivers is not considered.
processors are thus also checked as part of the algorithiii.processors then compare the exchanged values with
In D3.1.1, if j is determined to be faulty but a monitoringtheir own. Any discrepancy is recorded as an accusation
processork failed to report an error on, processork against the sending processor.

will be accused as faulty in the succeeding round ¢, o 0ing the Formal Specification of PP
diagnosis. In D3.2.1, if only a minority of processors

accusedj, they will be accused as faulty in the next The formal specification of PP is specified in a single

round.

Formal Treatment of Algorithm PP (WLS)

In order to facilitate formal analysis, in [60] the
authors have simplified the algorithm emphasizing thﬁ
operations being performed and the properties that a][ﬁ
needed to be formally specified and verified. The si

plified form is as follows:

m

PVS theory calledpp. In the theorypp, some other
predefined theories are explicitly import€dThis theory
takes several parameters which includethe maximum
number of periodsyn, the number of processors, and
the type values that are passed between processors.
e termerror represents values that are benign upon
local receipt, such as missing values, values failing parit
check, values failing digital signature checks, and so on.
BAD and GOOD are the values of accusations sent by

PP(0) . processors over the network. Finally, the functial is
1) All accusations of faults are cleared. assumed to return the correct value for each frame of
PP(n), n> 0 computation, and that the correct value is never any of
1) Each processoi executes one frame the special valuesrror, BAD, or GOOD.

of the workload, arriving at some value

The typestatusess defined to be an enumeration of

Val™(i). three constants, corresponding to three of the categories
2) Each processor sentisi/” (i) to all other of behavior:symmetric-value faultybenign and good

processors. The functionstatusreturns the status of a given processor
3) Each processori compares incoming (or fault containment unitcu).

messages to its own value:
a) If the value fromj does not match,

Some notations are used for describing statusges:
¢, and g are predicates recognizing the symmetric-

value faulty, benign, and good processors, respectively.
Similarly, given a sefcaucus agcaucus is the set of
arbitrary-faulty processors inaucus The functionsss

cs and gs similarly select the symmetric-value faulty,
benign, and good processors, respectively.

The functionsendcaptures the properties of sending
values from one processor to another. This function takes
a value to be sent, a sender, and a receiver as arguments;
it returns the value thatould bereceived if the receiver
were a good processor. The behaviorsehdis axiom-
atized according to the status of the sender. The first
axiom simply says that a good processor sends correct
values to all (good) receivergi(p) O sendt,p,q)= t.

The second axiom says that a benign faulty processor
always delivers values that are recognized as erroneous
by good receiversc(p) D sendtp,q) = error. The
third axiom says that a symmetric-value faulty processor
sends the same value to all good receivers, although
- — - — that value is otherwise unconstrained (i.e., it may be

In this rewriting of the algorithm, the initial frame, 5y hossible value, including those that are recognized
referred to as PP(0), simply initializes the _data struggg erroneousy(p) Ssendt,p,q) = sendt,p,z). Nothing
tures appropriately. Next, a workload frame is executqd hecified for the behavior of asymmetric-value faulty
(Step 1), arriving at some valugal. Processors then sengers. A lemma (callesends is stated and proved

exchange values (Step 2). All good processors shoylehy o) receivers obtain the same value no matter what
then have exchanged identical values. Faulty processors

may have exchange_d_ _corrupted values that are_ Ioc_a"MOThe complete theory specification adapted from [60] is prese
detectable; the possibility of faulty processors delwgri in the Appendix and we refer the reader to [60] for furtherailst

is missing, or is otherwise detectably
benign, or there is an accusation from
the last frame of againstj, i records
that j is BAD.

b) Otherwise; records thay is GOOD.

4) Each processor sends its report on each
other processor to all processors.

5) Each processarcollects all votes regard-
ing each other processgr

a) If the majority of votes are BAD,
then processor declares; faulty.
Furthermore; records an accusation
against any processdr that voted;
GOOD.

b) If the majority of votes are GOOD,
then i records an accusation against
any processok that voted;j BAD.

12

the status of the sender (here, the possibility of link and ~ EXI STS j 2: (KDecl areJ(pset, R O dAccuse,j2,i2) /=

arbitrary faults is discountediendt,p,a) =sendtp.2). ey £ EASORE (LAVGDA poei R o S hense) R) (1)
The functionHybridMajority is intended to be similar

to the standardvajority function, except that alérror The intended meaning of this formal description is

values are excluded. The functiétybridMajority takes that afterR periods, starting wittDldAccuseaccusations,

two arguments, a set of processors (i.e faurse}, which processori believes that processoj is faulty. The

we call the caucus and a vector mapping processorfunction PP is defined as a recursive function. If the

to values (i.e., arfcuvectoj. Several properties relatednumber of periodsR is zero, theni will not accuse

to HybridMajority that are of particular interests arej. If KDeclareJ(pset,R,OldAccuse,j,idhat is, if after

described below: gathering votes for perioft, a (hybrid) majority of other
The first property states that if the vector recordgsrocessors senilan accusation of, theni believes;

the same non-error value for all good processors jg faulty. Otherwise PP is called recursively, using one

the caucus, and the vector records an error value fiess period. The recursive call also upda®sAccuseo

all benign-faulty (benign) processors in the caucus, aitclude the case that some processor misdiagnosed some

there are more good processors than symmetric-valoier processor. That is, an accusation is added to the

faulty processors in the caucus, thetybridMajority |ocal OldAccusdor the next period if the voted diagnosis

returns the same value as that recorded in the vectdbeclareJ(pset,R,OldAccuse,j2,i@)some processgi2

for the good processors. does not agree with the individual accusation sent from
The second property states that the value returngdo ;2.

depends only on the values recorded in the vector fora two properties dealing witsoundnesgnd com-

the processors in the caucus. _ pletenesare formally specified and verified using PVS
The final property deals Wlth the fact that if therq,, [60]. We have added (and at places modified) a few

are more good than symmetric-faulty processors and &ecifications as needed. The first requirement that of

good processors agree on some non-error value, and &g, qnesstates if the algorithrPP declares a processor

HybndMaJorlty function returns a value, then that valuqO be faulty, then it is indeed faulty. The key property

is the value of each good processor. _ being addressed here is that all good processors accuse
Next, the definition of some of the key functions of,ny “tauity processors of being faulty. Essentially, we

the actual algorithm is discussed. want to prove that if is good, and afteR periods of PP,

S\IJEdE]O(qit()CREJjSéi : a dA&gUSﬁg}:TTV;I R = i accuseg, then either;j is benign or symmetric-value
send(Val (R§ i J ?)) T(HEN BAD (R= faulty. The second propertompletenessstates that if
EkBFFGOOD a processor is faulty, then algorithRP will determine
this.

The Syndromdunction above is meant to capture the
property that in periodR, i believes; is faulty. Th_e B. Visualization: IT/DT for the WLS Fault-
paramete©ldAccuseessentially records old accusatloni). . ;

: ; iagnosis Algorithm

from earlier periods. The only other reason to accusé
a processor of faulty behavior is if that processor sent The formal verification of the two properties stated
some value that does not correspond to the correct valabove is based on the prove-by-induction on the number
The next functiorkDecl ar eJ (i.e., k declareg faulty) of rounds. The PVS tool allows the user to conduct
is built using theSyndromedunction. The definition is: partial proofs under different assumptions and special

KDecl ar eJ(pset, R, O dAccuse, j , k) : bool = cases of interests.
Hé’g:]h‘(j“s’?{]g:'oggﬁsft; '(‘]Ag’igﬁu's'e) i k))=BAD The objective of the formal verification and repre-

sentation of verification information in the IT structure
This predicate is meant to capture the idea th@d to guide the selection of appropriate queries to be
processork will gather all accusations against somgosed in the DT. It is important to note that the selection
processorj, and then take theétybridMajority of that and formal representation of queries to be posed is still
set. If most processors accugethen this predicate is an interactive process. This is typical for any theorem
true, i.e.,k declares; faulty. The main function, for proving (proof theoretic) environment where the user's
“processor-processor model” based diagnostic algorithighowledge of the specified protocol activities guides the
PP is specified below: process of query formulation. Note that for both IT and
PP(pset, R O dAccuse) (i, j): RECURSI VE bool = DT, we describe them in simple English as depicting the

| F R=0 THEN FALSE S R information in the formal syntax of PVS would not be

ELSE KDecl areJ(pset, R A dAccuse,j,i) -
PP(pset, R-1, (lambda i2,k: O dAccuse(i2, k) OR appropriate for general readers.

13

Development of the IT Structure INFERENCESspace. They in turn update tt@ONDI-
In Fig. 5, we depict the operational flow of the PPTIONALSspace for the next round: {+ 1) and also lead
(WLS) algorithm for a particular node for three round4o the specific action of recording‘BAD’ and sending
of activities starting with round #. The initial set of a report. Based on the notations introduced in Fig. 2,
conditionals on which the protocol operation begins witlve have highlighted these in Fig. 5 with arrows labeled
is listed below. “Updates...” and “Leads to...”, respectively. Over round #
e g(p) — send(t,p,q) =t n—+1, based on the reports from other nodes about node

: zg;:ziz‘;gg Z%zi:?crz(t p.2) j after roundn, nodei collates this information and
e send(t,p,q) = send(t,p,z) performs the majority voting. If the majority of nodes
e Vp:g(p) Ap € caucus — v(p) =t At # error [] voted nodej to be faulty, then node also declares
* Vp:c(p) Ap € caucus — v(p) = error 7] nodej to be faulty. If a nodek fails to find j fault

o |lcaucus|| = ||cs(caucus)|| + ||ss(caucus)||+ || gs(caucus)|| J . Y. J Ys

o |lgs(caucus)|| > [|ss(caucus)|| A o/ N % — HybridMajor- then node; prepares a syndrome for nodeand sends

Ity(caucusév) =t o §) |) that to other nodes. Over round # + 2, based on
¢ Nz bl <)2 where X nd 1 are e o unber the report from other nodes about nodefter round

system. n+ 1, nodes collates this information and performs the
o Syndrome?(j) = BAD — =(Val™(j) = majority voting. If majority of nodes found node to

send(Val®(j), 5, i) v OldAccuse(i, j) be faulty, then node also declares node to be faulty.
As a general rule, to guide the proof process i the event, if one of the conditions were not satisfied,

proceed in a desired way, we add conditions as the progfiernate actions could have been taken as marked in
steps are taken. For processdp judge processof in iy 5.

round # n, it looks at either the value sent by Processpieyelopment of the DT Structure

j (i.e., sendVal"(j), j,7)) or an old accusation about |, rig 6 we illustrate how the DT of the WLS
processorj (i.e., OldAccusg By setting the predicate 510 ithm can be processed. Based on the information
OIdAccuse(_l,J)o be true,_we let the functioBP to return captured in the IT (Fig. 5), in order to identify key vari-
true by setting the predicatDeclareJto true over the g ong conditionals, we initiate the query processing

round #n + 1. KDeclareJbeing true indicates that afterin the DT. For roundch activities, we determine the actual

n rounds, starting wittldAccuseaccusations, Processorgng Jack of dependency on the conditionals/variables as

i believes that processgris faulty. listed in the CONDITIONAL space of the IT. At each
iteration, the dependency list is pruned as one progresses
over multiple rounds of protocol execution. Moreover,

S'm'laHY’ for a pro(;:i;sor;to b? declz(ljaredt La_tulty by in case new conditionals are specified, variables which
Processor over roun +2 as it could not diagnose, o o pruned earlier from the dependency list may re-

processon o be faulty as majont)_/ of processors dldappear in the next iteration. As illustrated in Fig. 6,
declarej to be a faulty processor, in the recursive part

. ; round n of the protocol operation does not depend
of PP with one less round (i.e., for round B-1), the : . . .
second clause (that i€XI STS | 2. . . appearing in a on assumptiorHybridMajority, however, upon adding

snippet of formal specification dPP) need to be set true timeoutas a new condition for the subsequent rounds of
. operation, the assumptiddybridMajority re-appears in
in order to updaté®ldAccuseto reflect that processadr b pudry jonty bp

misdiagnased processr the dependency list for roundsr#+ 1 andn + 2. Below
We now describe the IT for the WLS aIgorithmwe highlight the complete list of dependencies for the

depicting the operational flow for a node' ‘in the completenesproperty PP (i.e., if a processor is faulty,

system (See Fig. 5). This can be constructed for oththren theP P will determine this) to hold. Please refer to
y 9.).) . : - the PVS specification in the Appendix for definitions of
nodes as well. The ways of triggering or setting various <o terms

conditions to steer the flow of protocol operation have .
: : . . Dependency List:s, g, ¢, gs, cc, ss, sendl, send2,
been discussed in the preceding paragraphs. During the . r
. . . PP, Empty, HybridMajority, KDeclareJ, Syndrome,
execution over round, node: receives a message from OldAccuse
nodej and also a syndrome gffrom nodez as prepared . L
/ y 9 brep FI experiments for validating thé®P (WLS) algo-

by it aft d #r—1. C[Set] in the CONDITIONALS .) .
y It after roun [Set] in the rdthm at roundse, n+ 1 andn + 2 would entail variables

space reflects the initial set of conditions. Over roun - .
n, based on the value received from nogeand a related to the definition of the terms listed above. We

syndrome from node: reflecting that it suspects to provide further details on this aspect in Section IV-C
be faulty, nodei suspectsj to be faulty, informs other where we discuss validation of a Java implementation

nodes about its assessment and then proceeds to %éhe WLS algorithm.
next round. These inferences have been captured in the

Syndrome of ' from . . Message from node '}’
node 'x’ after round # n-1 ™. “ forround #n

¢
CONDITIONALS
round #n

PP
C[Set]: Initial set of Conditionals \\ i ~
as listed in the text.

N
\
\

INFERENCES \

/" suspects '}’ X' suspected

- . 7 !
faulty _ Tfaulty s / ACTION: Record 'j’ GOOD and send report
; ' - Leads to this action. <~ K
Updates Conditionals space e T » Reports from other nodes about 'j’
for the next round CONDITIONALS r E e after round # n
e - PP Tround # n+1
S ! I'records j' i Cl[Set] \\
“71 BAD ;
INFERENCES
A - R . ACTION: Record 'k’ BAD and send report
oK finds j Majority voted 'I' declares '}’
non-faulty ' faulty ¢+ faulty

’." N - Leads to this action . g
Updates Conditionals space '~ ___ .=~
for the next round CONDITIONALS

i records 'k’

(o

Found # n+2

! Clset]
~e-”BAD) [Set]
INFERENCES
Majority voted 'i' declares 'k’
'K faulty faulty

ACTION: Récord '’ BAD and send report

Reports from other nodes about 'k’
" after round # n+1

Fig. 5. The IT for the WLS Online Diagnosis Algorithm — Opévatl Flow lllustrated for Nodes'

Query: Dependency on {List}? (List = C[S] : initial list in IT)
Output: Depedency on {OldAccuse,send,Val timeout...}
Not on {HybridMajority}

| Anew condition !

. C[Timeout] added | INFERENCE: ' suspects '}’ being faulty

round # n+1€

-

Output: Depedency on {KDeclareJ, HybridMajority, Syndrome....

INFERENCE: 'i’ declared '’ faulty and suspects 'k’ being faulty

-0

round # n+z€
Output: Depedency on {KDeclareJ, HybridMajority, Syndrome...

INFERENCE: 'i’ declares 'k’ faulty

Fig. 6. The DT for WLS Online Diagnosis Algorithm — Procedsidtrated for Nodes

C. Validation of a Java Implementation of the WL%hen to end a frame, as we would wait for a defined

Algorithm

time period in order to receive messages from all the

)])) . other processors in the network. Also, as per the original
We have implemented the online diagnosis algorithifascription of the algorithm if there were no errors then

(PP) in Java. A requirement was that a user can verifydiere would be no error reports sent. However, there is
a processor was declared as being faulty by monitoring, ¢hecification on how long a processor should wait for
the outputs on the command line. Instead of a processy error report. So, we included a timeout so that error

receiving values for a workload and computing majority,
to obtain a value, we decided that each node would seg
only one value per frame. This helps in determining

orts received before the timeout would be processed
d error reports received afterward would be considered

15

perturbeddelay function that permits us to selec-
tively delay, or fail to delay, at the point where it
is inserted.

Related to the previous finding, via the per-
turbeddelay function, we also discovered a syn-
chronization problem which was caused by having
the processor do the sending, receiving, and pro-

as being lost message and gets discarded.

As the protocol operation essentially depends on as-
sumptions relating teendOIdAccuseSyndromecaucus
andHybridMajority, the key test cases for three specific «
rounds of operations are generated using the Sampurna
tool. The description of fault-injection scenarios to be
executed is given below:

o For round #n

Corrupt the variable containindal.

Delay the message containingal to get it
recorded as anissingmessage.

Corrupt the variable containin§yndrome

— Corrupt the variable containin@ldAccuse
Delay the message containing error report to

force it to get accused in the subsequent round. *

e Forround #n +1

— Corrupt the variable containingy?, ().

— Even if F*,(4) > [N/2], corrupt the variable
containing processok’s Syndromegenerated
with respect tgj; that is chang®ldAccusdor
the next round.

— Evenif F*,(4) < [N/2], corrupt the variable
containing processok’s Syndromegenerated
with respect tgj; that is chang@®IldAccusdor
the next round.

— Increase the number of faulty processor
such that the condition||gs(caucus)| >
||ss(caucus)|| no longer holds.

cessing of messages thereby leading to concurrency
issues in the case when the processor got interrupted
while processing a message. Later on we rectified
this problem by using a message container for the
messages to which both the processor and threads
responsible for receiving and delivering the message
to the processor would read and write.

Another interesting case that revealed the deficiency
in our implementation was that we had missed out
the checking of the processor’s health to determine
whether it is a healthy or faulty processor. At
times, in our system the number of faulty processors
would be more than the good or healthy processors
and still we would perform majority and take the
votes of faulty processors to get a majority vote.
This sometimes led to declaration of a healthy
processor as a faulty in a caucus of three processors.
From our viewpoint, this case would not have
been identified via classical testing techniques. This
became a trivial test to conduct as the dependency
list included termsgs and ss, and the condition
llgs(caucus)|| > ||ss(caucus)| was also captured

« For round #n + 2
— Corrupt the variable containing/’(j). Discussions

The parametersVal, Syndromg, Syndromet!, Formal methods require the right mix of effort, exper-
OldAccuse and HybridMajority take Boolean values. tise, and knowledge. Interactive theorem proving pro-
F2,(j) and Fjgf'(j) can have the value either moreyides a general approach to modeling and verification
or less than the majority value. Three combinationg,t requires significant human efforts to deal with many
relating variables/al, OldAccuseand Syndromeare not tedious proofs. In this particular case study, we leveraged
attainable, e.g., a combination such & beingfalse from the work already done as part of the development
OldAccusebeing eithettrue or falseandSyndroméveing of online diagnosis algorithms [60]. However, in our
false is not valid. Subsequently, we have a set of 23ther case studies [52], [50], substantial efforts (about
Fl scenarios. Further, two delay operations and a Caenan-year) were put in developing the formal specifi-
causing the number ajood processors to be less tharcation and subsequently verifying desired properties of
that of faulty ones result in a total of 24 tests for faulhe protocols used therein. It is to emphasize that any
Injection experiments. introduction of new information in the specification as

Our Java implementation of the WLS (PP) algorithmyart of speculative experiments, often lead to extra effort
was subjected to a total of 24 test cases, and we Wefeproving the conjectures posed for different properties
able to identify 3 software design faults that were causing interests. However, it is important to emphasize that
the program to not get executed as per the specifigwadays protocols developed for highly dependable
requirements. We describe these findings below: systems typically go through formal verification, and it

« One of the design fault had to do with the omissiowould be ideal to exploit (and reuse in a meaningful

of ‘timeout’ notion in our initial specification that way) the information generated over the verification
was causing the program to wait for an arbitrarilyprocess to guide the validation of an implementation of
long time for either the message or an error repatthat protocol. With this viewpoint, we have introduced
to arrive. This case was simulated by inserting and presented a comprehensive methodology for formal-

in the IT conditional space.

16

methods driven pre-injection analysis to generate testses a formal specification of the protocol and it is pro-
for Fl-based testing of dependable distributed protocolsessed using some heuristic to identify influence param-

. . . eters in an automated manner. In particular, reachability
V. Comparative View with Related Work analysis is performed to identify fault cases and their

hThe _:c:_Ias§|caI fuse of flormald methg;ds ”has b]feg_ f8[)rresponding activation paths. In order to reduce the
the verification of protocols, and specifically, on finding;; o ¢ ¢ reachability graph certain restrictions on the

design stage flaws in the protocols. In [6], the focuﬁrotocol behavior is assumed. This scheme works well

of the .work IS on the verification Of. fault-tolergpc or bounded systems, however, for protocols dealing with
properties using model-based formalisms, specifical

e ¥al-time and non-deterministic attributes, this apphoac
an executable specification has been developed to gSpi e

tablish the tolerated behavior of the spacecraft COM- Gimilar to our proposed approach, the work reported

puters in presence of faults. In literature, a va_riet_y qﬁ [34] presents a symbolic approach for injecting faults
approaches have developgd excellent concepts in I'nk'ﬂﬂose relating to HW errors only) into programs written
formal approaches to testing (See [2], [4], [7], [8], [12]i, jaya and considers the effect of bit-flips in program
[16], [22], [24], [29], [30], [36], [40], [53], [57], [62] \j5janles. However, HW errors which can alter the con-

among others). While there has been a lot of work | iow of the program have not been considered by the

have presented the HOL-TestGen system that genergigg, s sing symbolic execution and model checking.

unit tests from Isabelle specifications. In [9], a tool thg}, 5 recent paper [27], the authors have proposed a
uses HOL specifications for testing protocols has begi,me\york for generating test vectors from specifications
dlscuss_ed. In [42], the author has pres_ented PVS [Al}itten in the Prototype Verification System (PVS) [41].
strategies to create random test cases directly from P\, methodology uses a translator to produce a Java
specmcat.lons. prototype from a PVS specification. Symbolic (Java)
_In particular, to the best of our knowledge, the ke, Finder [44] is then employed to generate a collection
distinction of our approach from others is that we mak (oot cases. The combination of these two existing tools
prominent use of proof-theoretic-based reasoning, aBfables this process by automating much of the task.

link/analyze the inferences generated over the Veriﬁcﬂ'simple example has been considered to illustrate the
tion process to determine key assumptions and the ?‘?Bposed framework

of (implementation) parameters to derive scenarios OFinally, it is worth to note that in a simplistic FI-

drive FI experiments. Though our approach is proofaqeq testing, it is necessary to inject all possible values
theoretic, we could potentially utilize (and interface}, qystem variables to uncover faults that we have been
model theoretic approaches as well. In [46], the authogge 1o detect/identify in case studies considered in our
have developed a unified framework to provide SUPPQitsearch. However, with our proposed pre-injection anal-
for both proof-theoretic as well as model-theoretic a%sis technique, this can be done in a controlled manner
proaches. As mentioned in Section 1II-B, our approacllih guided search in the space of influential set of

allows for mixed level of abstraction. For example, at thg, iaples and their values which led to specific protocol

circuit level abstract, a function can be modeled in say.iions at particular stages of the protocol execution.
RTL-level specification. Such a low-level abstraction of

the program is useful to reason about hardware errol- Conclusions, Summarizing Past Work
The formal model can then be rigorously analyzed undand Future Directions
error conditions against the above specifications usingThe conventional FI approaches are facing growing
techniques such as model checking and theorem provitignitations in handling the large state space involved
Existing efforts [1], [5], [10], [16], [18], [19], [21], in the operations of dependable distributed and real-
[54], [56] have explored deterministic approaches fdime protocols. We have shown the efficacy of formal
test case identification for validation. The work reportetéchniques as an supplement for Fl-based validation
in [16], [19], [21] have exploited some typical prop-of dependable distributed protocols that have a formal
erties of fault tolerant protocols (e.g., decision stagespecification and whose models have been validated. In
chain of furcated fault-handling actions, etc.) to modehis paper, we have applied our approach to an online
complex distributed protocols. Our proposed represediagnosis algorithm and illustrated the effectiveness of
tation schemes (the IT/DT structures) share propertitee proposed pre-injection analysis in identifying rele-
with other state-transition representations like assertivant though critical test cases against which an imple-
trees [5], [56] or Petri nets [20]. We point out that [20jmentation of the diagnosis protocol must be validated.

17

In [52], we introduced the basic idea of using formaattributes (e.g., specifying numeric bounds for variables
methods for pre-injection analysis to derive a set qfrocessor attributes, etc.), real-time deadlines, system
parameters to describe fault-injection scenarios. Wig¢h thvorkload conditions, etc. Furthermore, associated with
case study of clock synchronization [52], we highlightethese attributes, the corresponding formal verification
the following key capabilities of our proposed preprocess also needs to be developed. We have yet to
injection analysis approach: (a) support for traceabifully incorporate the specification of system load (and
ity of fault-propagation over different functional block,stress) into the formal engine. At present we are limited
(b) identification of a specific functional block whichto approximating these conditions using distributions; in
need to be further examined depending upon the infaéhe future we are looking at approaches to model stress
ences captured (via IT) and corresponding dependeranyd load as parametric inputs.
list generated (via DT) for that block, and (c) support for An inherent limitation of the proposed IT/DT-based
modeling (or incorporating specification) of a specifipre-injection analysis is that the formal proof of the
functional block at a refined level of abstraction. Oveprotocol specification must be availakdepriori or car-
this case study we also demonstrated the capabilitided out by the user. Given the features of our proposed
of IT/DT approaches to pinpoint a specific block (e.gapproach, we envision our techniques to complement
2/3 Voter) which needed to be modeled to identify thexisting FI tool-sets such as DEPEND [28] or Cesium [1]
cause of a failure (partial ordering problem of messages provide improved protocol validation. We acknowl-
arriving at a specific node). In this case, 3827 tests wegéige that further enhancement of the proposed pre-
needed using classical Fl versus 24 tests identified by aofection analysis is required to broaden the applicabilit
proposed approach. In both cases, the implementatiohthe approach. As theorem proving is a cumbersome
had 3 fault cases and both techniques were correctiyd also an incomplete approach, we envision that the
able to identify them. The identified parametric attributesevelopment of automated formal methods (like invisible
include: round number, concurrency time-window, votformal methods [55]) definitely enhances the applicabil-
ing rate and numeric range for message sequencesityjtof the approach. We believe, however, that we have
is to note that such information resulting over a prepresented a novel technique to bridge the gap between
injection analysis facilitate (or guide) intelligent waysormal method based verification, which is applied on
of determining influential (or key) variables to generatthe specification of the protocol, and experimental test
FI experiments for validating protocol operations. cases.

In [50], [51], we demonstrated the effectiveness and
efficiency of our approaches through the example éfcknowledgments
FT clock synchronization and FT Rate Monotonic Al- We thank Peter Bokor, Robert Lindstrom, and Marco
gorithm (FT-RMA) [26]. In the case of the fault- Serafinifor providing constructive feedback on the paper.
tolerant real-time task scheduling algorithm namely FT-
RMA [50], [51], we were able to identify flaws in the R€f€rences

analysis, and using IT/DT obtain the specific conditiongl
to constitute effective Fl test cases which, in fact,

confirmed our identification of flaws. As a comparativel2]
analysis of our proposed pre-injection analysis technique
with conventional approaches, we showed that eveR]
though FT-RMA protocols had gone through extensive

simulation and random FI experiments, fault cases bd4]
longing to one of our derived equivalence classes of fault
types were not identified. Typically, for simulations, task[s]
sets are randomly generated and due to their limitations
in considering factors involving key schedulability crite [g]
ria, these task sets would have a low probability to cover
all key aspects of fault-tolerance and timing issues whicly,
we were able to capture during the formal treatment of

pre-injection analysis of FT-RMA protocols. (8]

Though the formal approach for analysis appears)
be very attractive and effective, it has its own limi-
tations. The foremost limitation is in the capabilities
of formal techniques for representation of parametric

G.A. Alvarez, F. Cristian, “Cesium: Testing Hard RealiE and
Dependability Properties of Distributed ProtocoBroc. of IEEE
WORDS'97 pg. 2-8, 1997.

T. Amnell, et al, “Uppaal — Now, Next and FutureModelling
and verification of Parallel ProcesseENCS — 2067, Springer-
Verlag, pp. 100-125, 2001.

J. Arlat, et al, “Fault Injection for Dependability Validation :
A Methodology and Some ApplicationslEEE Trans. Software
Engineering SE 16(2), pp. 166-182, Feb. 1990.

A. Arnold et al, “An Experiment on the Validation of a Spec-
ification by Heterogeneous Formal Means: The Transit Node.”
Proc. of DCCA-5 pp. 24-34, 1995.

D. Avresky, J. Arlat, J.-C. Laprie, Y. Crouzet, “Faultjéction
for the Formal Testing of Fault TolerancelEEE Trans. on
Reliability, vol. 45, pp. 443-455, 1996.

S. Ayache, E. Conquet, Ph. Humbert, “Formal Methods f@& t
Validation of Fault-Tolerance in Autonomous SpacecrdEE
FTCS-26 1996.

E. Bayse, A. Cavalli, M. Nunez, F. Zaidi, “A Passive TesgtiAp-
proach based on Invariants: Application to the WABSmputer
Networks 48(2), pp. 247-266, June 2005.

G. Bernot, “Software Testing Based on Formal Specifirat|’
Software Engg. Journab(6), pp. 387—405, Nov. 1991.

S. Bishop, et al., “Rigorous Specification and Conforceaiest-
ing Techniques for Network Protocols, as Applied to TCP, UDP
and Sockets,Proceedings of SIGCOMM 2005: ACM Conference
on Computer Communicationpublished as Vol. 35, No. 4 of
Computer Communication Review, pp. 265-276, Aug. 2005.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]
[31]

[32]
[33]
[34]
[35]

D.M. Blough, T. Torii, “Fault Injection Based Testing &ault [36]
Tolerant Algorithms in Message Passing Parallel Compfiters
Proc. of FTCS-27pp. 258-267, 1997.

J. Boug, P. Pétillon, Y. Crouzet, “MEFISTO-L: A VHDBased [37]
Fault Injection Tool for the Experimental Assessment of IFau
Tolerance,”Proc. of FTCS-28pp. 168-173, 1998. [38

18

Yu Lei, D. Kung, Qizhi Ye, “A blocking-based approachpooto-

col validation.” Computer Software and Applications Conference,
COMPSAC 2005pp. 301-306, July 2005.

R.Lent, “A testbed validation tool for MANET implemeattons.”
MASCOTS 20Q5pp. 381-388, Sept. 2005.

38] C.L. Liu, J.W. Layland, “Scheduling Algorithms for Mipro-

E. Brinksma, “Formal Methods for Conformance Testifigeory
Can be Practical,’Proc. of CAV Lecture Notes in CS 1639,
Springer-Verlag, pp. 44-46, 1999.

A. Brucker, B. Wolf, “Test-Sequence Generation with HO
TestGen - With an Application to Firewall Testing,” In B. May
and Y. Gurevich, editorsTests and Proofd NCS 4454.Springer-
Verlag, 2007.

R. Butler, G. Finelli, “The Infeasibility of Quantifyig the Relia-
bility of Life Critical Real Time Software,1EEE Trans. Software
Engineering SE 19(1), pp. 3-12, Jan. 1993.

J. Chang, D. J. Richardson, “Structural Specificatiased Test-
ing: Automated Support and Experimental EvaluatidPrbceed-
ings FSE99 pp. 285-302, Sept. 1999.

W. Chenet al, “Model Checking Large SW Specifications,
Trans. SESE 7, pp. 498-520, July 1998.

J. Christmansson, P. Santhaman, “Error Injection Alrae Fault
Removal in Fault Tolerance Mechanisms — Criteria for Errof44]
Selection Using Field Data on Software Fauli8rbc. of ISSRE

pp. 175-184, 1996.

S. Dawson, F. Jahanian, T. Mitton, T-L Tung, “TestingFault-
Tolerant and Real-Time Distributed Systems via ProtocalltFa [45]
Injection.” Proc. of FTCS-26pp. 404-414, 1996.

K. Echtle, Y. Chen, “Evaluation of Deterministic Falifjection
for Fault-tolerant Protocol TestingProc. of FTCS-21pp. 418—
425, 1991.

K. Echtle, M. Leu, “Test of FT Distributed Systems by Rau
Injection,” FTPDS pp. 244-251, 1995.

K. Echtle, M. Leu, “The EFA Fault Injector for Fault-Tedant
Distributed System Testing.FTPDS IEEE Press, pp. 28-35, [48]
1992.

E. Garcia, J. Henriet,J.-C. Lapayre, “Validation of aot®col

for Communication Management in CSCW Systems using [@9]
Coloured-Petri Net Modelization.14th Euromicro International

[39]
[40]

[41]

[42]

. [43]

[46]

[47]

Conference on Parallel, Distributed, and Network-Baseddess- [50]
ing, Feb. 2006
A. Gargantini, C. Heitmeyer, “Using Model Checking teelG [51]

erate Tests from Requirements Specificatioffc. of the 7th
European Engineering Conferenbeld jointly with the 7th ACM
SIGSOFT International Symposium on Foundations of Soﬁswar[sz]
Engineering, pp. 146-162. Springer-Verlag, 1999.

M-C. Gaudel, “Testing Can be Formal TooPfoc. of TAPSOFT

95, vol. 915, LNCS, pp. 82-96, May 1995. (53]
S. Ghosh, R. Melhem, D. Mossg, “Fault-Tolerant Ratenbtonic
Scheduling.”Proc. of DCCA-6 1997.

S. Ghosh, R. Melhem, D. Mossé, J.S. Sarma, “Faultiaole [54]
Rate Monotonic SchedulingReal-Time Systemsvol. 15, no. 2,

pp. 149-181, Sept. 1998.

A. Goodloe, C. Pasareanu, D. Bushnell, P. Miner, “A Tesher- [55]

ation Framework for Distributed Fault-Tolerant Algoritsrh4th
Workshop on Automated Formal Methods (AFM@)09.

K.K. Goswami, R.K. lyer, L. Young, “DEPEND: A Simulatie
Based Environment for System Level Dependability Analysis
IEEE Trans. on Computergl6(1), pp. 60-74, Jan. 1997.

W. Guijjahr et al, “Partition Testing vs. Random Testing: The
Influence of Uncertainity,”IEEE Trans. on SEpp. 661-674,
Sept/Oct. 1999.

L. Heerink et al, “Formal Test Automation: The Conf. Protocol
with Phact,”Proc. of Test Conf.pp. 211-220, 2000.

R. lyer, D. Tang, “Experimental Analysis of Computersim
Dependability,"Book chapter in ‘Fault Tolerant Computer System
Design;, editor: D.K. Pradhan, Prentice Hall, pp. 282—-392, 199659]
M. Joseph,Real-time Systems: Specification, Verification and
Analysis Prentice Hall, London, 1996. [60]
J-C. Laprie, “Dependable Computing and Fault Toleear€on-

[56]

[57]

cepts and TerminologyFTCS-15 pp. 2-11, 1985. [61]
D. Larsson, R. Hahnle, “Symbolic Fault-Injectiorifiternational
Verification Workshop (Verify)ol. 259, pp. 85-103, 2007.

J. Lehoczky, L. Sha, Y. Ding, “The Rate Monotonic Schiedu [62]

Algorithm: Exact Characterization and Average Case Bealavi
Proceedings of IEEE RTSBp. 166-171, December 1989.

gramming in a Hard-Real-Time Environmentfournal of the
ACM, 20(1), pp. 46-61, January 1973.

S. Mullender (Ed.)Distributed SystemsAddision-Wesley, 1993.
V. Okun, P.E. Black, Y. Yesha, “Testing with Model Check
Insuring Fault Visibility.” WSEAS Transaction2003.

S. Owre, J. Rushby, N. Shankar, F. von Henke, “Formaifidar
tion for Fault-Tolerant Architectures: Prolegomena to Eresign
of PVS,” IEEE Trans. Software EngineerinQE 21(2), pp. 107—
125, February 1995\ote: see http://pvs.csl.sri.com for updated
information about recent releases and documentation f&.PV
S. Owre, “Random Testing in PVS,” Workshop on Automated
Formal Methods 2006.

M. Pandya, M. Malek,“Minimum Achievable Utilization of
Fault-Tolerant Processing of Periodic TaskiEZEE Trans. on
Computers 47(10), pp. 1102-1112, Oct. 1998.

C. Pasareanu, et al., “Combining Unit-Level SymbolieEution
and System-Level Concrete Execution for Testing NASA Soft-
ware,” Proc. of International Symposium on Software Testing and
Analysis pp. 15-26. ACM Press, 2008.

K. Pattabiraman, N. Nakka, Z. Kalbarczyk, R. lyer, “Sym
PLFIED: Symbolic Program-Level Fault-Injection and Efror
Detection Framework,]JEEE DSN June 2008.

S. Rajan, N. Shankar, M.K. Srivas, “An Integration of tég-
Checking with Automated Proof CheckingComputer-Aided
Verification, CAV '95 LNCS 939, pp. 84-97, 1995.

J. Rushby, “Formal Methods and the Certification of iCait
Systems,’SRI-TR CSL-93;7Dec. 1993.

J. Rushby, F. von Henke, “Formal Verification of Algbwihs
for Critical Systems."lEEE Trans. on Software Engineerin§E
19(1), pp. 13-23, 1993.

M. Singhal, N.G. ShivaratriAdvanced Concepts in Operating
SystemsMcGraw Hill, 1994.

P. Sinha, N. Suri, “Identification of Test Cases Using arfal
Approach,”Proc. of FTCS-29pp. 314-321, 1999.

P. Sinha, N. Suri, “ On the Use of Formal Techniques for
Analyzing Dependable RT Protocolsroc. of RTSSpp. 126—
135, Dec. 1999.

N. Suri, P. Sinha, “On the Use of Formal Techniques for
Validation.” Proc. of FTCS-28pp. 390-399, 1998.

T. Suzuki et al., “Murate: A Protocol Modeling & Verifitian
Approach Based on a Specification language and Petri Nets,”
IEEE Trans. on SESE 16, pp. 523-536, May 1990.

S. Tao, P. Ezhilchelvan, R. Shrivastava, “Focused tHajgction

of Software Implemented Fault Tolerance Mechanisms ofavblt
TMR Nodes."Distributed Systems Engineering(1), pp. 39-49,
March 1995.

A. Tiwari, N. Shankar, R. Rushby, “Invisible Formal Nheids for
Embedded Control SystemsProc. of IEEE 91(1), pp. 29-39,
2003.

T. Tsai, S.J. Upadhaya, H. Zhao, M.-C. Hsueh, R.K. I{égth-
Based Fault Injection,Proc. 3rd ISSAT Conf. on R&Q in Design
pp. 121-125, 1997.

J. Tretmans, “Specification Based testing with Formativdds:
From Theory via Tools to ApplicationsProc. of FORTE 2000
Tutorial Notes, 2000.

] N. Varma, S. Kanade, P. Sinha, R. Dssouli, “CAGILY: An

Approach for Developing Test Suites for Component-Basest Sy
tems,” Proc. of IASTED SEANov. 2003.

J. Voas, G. McGrawSoftware Fault Injection: Inoculating Pro-
grams Against ErrorsJohn Wiley & Sons Ltd, New York, 1998
C.J. Walter, P. Lincoln, N. Suri, “Formally Verified Qrine
Diagnosis”IEEE Trans. on Software EnggNov. 1997.

W. Wang, K.S. Trivedi, B.V. Shah, J.A. Profeta, lll, “€EHmpact
of Fault Expansion on the Interval Estimate for Fault Detect
Coverage,’Proc. of FTCS-24pp. 330-337, 1994.

Shu Xiao, Lijun Deng, Sheng Li, Xiangrong Wang, “Intatgd
TCP/IP Protocol Software Testing for Vulnerability Detent”
ICCNMC, Oct. 2003.

19

Appendix: PVS Specification of PP (WLS) Algorithm [60]
ppl m: posnat n: posnat 7: TYPE, error T, BAD: {z: T | — z = error}, GOOD
{z: T | (-« = erron A (- =z = BAD)}, Val
[uptdm] — {z: T | - (z = ermor Vv z = BAD V & = GOOD) }]]: THEORY
BEGIN

rounds ,'Zf,‘YPE = uptd m]

cu TYPE = belo 1
cuset, TYPE = set cu]
vector TYPE = T]
Y

V
céu 4 E\R }/AR '?CUVGCtOI’

VA rounds
S %
pset v R setof.

OlfAccls ET_PSET — bool
Aﬁ eclare VA SE%%%%R négl%enutyf)g: 1.

IMPORTING car finite_cardinality fcu, n, identity fcu]],
filterg] fcu] , hybridmijrtyf 7, n, erroj

!g]ai ge TYPE g% mgetrlc manifest good}
s(2) oo =

c(2) ! |es

ey dducty’ cuse te cauc

s SAlict: = fiiet caucu §

g8 caucy cuse ef caucus ¢

f| catrg“ca%lc@ flnc%ﬁcs(caucus) + fincard(sgcaucug) + fincard gs(caucus)

en A>{|OM g{ g t

XIOM = error
sen% AXIOM s ’3 g = senq z)
Eieybrldl\/ll'ajonﬁcaucﬂs vsj ?Zl = Pﬁ:? E!f(Hf/brlé mjrty(caucus v, n))

HybridMajorityl: LEMMA
fincard g caucuy) > fincard s caucuy) A
(V p g(p) A (p€caucuy D v(p) =1t) A
t # error A (V p: c(p) N (p€caucug D v(p) = erron
D HybridMajority(caucus v) = ¢

HybridMajority2 LEMMA
(V p: (pecaucug D vi(p) = va(p)) D
HybridMajority(caucus wv;) = HybridMajority(caucus wv2)

HybridMajority3: LEMMA
HybridMajority(caucus v) = t A
(Y p. @ g(p) A glg) A (pecaucug A (g€ caucu D (v(p) = v(q) A v(p) # ermo)) A
fincard g9 caucuy) > fincard s caucuy) A (V p: c¢(p) A (p €caucug D v(p) = erron
D (V p: g(p) N (pecaucug D v(p) = t)

Syndromé R, 7, ¢, OIdAccusg¢: T =
IF OldAccuséi, j) V (— Val(R) = sendVal(R), j, 7)) THEN BAD
ELSE GOOD ENDIF

KDeclared pset R, OldAccuse j, k): bool =
HybridMajority(pset A\ i: send Syndromé R, j, i, OldAccus@, ¢, k)) = BAD

PR pset R, OldAccusg (4, j): RECURSIVE bool =
IF R = 0 THEN FALSE
ELSE KDeclared pset R, OldAccuse j,) V
PR pset R—1, (A i2, k: OldAccuséiz, k) V
(3 j2 (KDeclaredpset R, OldAccuse j2, i2) #
(send Syndromé R, j2, k, OldAccuse, k, i2) = BAD))))) (%, 7)
ENDIF
MEASURE (A psef R, OldAccuse R)

Soundnes®rof(R): bool =
(V i, j, pset OldAccuse g(i) A (i€ pse) A (7€ pse) A
fincard gq pse)) > fincardsqpsed) +1 A
PR pset R, OldAccusg (i, j) A
(V p, g, ki ((g(p) AN g(q) AN OldAccusép, k)) DO OldAccuséq, k) A (c(k) V s(k))))

SoundnessDLEch)A vSoSLEr?ar?es?roq R)

Completenes®rof(R): bool =
(V i, j, pset OldAccuse g(i) A (i€ pse) A (7€ pse) A
(c(j) vV (s(j) AN (Y ¢t p sendt, j, p) # t))) A fincard gy pse}) > fincardsgpsed) + 1
ccus

(E‘omg(eztenefs OOI}/I& & }gldéompe eneQ’}oq R) V R = 0)

FinaLSoundness THEOREM
(V 4, j: g(i) A fincard g fullsef fcu])) > fincardsqfullset[fcu])) +1 A
PR fullsef fcu] , R, Empty) (7, 7) D c(7) V s(7))

FinaLCompleteness THEOREM
(Vi giog(i) A (e(d) v (s(j) A(Y L posendt, j, p) # 1)) A
fincard g fullsef fcu])) > fincardsqfullset[fcu])) +1 A R > 0

END pp D PR fullsef fcu], R, Empty (i, j))

