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Abstract

The binary deBruijn interconnect graph (BDG) is
a realizable alternative to the hypercube. A primary
limitation of the deBruyn structure is, though, its in-
ability to embed a mesh or a mesh of trees in it ef-
ficiently, compared to the hypercube. Product Shuf-
fle (PS) graphs have been proposed, to alleviate such
limitations, though at the cost of a compler intercon-
nect structure and an increased node-degree, from 4
m a BDG, to 8 in the PS graph. A simple exten-
ston of the BDG by the edge set union with a torus is
shown, this provides for the missing mesh topology and
achieves graph capabililies/versatilily comparable to the
PS graph and the hypercube within a fized degree graph.
The structure improves upon both the PS and hypercube
m tmplementing pipelined and multi-phase algorithms.
More importantly, the purpose is designing an algorith-
mically specialized interconnect, by characterizing algo-
rithmic features of a wide range of algorithms as well as
direct architectural support for them, instead of simply
providing for a set of graph embeddings in the intercon-
nect. A set of ezamples demonstrate the Union-Graph’s
versatility in this aspect of algorithmic support.

1 Introduction

Designing efficient algorithmically specialized archi-
tectures is the focus of much current research. The
central idea is relating the structure of a range of al-
gorithms to the targeted interconnect structure. Cur-
rently, the hypercube and its derivatives are the more
popular and powerful interconnection schemes for par-
allel processing. Its versatility in supporting a variety
of secondary graph structures — arrays, rings, spanning
trees, meshes — and its ability to support a large num-
ber of algorithms, have been demonstrated extensively
in literature. Its logarithmically increasing node-degree
versus the size of the network precludes feasible VLSI
implementation of large networks.

A number of VLSI realizable architectures, CCC,
Hypertree, Shuffle-Exchange, Hypernets, Star(Cayley
Graphs), Mesh of Trees [5],(6],[10],[16] and [19], among
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others, have been proposed as alternatives to the hyper-
cube, their graph properties elucidated in the context
of the graph embeddings feasible in these structures.

The binary deBruijn graph(BDG) first proposed as
a VLSI interconnection network in [13] has been shown
[1],[17],[18] to be a powerful hypercube competitor and
also a VLSI implementable interconnect graph. It
possesses optimal embeddings of rings, CBT’s, tree-
machines and shuffle exchange to support a majority of
existing algorithm classes in a fixed degree graph [18].
The deBruijn graph has seen added importance since
its implementation in the Galileo project [14], [18].

The torus(mesh) is another versatile and VLSI-
viable computational structure used for many parallel
graph and numerical algorithms such as Finite Element
Analysis, Image Processing, Laplace equation solving
and Matrix based operations. It has been shown in [17]
that the mesh topology cannot be efficiently embedded
in the deBruijn graph in a work preserving manner, a
primary BDG limitation.

The binary n?-node hypercube, in contrast, contains
a direct embedding of an n x n mesh, improving on the
basic mesh structure by virtue of the fact that each
row and column of the embedded mesh is also a n node
hypercube - this is apparent, as the node numbering
in the obtained mesh is the same as the numbering of
a Karnaugh map. Most of the mesh-based algorithms
running on the cube use this to reduce the commu-
nication times or provide certain data movements as
required in the algorithm, without having to incorpo-
rate the O(n) communication restriction inherent in
a mesh. Consequently, a row(column) in the embed-
ded mesh can be used as an array, ring or a spanning
tree per the requirements of an algorithm step. Ex-
amples of such usage are discussed in [7] and [12] using
cyclic shifts, maximum /minimum element finding, data
broadcasting or data aggregation on data elements in
the row(column) of the embedded mesh.

Extending the basic deBruijn interconnect struc-
ture, product shuffle (PS) graphs [17] have been pro-
posed. These are in fact a Cartesian product of de-
Bruijn graphs designed to yield a structure combining
the properties of the shuffle, meshes and mesh of trees
of moderate sizes. The cost is a complex graph struc-
ture and an increased node-degree of 8.



This paper describes a VLSI-realizable Union-Graph
(UG), linking a BDG graph and a Torus. The missing
mesh computational structure in the BDG is provided
and essentially, the entire varied computational power
of a hypercube is matched (and improved upon) within
a fixed degree graph. Additionally, the nature of the
graph supports pipelined algorithms and algorithms re-
quiring multiple concurrent embeddings, not possible
in the hypercube. The design “s not” intended to
propose yet another interconnect in terms of specify-
ing its graph properties and the graph embeddings it
supports. Rather, the intent is to obtain a different al-
gorithmically specialized parallel interconnect - where
some characteristic communication patterns are identi-
fied as the building blocks of most algorithms and the
design of the desired Union-Graph (UG) is directed to
support these primitives.

1.1 Motivation

Several authors [2],[3],[8], have emphasized that the
key factor in the performance of an algorithm on a
parallel interconnect is invariably the communication
cost of positioning data onto the requisite processors,
and not the actual computational time taken. This is
termed as the algorithm’s communication stage.

Most algorithms, though, do not have a single ex-
plicit communication pattern; rarely does there exists a
direct mapping of the entire data flow or computational
graph of an entire algorithm onto a single physical or
logical topology. Usually, a general algorithm is usu-
ally composed of a number of computation and com-
munication stages. Formally, consider an algorithm as
an aggregation of stages (sub-problems) sg,s1...5p.
For stages s;, s;41,..5m, requiring different topological
structures, the need is to provide for :

o efficient operation of each individual stage (s;),
Vi,

e and for the eflicient transitional data movements
asin s; — ;41 (or similar permutations) such that the
necessary data is available at the appropriate processor
at the time of the next stage’s computation.

The first aspect requires the availability of requi-
site communication structures (tree, mesh,..) embed-
ded in the overall graph, as needed by a communica-
tion stage. The second feature provides for efficient
re-configuration, from the graph embedding required
for s; to the embedding required for s; ;1. This step
usuafly constitutes the major cost of implementing an
algorithm on an interconnect. Thus, simply describing
the availability of a set of embeddings in an intercon-
nect graph does not necessarily guarantee its effective-
ness in supporting algorithms. The overall performance
and efficiency of executing an algorithm on any archi-
tecture depends importantly on both aspects.

As an illustration, consider an algorithm which re-
quires in stage (a) a nearest neighbor exchange and
then in stage (b) a data summation or a min-max op-
eration on the row elements of the mesh. In an in-
terconnect, the embeddings desired would be : mesh
for (a) and a tree for (b). For such algorithms, the
prevalent technique for demonstrating the algorithmic

suitability and flexibility of an interconnect has been to
show a number of graph embeddings to be feasible in it.
Usually, these results are of pure theoretical value. The
overheads for message routing and reconfiguring inter-
node links makes such reconfigurations unrealistic for
real time operations. For this example, one would pick
a target architecture, with an embedding of a mesh and
a tree in it, to be flexible enough to support such an al-
gorithm efficiently. These embeddings are individually
useful, but their usefulness is apparent, only if one can

move the data at the end of stage (a) from the mesh
into the proper positions of the tree for stage (b) effi-
ciently; if each row of the mesh was a tree, then the cost
of mesh to tree data movement is small else the whole
purpose of providing for these embeddings is lost.

What determines the overall efficiency of an al-
gorithm are the basic communication patterns which
need to be supported efficiently (independently) by
the interconnect and their efficient inter-pattern data
movements. Interestingly, most algorithms are formu-
lated from a fairly standard set of operations and as-
sociated characteristic algorithmic and communication
patterns, identifiable as:!

1) Single/Multiple Source, Data Broadcasting for
I/O or Computations

2) Single/Multiple Source, Data Assimilation or
Summation

3) Data Shifting/Data Permutations

4) Minimum/Maximum/Sorting Operations

5) Prefix Sum and Product Calculations

6) Nearest Neighbor Exchanges

7) Computation Partitioning/Divide and Conquer

The design procedure to formulate a flexible algo-
rithmically specialized interconnect becomes (a) to
provide for the required embeddings to support these
patterns individually and (b) to support efficient data
movement amongst such obtained embeddings. The
effectiveness of this approach is shown through an ex-
ample BDG-Torus Union-Graph.

A comprehensive study of this aspect would char-
acterize all possible communication patterns and ob-
taining algorithms as permutations of these patterns.
Further, depending upon the different topologies used
for implementing these individual patterns, this leads
to a new means of relating parallel algorithms to par-
allel architectures, detailed in [20].

2 BDG-Torus Union-Graph

Here a simple linkage is suggested between the BDG
and the Torus graphs. In this way each graph can take
advantage of the structures it can handle best without
suffering (algorithmically) from the structures missing
individually in each. The BDG discretely provides for
most of the basic communication patterns: [(1) through

1 This is the set of the most extensively used communication
patterns in parallel algorithms, by no means, a complete set of
all such patterns



(6)], because of the possible real-time reconfiguration as
well as the efficient data-movements for the embeddings
of CBT’s, Shuffle, Tree Machines and Cycles in it. The
Torus can be added to the BDG either by appending
additional links to the existing BDG graph structure
or by using an independent Torus (extra nodes), cre-
ating the links to associate a mesh interconnect with
the BDG. Folding the full length Hamiltonian path in
a snake-like manner to obtain a partial mesh in the
BDG and adding extra links to provide for the full mesh
structure is a simple solution for the first type of ex-
tension. This method leads to embedding an N node
mesh in an N node BDG by increasing the node-degree
to 6. Our interest, though, is in integrating the mesh
with the BDG such that it provides useful support in
data movements for the algorithms to be executed on
the interconnect. Therefore the second method.

Many ways exist in which the BDG and the Torus
graphs can be connected. Some useful linkage possibil-
ities are :

Direct connection : The simplest way is to add links
between nodes which have the same “original”
node number. So, node zxxzx of the torus becomes
Ozzzz and the node zzzx of the BDG becomes
lzzze and a link is added between them.

Shuffle connection A node on the Torus is connected
to the “shuffled” node on the BDG;i.e., node num-
ber zyz in the torus is connected with the shuffled
node number yzz on the BDG.

€ : Specific linkage between the embeddings of the
BDG and the torus. The ¢ connection provides
us an useful algorithmic connection; i.e., the con-
nection can be used by the algorithm to improve
its performance on the interconnect.

In this paper, we propose a specific ¢ mapping to
admit the rows and columns of the mesh to be usable
as 1D, 2D arrays, rings and as spanning trees in con-
junction with the BDG@G, all using a single architecture.

The graph structure is defined as the augmented
union of the edge sets of the BDG denoted as E(BDG)
and the edge set of the torus as E(T) — with a map-
ping ¢ relating the V(BDG) = V(T) as an one-to-
many onto mapping. This mapping also describes the
additional links between the graphs (all the links are
bidirectional). Let Npgy = Nyorus = n? = 2™, for some
n and m, describe the BDG and torus nodes respec-
tively. Let a node of a Nyq5-node BDG be represented
as (am—1am—2...a1a0), with its neighbor set as :

{ (Clm_z . .aoA), (/\am_l . .Cll) }
for YA € {0, 1}, see Fig. 1. In the N;,,s-node torus,
let a node be represented as a pair of co-ordinates
(¢, 4), 4,5 € {0,---,n—1}. Each node (¢,j) has
four neighbor nodes, i.e., node(é, j — 1), node(i, j + 1),
node(i — 1,5), node(i + 1, j), where the additions and
subtractions are mod n.

The N node Union-Graph has, N = Nyqy + Niorus
nodes. For simplicity, we restrict the mapping below

for Nyayg = Niorus = n? and hence N = 2n?%. However,
in general the Union Graph structure requires 2z nodes
for a z-node BDG. The case where = # n? can also
be formulated similarly and is given at the end of the
section.

We start providing for the algorithm stages (1)
through (6) of Section 1.1 by mapping the two CBT’s
present in the BDG onto the toroidal structure. This
provides the basis for all of the other algorithm stages.

It has been shown in [18] that a Nyq; = n?- node
BDG has two link-disjoint (n? — 1)-node complete bi-

nary trees?, or rather two n% node full trees (FT’s)3. In
each FT, there are ‘n’ nodes at t¢ree level (log n+1).
Further, each of these ‘n’ nodes is also the root of
a (n — 1) node CBT - Fig. 2. The nodes of levels ¢
through log n form a ‘n’ node full tree.

Consider FT1 of the BDG with the root at
(00...00). For the n.n sized torus we will map the
‘n’ node top tree (< tree levels 0 through log n >
) onto row 0 of the torus. Tree level (log n+1)in FT1
contains the roots of ‘n’ CBT’s of size (n — 1) each.
For the remaining (n — 1).n sized torus, the n CBT’s
of size (n — 1) are mapped such that each such CBT
maps onto a separate toroidal column of size (n — 1).

For the BDG having a second FT2 with root as
11...11, the top tree (< levels 0 through logn >)
is mapped onto column 0 and the n, (n — 1) node
CBT’s are mapped onto the (n — 1) length rows of the
(n).(n — 1) node torus- see Fig. 3 and Fig. 4.

Essentially, consider any node X of the BDG. From
its position in FT1 of the BDG, it is linked(associated)
to a toroidal node as per the FT1 mapping onto the
columns of the toroid. For the same node X, from its
position in FT2 of the BDG, it is linked to a second
toroidal node as per the FT2 mapping. One such ¢
mapping for a 32 node Union-Graph is illustrated in
Fig. 4. Node 1000 of the BDG is linked to the toroidal
node in row 1, column 0 from the FT1 mapping. From
the FT2, mapping the same BDG node 1000 is linked
to the toroidal node at row 0, column 2. Thus, each
node of the BDG is linked to two distinct torus nodes
resulting in the overall degree of the graph as 6 (uni-
form for all BDG and torus nodes). The overall map-
ping associates each of the rows and columns of the
torus with a CBT in the BDG.

We point out again that there are a number of
ways(¢) of overlaying a 7' node CBT onto a 7" node row
( or column) of the torus. Each achieves the same algo-
rithmic purpose and a specific ¢ choice is chosen from
the VLSI layout considerations. For one such specific
€ mapping, the recursive algorithm for determining the
placements(mapping) of a BDG node onto a toroidal
node is described in [21].

Following a mapping, a BDG and a toroidal node
maintain addresses of the nodes of the other sub-graph
nodes linked to them in a local table. This is prac-
tical as the table size is only 2. It is useful to main-

2roots: 00...01 and 11...10
3root 00...00, son 00...01, sons 00...010 and 00...011



tain a logical “direct” mapping with the (m + 1) bit
node representation as (z, sub_graph_addr) with z = 0
constituting a BDG node and # = 1 constituting the
associated toroidal node from either FT 1 or FT 2 map-
ping. This simplifies the UG routing considerably es-
pecially when the routing requires the use of both the
Torus and the BDG. Thus, obtaining a routing path
as Source(Toroid) — Intermediate-Source(BDG) —
Intermediate-Dest.(BDG) — Dest. (BDG or Torus)
is straightforward.

For N # 2n?, the BDG - Torus graph associa-
tion is similar to the one described above. For N =
Nyag + Niorus, we still require Nyg; = Nyopys though

Nygy # n?. We now need to consider a torus of di-
mensions P.QQ, i.e., Niopus = P.Q such that P = 2?
and () = 29. The general procedure for mapping the
FT’s of the BDG onto the torus remains the same as
llustrated above. Whereas we considered root nodes
at tree levels (log n+1)in FT1 and FT2 for mapping
onto a square mesh: for the rectangular mesh avail-
able in the present case, we need to consider the root
nodes to be located at tree level log P+ 1in FT1 and
at level log @+ 1 in FT2 and continue the mapping
procedure from Step 2.1 onwards [21].

2.1 Graph Properties

The Union-Graph clearly supports all embeddings
supported by the individual sub-graphs of BDG and
the Torus. Some additional properties of the combined
graph structure are obtained below. For ease of expla-
nation, we consider the specific ¢ mapping detailed in
[21] - though a range of such ¢ mappings will result in
1dentical properties. We state the Lemmas here and
the proofs are detailed in [21].

Lemma 1: The Union-Graph s pancyclic.

Lemma 2: The N node Union-Graph supports two
link disjoint N-1 node CBT’s with node congestion 2 at
the leaf level.

Lemma 3: The N = 2n? node UG has a 3n>—6n+3
node mesh of trees with node congestion 2.

Lemma 4: The diameter of a N-node UG is 1 unit
larger than the diameter of a comparable N-node BDG,
in both the faull-free and single node/link fault cases.

For any routing path in the torus exceeding the
log N bound, the routing procedure reduces to ob-
taining a partial BDG routing : see Section 2. The
Source(Toroid) — Destination(BDG) routing is also
handled similarly. At most this results in an increase of
2 hops in going to the other sub-graph and the return
hop. With each of the sub-graphs of size N/2, a one
unit increase in routing length results.

The bound for the faulty case is achieved using a
novel BDG routing algorithm which has a tight upper
bound of log M +1 routing steps for both a fault free or
wit[h ei, single fault in a M-node BDG. This is discussed
in [22].

The comparative graph properties are given in the
table below. The graph embeddings of BDG, PS graphs
and the hypercube are illustrated in Table 1.

[  Graph Properties : N =27 node graphs |

| | UG | BDG [ HCube ] PS ]
Nodes N=2P | N=2P [ N=2P | N=2P
valence 6 4 P 8
diameter | p+ 1 P P P
F.TDia. | p+ 2 p+1 p+1 p+1
Conn"% 4 2 ) 4

The versatility of the Union-Graph is based on two
factors, admitting (a) almost all key embeddings and
(b) flexible and efficient data movements between the
embeddings. Stage 1 of an algorithm may necessitate
a shuffle based operation with Stage 2 requiring data
positioning in a matrix form. For example, the pro-
posed UG will allow a shuffle operation in the BDG
with a one step data movement to the mesh. Simi-
larly one can have data placed in the torus, sorted or
summed using the tree/shuffle in the BDG. The data
is returned to the torus for subsequent operations. In
all cases the BDG-Torus data movement is achievable
in a single step providing the efficiency in data move-
ments. It may be mentioned that most of the embed-
dings are also available discretely and concurrently,
a unique feature of the proposed structure. The PS
graph, in comparison, supports a variety of embed-
dings. However its complexity and the reconfiguration
requirements for the different embeddings, precludes
simple and eflicient data movement amongst them.

3 Discussion and Examples

The interconnect design yields a graph structure
possessing the architectural features of the BDG and
the Torus along with efficient data movements between
the UG embeddings. A whole range of algorithms ex-
ist which can not be executed in the best known time
complexity bounds on either the BDG or the Torus
separately. On the other hand as shown below, the UG
supports a wide range of such algorithms in the opti-
mal time complexity. We describe two distinct cases of
algorithms on such a UG structure, Multi-Phase
algorithms : requiring the use of BDG and Torus
in different stages of the algorithm and Pipelined
Algs. : requiring concurrent use of both the sub-
graphs BDG and Torus. Following examples illustrate
these features.

3.1 Multi-Phase Algorithms
Example 1 : Matriz-Vector Multiplication

Matrix-Vector multiplication® can be best per-
formed on a N = n.n torus in O(N'/?) time - the
matrix being stored in the torus and the vector in-
put from a row or column. The same operation takes
O(N/? 1+ log N) time on a N = 2n? node BDG using
a CBT embedding. In this the vector is stored in the
leaves of the tree and the matrix input row by row. We
describe an O(log N) algorithm on the N = 2n? node
Union-Graph.

“n x n matrix and n sized vector



n
For the result as ¢;1 = > a;;b;1 Vi,j € {1,..,n},
ji=1

the matrix elements are placed in the torus with the
indices of a; ; specifying the (row,col) positions. The
vector b; ; is stored in the BDG nodes - at the n “root”
nodes at tree level broadcast into the torus struc-
ture with element ; ; broadcast into the 7** column.
The broadcasting is performed in FT1 of the BDG in
O(log N) time, and using the BDG-Torus links, in a
single step the contents are moved to the columns of
the torus. Directly we obtain the aligned product terms
a; jb; 1 in the torus. Each row j consists of the terms to
be summed into a result term c; ;. In a single step the
datum of each row is transferred onto the CBT’s of FT2
in the BDG and the summation operation performed
in the CBT’s in O(log N) time. The overall algorithm
is completed in O(log N) time on the UG which im-
proves considerably upon the time complexity on both
the BDG and the Torus, taken separately.

The procedure, expressed as a sequence of commu-
nication patterns — data placement (initial setup), data
broadcast (CBT1 broadcast), data assimilation (CBT2
aggregation) , took advantage of the different data po-
sitioning in the mesh and the BDG-Torus ( or mesh to
tree and vice versa). Also, we utilized the data move-
ment features provided by the CBT’s in the BDG with
the BDG - Toroidal data movement in a single step.

Example 2 : Non-Parametric Signal Detection

An oft used signal processing problem is detection
of a constant displacement of a signal corrupted by ad-
ditive noise [23]. The constraints being insensitivity to
change in input statistics, a fixed false alarm proba-
bility and sampled-data processing. This is a real time
problem requiring tight bounds on the time complexity
of operation.

The sampled data is present in the form of a ma-
trix A which is multiplied by a vector (or a matrix)
representing weights corresponding to the strength of
each signal and the type of input statistics. The pur-
pose is to obtain A’ with ¢ rounds of multiplication till
a certain false-alarm probability measure is obtained.
At this stage the entire data set is sorted(ranked) ac-
cording to magnitude and each sorted value is multi-
plied with its rank in the sorted list. The final data
elements obtained are summed and compared to a pre-
determined threshold. This results in a final result of
signal detection or absence with the desired probability.

Current techniques utilize a mesh interconnect to
obtain the result of a N-element problem in O(N3/2)
time. The UG improves the time bound to O(log N)?2
through the utilization of the Torus in conjunction with
the shuffle in the BDG. The initial matrix-vector multi-
plication is performed using the Torus and CBT in the
BDG, as in Example 1in O(log N) time. The ranking
stage (bitonic sorting) is performed on the shuffle in
the BDG in O(log N)? time and the CBT in the BDG
is used to obtain the final data summation in O(log N)
time. The overall time complexity is thus O(log N)?2
— a vast improvement over the mesh interconnect. A
number of image processing algorithms — noise removal

through rank order filters, pixel deletion, rank updating
etc. utilize similar mesh and shuffle-based algorithmic
steps. This particular example has illustrated the im-
portance of the BDG, as the graph associated with the
Torus in the UG, in terms of the inherent shuffle em-
bedding present in it. Another example highlighting
the shuffle structure is the multi-phase beam forming
algorithm.

Example 3 : Beam-forming on Phased Arrays

Beam-forming is one of the main functions for a
range of phased-array processing algorithms[9]. Be-
cause we wish to support high data rates, this is ex-
tremely computationally demanding, requiring exten-
sive FFT computations.

The basic problem is as follows : for a number of
input radar sensors, the object is determining the di-
rection of the incoming signal in the presence of dis-
tortions. (Without going into the signal processing de-
tails) This reduces to a) determining the FFT’s of the
sampled data input at each of the sensors and b) for
the obtained FFT data matrix from (a), suppressing
noise interferences by multiplication with a character-
istic weight vector.

Again, the UG incorporates the topological features
to support these computations. For the shuffle graph
ideally suited to FFT calculations, a N/2-point FFT is
performed in O(log N) time on a N sized BDG. The
first phase of operations on the UG is obtaining the
FFT for each of the input sensor data, and moving it
to a row/column in the Torus®. Subsequently, a ma-
trix of such FFT data is multiplied with the weighted
vector (or matrix) using the matrix-vector computa-
tions discussed in Example 1. The overall operation is
of O(K log N) time complexity for K sensors and N
data points per sensor. This is also a real time problem
and the time bound is an order better than the existing
techniques on other array processors.

One can always select a very specific algorithm
which highlights the best features of a given archi-
tecture. In this case, though, the example algorithms
have been specified by the set of communication pat-
terns and their inter-movements on the Union-Graph.
Thus, the range of algorithms which are composed from
these basic patterns can be efficiently supported on the
Union-Graph. The claim of an efficient interconnect is
thereby justified.

3.2 Aspect of Pipelining

One useful feature provided by the UG comes from
the fact that the two subgraphs — BDG and Torus —
are individually available as discrete graph structures.
Hence, distinct operations can concurrently be per-
formed on each of the sub-graphs individually. This
is not possible with most other interconnect structures
where the mesh or some other topology is available
only as an embedding. Also, one can sometimes im-
plement algorithms which are non-implementable on
one or both of the sub-graphs taken alone. One such

5The data size of the FFT may be larger than the row/column
length and this may require partitioning the problem into stages



S3.1:

example which is not implementable on the BDG taken
alone is given.

A Jacobi algorithm is described; this incorporates
the facets of pipelining in the UG, making use of the
availability of a discrete mesh and a discrete tree (in the
BDG) being concurrently usable in the UG. Described
is a general method to solve a number of mathematical
problems such as Laplace equations, differential equa-
tions, finite element analysis problems, linear equations
and other algebraic problems.

Example : Jacobi Iteration Method

An iterative Jacobi algorithm is considered for solv-
ing a system of equations [4], [24]. The computation in
step (K+1) consists of repetitively updating each point
of the grid from the Kth iteration step as follows:

K+1 1[

K K K K
By = Al T riy e ]

The overall procedure consists of two distinct stages:
1) Computational Stage : In each (K + 1) iter-

ation, each point of one grid is updated by using the
values of the K" iteration of the 4 neighbor in the grid.

2) Halting Stage: The overall computation is

stopped when any value from an overall iteration is
within a pre-defined error threshold.

The halting stage, to a large extent, determines
the efficiency of the algorithm. The commonly-used
method allows each individual processor to generate a
local decision value and to continue until ALL the pro-
cessors agree to stop. Note that if the system reaches
some overall stabilization point (where it can halt), it
will remain stable. At each iteration (or at each in-
terval) a global decision must be made whether addi-
tional iterations are needed. If even a single processor
requires a new iteration to be done, then overall, a new
iteration is required, constituting the global iteration
scenario. With the N-node grid the most commonly
used structure for implementing the Jacobi algorithm,
determining the halting point is a message intensive

procedure, requiring O(N'/2) time on it.

In the N = 2n?% node UG, the computational and es-
pecially the halting stage (decision tree - CBT of BDG)
can be performed in O(log N) time, utilizing the dis-
crete embeddings and pipelining features offered by the
graph.

On the UG, the algorithm proceeds as follows :

For each mesh processor :

S1: Compute iteration K on a grid processor; obtain
its “decision” regarding performing or terminating
its next iteration.

S2: Send this decision to its linked processor on the
BDG (FT1 or FT2).

Concurrently :

Mesh Operation: Start iteration (X + 1).

S3.2:

BDG Operation: Start assimilating the “deci-
sions” from individual grid processors, in the CBT

of the BDG

After 2/og n assimilation steps, if the overall sum
of “decision” values equals zero, then broadcast
“halt” instruction to the CBT and then onto the
mesh nodes.

S4: Continue next mesh iteration until receiving the
Halt instruction.

Starting at S3.1, it takes 2log n steps before a final
decision can be obtained at the root of the CBT in the
BDG. Next, a further 2/og n steps is necessary for the
root to broadcast this decision in the CBT. Each of
the CBT nodes then pass this global decision to their
associated mesh nodes in the UG, and the algorithm
continuation or termination is effected.

Note that there is a pipeline latency of 2log n be-
tween S3 and S4. This follows from the BDG’s CBT
assimilating the “decisions” in 2/og n steps. Since
a global decision regarding proceeding or terminating
further iterations in the mesh is not available for this
time period, the iterations continue in the mesh. Each
iteration’s decisions continuously input the pipeline in
the CBT. The possible communication congestion in
the BDG, with the upward CBT decision data as-
similation and the downward CBT final decision data
broadcast operations, is handled easily using the 2 link-
disjoint CBT’s of the BDG — again using a pipelined
operation.

The algorithm has implemented pipelining the dif-
ferent stages of the Jacobi algorithm in the two (mesh
and CBT) graph structures available discretely and
concurrently in the UG. With each sub-graph han-
dling the communication/computation tasks suited to
its physical topology, the pipelining results in a very
efficient algorithm operation not feasible in the hyper-
cube or the PS graph. They require separate graph re-
configurations to embed and utilize the mesh and the
tree structures discretely or for pipelining.

Jacobi Iteration : N = 2n? nodes
| Mesh/Torus |  BDG | UG

| Time Cple. | O(N'?) | not-feasible | O(log N) ]

Algorithm Examples :

To conclude, Table 2 tabulates the best-known time
complexities of some well known algorithms as imple-
mented on different topologies. These are compared to
the UG’s performance.

An optimal VLSI layout is achievable by using the
existing optimal BDG VLSI layout. This issue is dis-
cussed 1n [21].

4 Conclusions

The basic aspects of relating algorithmic patterns
with an interconnect structure have been obtained.



Also, we have been interested in elucidating some of
these principles in the design phase of an interconnect
through the example of a BDG-Torus UG. A set of
diverse examples justifies the effectiveness of the de-
sign methodology. Through these, the Union-Graph
is shown to be a powerful and efficient interconnect
structure, comparable and improving upon both the
PS graphs and the hypercube.
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Graph Embeddings :

N = 2P node graphs

[ Embedding ] Union-Graph | BDG | Hypercube | PS Graph | Mesh
CBT’s 2P-1 node 2P-1 node spanning trees 2r-11 no
Pancyclic yes yes even-cycles yes even-cycles
SE 2P—1 2r 20 :dil™ O(log N) | 27 : dil. 2/Congt™ 2 no
Mesh 2P~ (square) no 2° 2 @ 2°
Mesh of Trees | 3.2°~1 —6.2(-1/2 1 3 no 2r—1 3.2r/2 _ gr/2+1 no

%this is possible only for 1 case. For N = 2P.29, mesh sub-graph is 2P or 29 only.

Table 1:

| Time Complexities on Diff. Topologies : IN size matches problem size |

[ Problem Type | Tree | Mesh | BDG | Union-G | HCube |
Broadcast O(log N) | O(N'/2) | O(log N) | O(log N) O(log N)
String Matching” - O(N) - O(log N) O(log N)
Sorting O(N) | O(N'/?) | O(log® N) | O(log®N) | O(log?N)
Mat-Vector Mult. | O(N/2) | O(NY2) | O(NY?) | O(log N) | O(log N)
Mat-Mult O(N?) O(N) O(log N) | O(log N) O(log N)
Jacobi - O(N1/?) - O(log N) | O(log N) °
Sig-Detect O(N?) | O(N32) | O(NY% | O(log N)? | O(logN)? ©

“Longest Common Sub-sequences

bwith large constant and high edge congestion

Table 2:




