
On the Use of Formal Techniques for Validation�

Neeraj Suri and Purnendu Sinha

Dept� of CIS� NJIT

University Heights� NJ �����

e�mail� fsuri� sinhag�cis�njit�edu

Abstract

The traditional use of formal methods has been for

the veri�cation of algorithms or protocols� Given the

high cost and limitations in state space coverage pro�

vided by conventional validation techniques� we in�

troduce a novel approach to utilize formal veri�ca�

tion procedures to drive fault injection based valida�

tion of dependable protocols� The paper develops graph

structures for representation of information generated

through formal processes� as well as a formal frame�

work that facilitates the formulation of speci�c fault

injection experiments for validation�

� Introduction

As computers for critical applications increasingly
depend on dependable and real�time protocols to de�
liver the speci�ed services� the high� and often un�
acceptable� costs of incurring operational disruptions
becomes a signi�cant consideration� Thus� following
the design of protocols� an important objective is to
verify the correctness of the design and validate the
correctness of its actual implementation in the desired
operational environment� i�e�� to establish con�dence
in the system�s actual ability to deliver the desired
services� As systems grow more complex with stricter
real�time and dependability ��� speci�cations� the op�
erational state space grows rapidly� and the conven�
tional veri�cation and validation 	V
V� techniques
face growing limitations� including prohibitive costs
and time needed for testing� Thus� the challenges are
to 	a� identify relevant test cases spanning the large
operational state space of the system� 	b� do this in a
cost�e�ective manner� i�e�� a limited number of speci�c
and realizable tests� and 	c� be able to model and val�
idate systems in their entirety 	protocol operations�
hardware implementations� hardware�software inter�
actions� system load� etc�� instead of the current ap�
proaches which stress discrete component validation�

Towards these goals� we investigate and develop

�Supported in part by DARPA Grant DABT������C������
and NJ������	

�

techniques to support formal techniques for veri�ca�
tion of protocols and develop approaches to utilize
veri�cation information to direct the validation of the
implementations through the generation of very spe�
ci�c fault�injection experiments� Speci�cally� our ob�
jectives here include

� To develop a rationale for use of formal techniques
towards validation�

� To develop techniques for representation of pro�
tocol veri�cation information� and based on these

� To develop a formal framework for guiding and
generation of fault�injection 	FI� experiments for
validation� and present initial experiments to es�
tablish the viability of our validation approach�

We emphasize that this is a novel attempt in linking
formal methods to validation� Our aim� at present�
is to build a basis and perspectives to address these
objectives rather than a complete solution�

The organization of the paper is as follows� Sec�
tion ��� provides a background on V
V of depend�
able operations� and discusses current approaches and
their limitations� Section � introduces the usage of
formal techniques for veri�cation and motivates the
proposed validation approach� Section � describes the
proposed data structures for information representa�
tion� and the strategies in organizing the veri�cation
information to support validation techniques� We con�
clude with some current limitations and areas of future
research in Section ��

��� V�V of Dependable Protocols �
Current Approaches and Limitations

Following design of a protocol� an important aspect
is establishing the assurance that the design is funda�
mentally correct� and that its implementation com�
plies with the requirements to correctly deliver the
desired services� i�e�� veri�cation and validation�

Currently� veri�cation techniques to establish the
correctness of a protocol utilize analytical techniques
such as hand proofs� Markovian� Petri Nets� etc� For�
mal methods ����� a family of mathematical and logi�
cal techniques used to reason about computer systems�

are also seeing increasing usage in this veri�cation pro�
cess� Their main thrust� so far� has been for the veri�
�cation of algorithms or protocols� and speci�cally� on
�nding design stage �aws in algorithms ���� ��� ����

Validation techniques� typically entail approaches
such as modeling� simulations� stress testing� life test�
ing� and also experimental techniques such as fault in�
jection 	FI�� Given the enormous state space involved
in protocols and especially software� analytical� mod�
eling and simulation techniques face coverage limita�
tions� FI based validation is a complex and expensive
operation which involves generation of large number
of test cases to obtain a reasonable level of con�dence
in the system operations� Although a wide variety of
techniques and tools exist for fault�injection ���� the
limitations are the cost� time complexity and actual
coverage of the state space to be tested� Two chal�
lenges arise �a� how representative are the results to
reality� The limitation is in being able to reproduce
the actual operational 	load� stress� implementation�
and failure conditions� and �b� how many and exactly
which tests need to be conducted� The emphasis here
is to scrupulously identify and locate operations which
are susceptible to faults�

Statistically� for a critical function with a speci�ed
reliability of ���� failures�hour� ��� hours of fault�
free operations need to be tested to expect to uncover
even one fault� Not only is the actual state space over
this time duration prohibitively large 	exercising all
possible states is infeasible�� but if the failure rate for
speci�c fault types is small� it becomes exceptionally
di�cult to identify the selected rare fault cases that
can cause failures� These problems constitute the fun�
damental bottleneck of validation and this is where
the traditional experimental or probabilistic validation
techniques ��� face severe limitations�

Thus� there is need to develop alternate validation
techniques� such as the formal methods approach pro�
posed here� As formal methods based on state explo�
ration through techniques such as induction 	proof�
theoretic approaches� can examine all the behaviors in
a very large space of possibilities� thus we investigate
the applicability of formal techniques to validation�
Overall� our objective is to develop a novel basis for
the e�ective and synergistic use of formal techniques
for both veri�cation and validation�

� Formal Methods Perspectives

Classical fault�injection	FI��� though extensively
used in establishing con�dence in the operation of

�An excellent and comprehensive discussion on this topic
appears in ���

the fault�tolerance mechanisms of a dependable sys�
tem� are generally more e�ective for validation of dis�
crete hardware and software components� i�e�� local�
ized fault injection� Our interest extends to valida�
tion of general protocols where the operations and ca�
pabilities are not only dependent on the underlying
resources but also on the implemented resource and
redundancy management policies� Two observations
	O�� O�� highlight other limitations of the localized
classical FI� and thus motivate our research�

O� Low level 	localized� FI may only indirectly in�
�uence higher level protocols� thus limiting the
scope of FI� Also� faults at protocol level can arise
from complex inter linked subsystem events which
are di�cult to trigger and monitor over the com�
plete protocol� Thus� errors are di�cult to trace
to fault�observations� especially over protocols�

O� Furthermore� how realistic and accurate is the
state space model for timing and message tra�c
if the fault distributions are not known or char�
acterizable at the protocol level� either due to
low probability of occurrence of fault types 	e�g��
Byzantine faults�� or due to lack of an established
fault model� which would preclude the use of ex�
isting FI techniques�

Beyond coverage of faults� fault tolerant systems
may also be required to deliver system tasks within
speci�ed time requirements� i�e�� real�time operations�
V
V of fault�tolerant protocols is a di�cult problem�
adding real�time attributes to the protocol further ex�
acerbates the di�culty of veri�cation as well as vali�
dation procedures� The main di�culty arises due to
the inadequate representation of time and the lack
of mechanisms to support the veri�cation process in
this aspect� In practice� there are e�cient techniques
based on discrete�time model which are not severely
limited by this problem� However� as a more realistic
physical 	continuous� time model is used� the continu�
ous time model may require in�nite state space as the
time component in the states can take arbitrarily real
values� There are techniques to construct a quotient
space 	region graph� out of the in�nite space to over�
come this problem� though these algorithms tend to
be expensive to implement� In an attempt to address
such limitations of classical validation� we propose a
formal methods directed V
V concept�

Formal methods provide extensive support for auto�
mated and exhaustive state explorations over the for�
mal veri�cation to systematically 	and formally� ana�
lyze the operations of a given protocol� To deal with
large state exploration� we choose proof�theoretic for�

mal approaches which utilize logical reasoning� deriva�
tions as well as rules of induction to obtain a formal
proof basis of the desired system operation� Prior to
further discussion� we provide a brief background on
formal methods and their capabilities of interest�

Formal methods pertain to mathematical level rep�
resentation of the system operations� A basic set of
assertions characterize the axiomatic basis for the ap�
proach � Fig� �� A �theory� about the protocol prop�
erties is encoded as theorems and supporting axioms�
and the truth of a theorem is established using rules
of inference of the underlying logic used for the speci�
�cation of the system and its properties� Properties of
the protocol are proved by establishing them as logical
consequences of the speci�ed axioms� and a proof con�
structed based on deductive reasoning� This approach
provides insights into the speci�cation and its proper�
ties such as dependency criteria and boundary condi�
tions� The speci�c bene�ts provided by the rigorous
application of formal methods include 	a� forces com�
plete� unambiguous and explicit inferences based on
the axioms and assumptions� 	b� �ags con�icting spec�
i�cations� 	c� identi�es protocol properties to be val�
idated in reality� 	d� speci�es requirements on lower�
level implementations� 	e� supports top�down deduc�
tive exploration� and most importantly� 	f� supports
traceability and reproducibility of actions�

?

Axiom Set

Yes No

Proof

Completeness/Consistency
Conditions for Specifications ?

Supplementary Axioms

Axiomatic Inferences
External Info.

Figure � Typical operations of a theorem prover

A variety of formal approaches are currently in use
HOL� EHDM� Boyer�Moore Theorem Prover� PVS�
etc�� At the algorithm or protocol level� the need is
to be able to support hierarchical operations and hier�
archical decomposition of functional blocks� Thus� a
high�level logic which can facilitate such a decompo�
sition structure is required� Currently� we use SRI�s
Prototype Veri�cation System 	PVS�� tool ���� for our

�PVS is being used both for its public domain availability
and for its comprehensive theorem proving environment

research� although our approaches are applicable to
any higher order logic based formal environment�

Overall� our focus is on the issues pertaining to
	a� representation of functional and implementational
information of the protocol operations� and 	b� corre�
lation between speci�cations and implementations�

� Formal Techniques for V�V
The accepted objectives of formal techniques are

notably di�erent from the requirements of the fault
injection process� Thus� our formal methods approach
towards V
V and FI based validation of dependable
protocols and implementations will involve three spe�
ci�c elements� namely
��� Formal speci�cation of protocols with representa�

tion�speci�cation of parametric� information per�
taining to the implementation� and inclusion of
these parameters in the formal�method�based ver�
i�cation process�

��� Representation and visualization of veri�cation
information to establish the dependency of oper�
ations on speci�c variables� and to provide mech�
anisms for modifying parameters� variables and
decision operations to enumerate the relevant ex�
ecution paths of the algorithm�

��� Identi�cation�creation of suitable fault injection
test cases by utilizing visual representation of ex�
ecution paths� and also propagation paths depict�
ing the scope of in�uence of parameters and vari�
ables on the protocol operations�

We discuss these issues in the following sections�

��� Formal Speci�cations and V�V

The classical use of formal methods has been in for�
mal speci�cation and veri�cation� though very little
work exists in incorporating parametric information
to the speci�cations or representations to cover imple�
mentation� As our interest lies in developing a valida�

tion process which essentially requires representation
of implementation information� we need to extend the
existing speci�cation capability to incorporate para�
metric information�

To lead into validation� we present examples which
�a� illustrate the strength of formal methods for veri�
�cation� and �b� highlight aspects that limit applica�
bility of classical formal veri�cation to validation�
Example �� FT Clock Synchronization Algorithm

Consider a distributed system using frame 	or
�round�� based message passing protocols ��� ����

�Eg� incorporating temporal conditions� replacing clock
variables by an actual range of possible crystal frequencies in
the implementation� specifying numerical bounds for variables�
processor�communication channel bandwidth attributes� imple�
mentation features of message passing communication� etc

where at each frame boundary� each non�faulty node
performs the following steps over each successive
round�

S� Each node broadcasts its current personal clock
value to all nodes� 	broadcast�

S� Each node locally timestamps all received clock
values sent to it during that round 	within a de�
�ned time�stamp interval�� 	data assimilation�

S� Each node determines a reference value 	based on
a chosen voting scheme� from the values collected
in S�� and computes a correction to align its local
clock value to the reference time� 	convergence�

Additional conditions ���� de�ne the chosen voting
strategy� �currently�initially in synchronization� con�
ditions� relative clock skews� speci�ed fault tolerance�
time�stamping window size� etc�

This algorithm was used as a case study for formal
tools using PVS ����� a formal veri�cation revealed
that the algorithm makes a number of assumptions
that are not essential to correct operation� Moreover�
it was pointed out in the investigation that a major�
ity of lemmas in the algorithm proof were incorrect
although the �nal proof was correct� The key obser�
vation is that formal analysis introduced a higher level
of rigor� and identi�ed design 	and proof� inconsisten�
cies that were overlooked by both analytical as well as
experimental V
V approaches�

However� in validating this algorithm� the imple�
mentation involved engineering tweaks that made the
validation of the protocol implementation deviate con�
siderably from veri�cation stage� thereby leading to a
gap between veri�cation and validation� These tweaks
involved de�ning the operations of the time�stamper�
issues of message delivery etc� which we discuss in Sec�
tion ���� The next example further elaborates the need
of implementation details in the speci�cation� and be�
ing involved in the veri�cation�
Example �� FT Real�time Scheduling Algorithm

In dependable real�time systems� one approach for
providing fault�tolerance is by scheduling multiple
copies of tasks� Based on a primary�backup approach�
a derivative scheme speci�es the necessary conditions
for tolerating a single fault in the system by estab�
lishing conditions on the relative locations of the pri�
mary and backup execution intervals� Let ri� di� ci be
task i�s release time� deadline and computation time
respectively� and beg	�� and end	�� denote beginning
and end of task�s execution interval� A given condi�
tion states that both primary and backup tasks must
be scheduled within the task�s window�� and the time

�This is de�ned as di � ri and is assumed to be twice the
computation time

interval scheduled for backup should be later than that
of the primary� i�e��

ri � beg	Pi� � end	Pi� � beg	Bi� � end	Bi� � di

This condition is required as both primary and
backup copies must satisfy the task�s timing con�
straints and because it is assumed that the backup
is executed only after a failure in primary is detected�
The veri�cation and subsequent validation of the de�
cision procedure can get a�ected as depicted in the
scenario in Fig� ��

P

B

B’

rising edge falling edge

Primary task

Backup task

D

Figure � Primary�Backup Execution Intervals

Suppose� the falling edge of primary�s scheduled
time ends after the rising edge of backup�s scheduled
time but lies within the chosen granularity� D� in the
discrete�time model� Since in the interval�based model
of time both events would be considered to have oc�
curred at the same time� this would satisfy the in�
equality condition� whereas logically it should not� A
similar problem arises while scheduling two primary
tasks which have dependencies� where one is consid�
ered to precede the other� Without a continuous time
model� event ordering can always be arbitrarily de�
�ned such that any notion of discrete time 	regardless
of the granularity� can be shown to be inadequate�
For validating the implementation of this condition in
an actual run�time environment� there is a need to in�
corporate a continuous model of time in the formal
approach�

Simulation�based probabilistic approaches do not
necessarily cover all the fault cases due to obvious lim�
itations of not being able to exercise all possible sys�
tem states in the continuous time domain� However�
formal�method�based approaches allow us to conduct
speculative experiments as part of the veri�cation pro�
cess thus investigating a larger design space� For ex�
ample� we can directly investigate cases where the lo�
cation of the falling edge of the primary task can be
trivially speci�ed to appear either before� at� or af�
ter the rising edge of the backup task� Furthermore�
these cases of �before� and �after� can be de�ned for

their duration in time and these speculative cases are
then veri�ed for correctness or failure through an iter�
ation of formal veri�cation� The same test process us�
ing conventional FI would have required a multitude
of test cases covering the entire state space de�ned
as �before� and �after�� We have currently formally
speci�ed and veri�ed this scheme in PVS using a dis�
crete model of time� and are incorporating a continu�
ous time model to make the validation more realistic
by handling concurrent and non�simultaneous tasks�

It is a common misperception to consider formal
methods to provide properties of completeness on its
own� It does not replace informal proof or eliminates
testing� but basically� provides for rigor and supple�
mentary aid to proofs and ensures completeness of
conditions� Also� even following a correct and rigorous
veri�cation� no claims to validation can be asserted
until the implementation details are incorporated and
re�ected in the veri�cation process itself�

��� Techniques for Representation of
Veri�cation Information to Outline
Protocol Execution Paths

On this background� our interest lies in the trans�
formation and the utilization of the information gen�
erated by the speci�cation and veri�cation process to
aid the identi�cation of system states� and to be able
to track the in�uence path of a variable or implemen�
tation parameter to construct a fault injection test
case� As stated earlier� the information at the veri��
cation stage is in the form of mathematical logic in a
syntax appropriate to the chosen formal toolset� How�
ever� to aid validation� a fundamental requirement is
to visually represent the protocol execution paths gen�
erated over the veri�cation process� Another need is
to be able to incorporate timing and parameter infor�
mation at varied levels of abstraction� To this objec�
tive� we have developed two novel data structures to
encapsulate various information attributes� We label
them as �a� Inference Trees �IT� or �forward prop�
agation implication graphs�� and �b� Dependency
Trees �DT� or �backward propagation graphs�� We
present some basic features of these structures prior
to discussing their use in validation�

For both IT and DT� we utilize the fact that fault
tolerance protocols are usually� characterized by forks
leading to branches processing speci�c fault�handling
cases ��� ��� This is a key concept behind validation�
which tries to investigate all the possible combinations
of branching over time and with parametric informa�
tion� Both IT and DT are analogous to execution or
reachability trees� which elucidate the protocol opera�

�This is just a simpli�cation� and not a limitation

tions visually� In IT�DT� each node represents a func�
tion� instruction or decision block of the algorithm�
and each edge represents the functional� logical� op�
erational and temporal relation between the blocks
depicted by the nodes� Each speci�c source�node to
destination�node path represents an assertion� and an
inference�based activation path of the algorithm� In
general� the IT�DT structures share properties with
the state transition representations� assertion trees or
Petri nets� However� their ability to consider 	a� user�
de�ned initiation and termination conditions� 	b� con�
ditions for protocol consistency� and 	c� no restrictions
on the graph acyclicity� distinguishes them from the
other approaches� The IT and DT represent graph
reachability trees with characteristic capabilities� as
discussed in the following sections 	����� and �������

����� Inference Trees �IT��
Forward Propagation Approach

The IT is developed to depict the inference 	impli�
cation� space involved in a protocol� Each node of
the tree represents a primitive FUNCTION 	or func�
tional block� which is an integral part of the algorithm�
Associated with each node is a set of CONDITION�
ALS which dictate the �ow of operation to the sub�
sequent ACTION as de�ned in the algorithm� Also
associated with each node is the INFERENCE space
which details the possibility of operations� assertions�
and�or usage of event�conditional variables which can
be inferred from the node�operation speci�cation� An
IT represents the complete set of activation paths of
the algorithm 	i�e�� an enumeration of all operations��
Fig� � represents the generation of an IT for a majority
	���� voter� Here� FUNCTION is the ��� voter� A set
of CONDITIONALS C�x� describes the various con�
ditions 	actual or speculative� imposed on the voter�
As examples� x t�x� t�x indicates a message being
processed by the voter if it arrives in a speci�ed time
window �t� x� t� x�� x conc i indicates a message
that has to arrive concurrently with message i� and �i
queries if all the messages are from the same round i�
Based on the inputs to the voter� speci�c ACTIONS
such as the voter outputs� as well as corresponding
INFERENCES are generated� An edge between two
nodes corresponds to a re�nement step incorporating
implementation considerations�

The generation of the tree is iterative 	see block on
top right in Fig� ��� As di�erent conditional 	inter�
nal or external� parametric� timing� events are desired
to be incorporated� a complete veri�cation 	and infer�
ence� cycle is performed to highlight any inconsistency
the new parameters might generate� Implementation

varied abstraction levels

f_i

f_i f_i

SAT, broadcast

Ti

2/3 voter

2/3 voter 2/3 voter

T_(i+1)

C[?i]

C[seq]

C[conc i]

msgs (i,n)

(e.g., circuit level for voter)

ACTION

FUNCTION

(timing & implementation)
(initial and subsequent)

CONDITIONALS

C[t -x, t + x]

S1: Outline protocol operations

S2: Perform initial verification

S3: Outline inference conditions

*S4: Integrate new conditionals

 Incorporate additional timing &

 parametric information

 S5: Iterate procedure after each new

 conditional

Generation of IT

INFERENCES

seq(j, not i)conc(i,j)t(cond]

Figure � The Inference Tree for a ��� Voter Protocol

characteristics�� action conditionals with concurrency
attributes� temporal conditionals� and other similar
conditionals get speci�ed at di�erent levels� Basically�
each iteration of the IT formulation represents a dif�
ferent level of granularity of system operation� Ini�
tially� a high�level IT is constructed with a basic or
abstract notion of algorithm operations� As more de�
tailed implementation and operational information are
incorporated into the IT� new conditional and associ�
ated inference details are generated� We emphasize
that each time additional information is modeled into
the IT� the veri�cation process needs to be iterated to
sustain consistency at all levels of representation� It is
of interest to note that the conditional and inference
space is dynamically re�generated over each round of
veri�cation�

There are no constraints on the graph being acyclic�
As we incorporate timing and round information� and
as some of the algorithms modeled are iterative in
time by nature� path acyclicity is not even desirable�
This feature actually allows us to model time and also
round based protocol operations� For example� a syn�
chronization algorithm running over multiple rounds
can be investigated for properties with messages com�
ing over di�erent rounds by de�ning a �round number�
conditional in the IT�

In the IT� there is no restriction imposed on hav�
ing speci�c initiation and termination conditions for
any execution path� as is required in the case of as�
sertion trees� IT�s facilitate the provision of specify�
ing virtual and temporally established initiation and

�Eg� processor�channel communication attributes� etc as
relevant to the protocol

termination criteria� For example� temporal proper�
ties of messages coming over a speci�c round within
a chosen time�frame can be investigated by de�ning
the beginning and end of a given time�frame as ini�
tial and termination conditionals in the IT� This fea�
ture reduces remarkably the overhead of generating
all possible complete� execution paths of a protocol�
Furthermore� concurrent initiation paths can be es�
tablished at varying levels of abstraction in the IT�
For example� we can set up the same initiation and
termination criteria in two di�erent abstraction levels
of a function in the IT� one with no timing and im�
plementation information and other one with detailed
implementational and operational information� Since
these two levels represent di�erent abstractions� the
reachability paths from a chosen initiation condition
to a speci�ed termination point could be entirely dif�
ferent� This structure provides for mixed levels of ab�
straction� as a function block can be represented as a
complete graph by itself� as for example� in the circuit
level abstraction of the voter in Fig� ��

Currently� we incorporate discrete time variants of
classical real�time temporal logics ����	� As shown
in ���� most timed temporal logics are undecidable in
a dense time domain� thus we are investigating 	user�
interaction�based� approaches to model limited cases
	decidable subsets� of dense time�

����� Dependency Tree �DT��
Backwards Propagation Approach

The dependency tree� Fig� �� is generated by providing
in detail information regarding the variables associ�
ated with a chosen system operation� These variables
are essentially the inference and conditional space pro�
vided in the IT� With each protocol operation� we as�
sociate a complete list 	or speculative list for exper�
iments� of variables which are operated upon during
its execution� Deductive logic used by the veri�er is
applied to determine the actual associated subset of
variables� This covers both direct and indirect asso�
ciations as well as associations over time and rounds
among variables� Fig� � depicts a multiple round con�
sensus protocol with these characteristics� At each
round� the deduction process identi�es the variable on
which that stage of the operation does or does not de�
pend� For example� in round i� fn	i� does not depend

�Complete path refers to a path from an initiation condition
to a termination point

�Existing timed temporal logics� RTL� MTL� TTL �	� ��� etc�
do not easily interface with the inference engine of formal veri�
�ers� though relevant fragments of them can easily be speci�ed
and veri�ed in any higher�order logic �say in PVS�

f(n)

fn(i+1)

fn(i)round i

round (i+1)

terminal round

Dependency on {a1, a2, ... , aX} ?
Query:

actual or speculative variables

final dependency of function

on {a_i, a_j}

Expt: = f (a_i, a_j)

additional timing &
parametric info.
incorporated

 Initial deduction: not on {a1, a2}

Refined deduction: not on {a5}

Figure � The Dependency Tree Consensus Example

on variables a� and a�� For a distributed synchroniza�
tion or a consensus operation� identifying and repre�
senting the round information is an essential part of
the working of the algorithm� Such considerations are
very distinctive to a speci�c algorithm and no attempt
is made to classify such considerations through gener�
alized rules� The propagation through the dependency
tree is the indicator of the complete set of variables
that each facet of the algorithm requires� The leaves
of the tree represents the minimal set of dependent
variables associated with the primitive function of the
protocol� These� in fact� constitute distinct fault injec�
tion experiments as the complete propagation path of
a system variable with an associated operation is por�
trayed� Thus� a basic representation of the informa�
tion gathered over the veri�cation process helps gen�
erate a fault injection experiment� The level of granu�
larity of representation of the algorithm and the level
of abstraction required for the fault injection process
must match for any of these forms of representation
to be useful ����

����� Representations in IT�DT

Currently� we set up initial IT and DT conditionals
based on a thorough understanding of the protocol be�
ing tested� This process is iterative across the IT and
DT as the initially speci�ed IT conditionals get tested
in the DT to ascertain actual protocol dependence on
them as conditionals� These conditionals are speci�ed
in the PVS theory as axioms� assumptions� numerical
ranges and�or numerical constants� Once the speci�
�cation of the algorithm is complete� we attempt to
prove a putative theorem which re�ects the expected
behavior of the algorithm� The success in an attempt

to prove the theorem indicates that the set of condi�
tionals chosen earlier are su�cient enough to satisfy all
the assertions made in the speci�cation� A failure in
the proof process indicates that either the conditions
speci�ed are not su�cient or the proof strategies are
not correct� or even that the statement of the query is
not phrased properly� Failures also reveal conditions
which were not being satis�ed� A successfully com�
pleted veri�cation process also provides a list of func�
tional dependencies on various assumptions� Based on
these inferences� a new set of conditionals is added or
an existing set is modi�ed� This feature provides us
with the capability of speculatively pose new or change
conditionals to observe the behavior of the system� We
still need to generate an automated process for de�n�
ing the relevant conditionals� As an initial approach�
we are investigating the possibilities of �rst automat�
ing the cases in the DT and then using the generated
function dependencies to specify the conditionals for
the IT� In this respect� we are developing mechanisms
for describing and providing feedback across IT�DT�

Based on IT and DT interactions� we compute
the INFERENCE space knowing the CONDITIONAL
and ACTION spaces� For example� consider Fig� �
we can specify a condition C�conc i� in the CONDI�
TIONAL space and pose query �Is message j concur�
rent with i�� in the DT� It may then ask us to specify
a time�window within which the two messages are to
be considered� in which case� we need to add an extra
conditional specifying a time�window and re�run the
query� or it may simply con�rm that message j has
arrived concurrently with message i� which gets re�
�ected as an inference conc	i� j� in the INFERENCE
space� We are also looking into analyzing the nature
of and the depth of information provided in INFER�
ENCE and CONDITIONAL spaces�

We have incorporated a basic capability for adding
parametric information which allows us to cover dif�
ferent levels of system representation as well� As each
iteration of the IT formulation represents a di�erent
level of granularity of the system operations� we are
looking at issues� such as degree of details to be incor�
porated� related to the interaction of inferences and
queries at di�erent levels of abstractions� The key
observation is that faults to be injected are basically
derived by queries related to the potential discrepan�
cies between the levels� Currently� we can specify and
interface the speci�cations of the ��� voter at both
the protocol and at the circuit level in PVS� For a
more detailed speci�cation� we are looking at VHDL
or BDD level descriptions of gates�devices� We are
also looking at de�ning interfaces to link the VHDL

and BDD level speci�cations to the PVS syntax and
inference engine�

��� Validation� De�ning the Fault
Injection Test Cases

The advantage of our approach is that the set of
fault injection tests generated will be comprehensive
to the extent of implementation details modeled into
the formal speci�cation� i�e�� protocol� circuit� gate
level� etc� As the example in Section ��� demonstrates�
the DT results can pinpoint a speci�c block to be mod�
eled to a re�ned level of detail as needed� Each reach�
ability path in the tree provides for a test case� As the
veri�cation process is re�executed over each introduc�
tion of conditionals or parameters� it eliminates the
possibilities of new faults being introduced� A simple
observation is that the cases generated through this
process involve all relevant test cases� rare test cases
being necessarily included�

The key element here is to sustain� at all time� the
axiomatic rules under which the protocol veri�cation
stays valid� This suggests a situation that the set of
conditionals are not �xed on a priori basis� Each
round of iteration can generate constraining condi�
tions which in turn get re�ected as new conditionals�
There is a possibility of a deadlock condition getting
generated simply as a result of the iteration process�
However� such a generated condition is a direct re�ec�
tion of an erroneous operational condition� Actually�
it is simpler to utilize the dependency graph in this
situation as such a condition will actually be auto�
matically �agged by the veri�cation process�

Algorithm Level

Specifications

Specifying
Initial/Termination
Locations in IT/DT

Specific FI experiments

Feedback to IT
conditional and DT

variable specification

Basic Protocol
Formal Verification

IT/DT Generation

(revised abstraction levels)

timing

parameter
info.

{implementation
additions of

info to initial
algorithm spec.

Iterative FV following

and parametric info
incorporation of timing

Figure � Generating the FI experiments

Fig� � represents the general process of generating

FI experiments using IT�s and DT�s� Below� we high�
light speci�c aspects of IT�s and DT�s in generating
FI experiments

� As each reachability path in the IT potentially
de�nes a FI experiment� we have the �exibility of
choosing a single path� or having multiple initia�
tion instances merging into a single termination
point� An experimental setup can be across dif�
ferent levels of abstraction 	i�e�� a message over a
channel is modeled as a bit stream inside a voter
which in turn is modeled at the circuit level�� and
also over di�erent time instances 	a synchroniza�
tion protocol has variables which have e�ect over
multiple rounds of synchronization��

� The DT provides �exibility for conducting ex�
haustive checking� At each iteration� the depen�
dency list is pruned as one progresses along a
reachability path� At any desired level� the el�
ements of the current dependency list constitute
the variables to be tested� i�e�� the FI experiment�

� Path activations and terminations in either IT or
DT can be speci�ed by associating counters and
timeouts� Thus� transient fault cases are incorpo�
rated by 	a� specifying a start condition for the
transient� and 	b� removing the condition after a
desired interval over any chosen path�branch in
the IT�DT� This approach facilitates us in de�n�
ing multiple paths� concurrent events� as well as
paths re�ecting either the complete or partial pro�
tocol operation�

Overall� this approach generates a pseudo�
simulation environment� except that this is completely
deterministic and reproducible� Thus� we not only
have a capability of performing basic validation� but
also a design tool to perform speculative changes at
the protocol and implementation level and observe the
impact� It also provides a direct capability of trac�
ing the propagation path of any variable 	or fault�
via reachability analysis� As the IT�DT needs only a
reachability path to de�ne an experiment� we can also
generate fault injection cases over any desired feasible
path without an overall termination condition for the
function�

��� Initial V�V Results�
Clock Synchronization Example

These proposed validation techniques were tested
on an actual implementation of the clock synchroniza�
tion algorithm ��� ��� presented in Section ��� 	Step
S��� where the incoming clock signals at the recipi�
ent nodes are time�stamped 	based on the recipient�s
clock value� in the order they were received � Fig� �

where A is the recipient node and messages from B�
C and D are time�stamped based on A�s local time�
This ensures that the temporal ordering of messages
is maintained�

According to the implementation requirements� the
time�stamper unit has multiple input channels but as
it processes only one channel at any given moment� the
messages get automatically sorted� There is a simplis�
tic underlying assumption that there will be a certain
distance in time between the signals and thus no con�
current timestamps related con�icts will arise�

Over the veri�cation process� all assumptions for
synchronization were maintained and the protocol was
considered veri�ed� In the implementation� the time
stamper was provided with a speci�cation regarding
the distance in time between two successive incoming
messages for the purpose of serializing them in time�
However� this speci�cation was inadequately 	and in�
correctly� speci�ed and implemented such that this
distance was actually longer than the time distance
between two perfectly synchronized clock messages�
Thus� if two clock messages came synchronized and
closer in time than the speci�ed time distance in the
time stamper� it would default and adopt a random
polling mechanism� and thereby creating a partial or�
dering problem 	Fig� � right side��

A

B

C

D

A

C

B

D

se
qu

en
ce

 o
f

in
co

m
in

g
m

es
sa

ge
s sequence of recorded m

essages

local_time_stamper block of node A

A
B C D

time stamping window

node A

Figure � Clock Synchronization � Timestamper

This implementation had been extensively tested
using classical fault injection techniques ���� and this
condition was not discovered� However� subsequent to
the synchronizer block� a consensus block recording
the actual time�ordered set of nodes in the synchro�
nized set� would show variations in the message se�
quences 	as in Fig� �� thus indicating some deviation�
Using conventional FI approach based on both accel�
erated testing and random fault injections� ��� million
test cases were injected with � faults detected� but the
discussed fault case was missed� The IT�DT approach
generated a total of ��� experiments and identi�ed �
faults 	the discussed case and � others including the
� faults found in the classical approach� including the
partial ordering case� It is unusual that the erroneous

time stamping situation appears when the system is
working perfectly with the clock signals arriving very
close to each other� This case disappears when the
system has a high load or in the case of a fault where
the incoming messages get staggered further in time
than the speci�ed time distance in the time stamper�
thus meeting all speci�ed requirements�

The IT and DT of the synchronizer block were set
up� similar to Fig� �
 �� to model the synchroniza�
tion protocol� In this block� no errors in either the
protocol or the implementation were found� However�
the DT of the subsequent consensus block declared
order dependency on the convergence block� Next�
the DT in the convergence block determined ordering
function dependency on the timestamper block� Re�
modeling the IT of timestamper at the VHDL level
highlighted the implementation problem� We make
three observations here 	a� the fault propagation ex�
tended over di�erent functional blocks of the overall
protocol� 	b� iterative use of the IT�DT over di�er�
ent blocks helped identify the exact function�block�
and 	c� the timestamper block needed modeling to a
more detailed VHDL level based on this block�s spe�
ci�c identi�cation over the DT processes�

The ��� test cases generated using the IT�DT ap�
proach provide for validation which is exhaustive only
to the number of speci�ed parametric inputs such as
the functional description of the time stamping unit�
Fortunately� this amount of parametric information
su�ced to pinpoint the fault case�� In a general set�
ting� the number of test cases could have been higher
had the speci�cation required more information to as�
certain the exact dependency of the synchronization
algorithm on the timestamper� However� as we are se�
lectively and iteratively determining the dependency
of a given functional unit on the input parameters� the
number of tests required is signi�cantly less than that
for random or statistical testing�

A similar test was conducted on the ��� majority
voter� In this case ���� tests were needed using classi�
cal FI versus �� tests identi�ed by the proposed formal
methods assisted techniques� In both cases� the imple�
mentation had � fault cases and both techniques were
correctly able to identify them�

Fault injection� in general� is a probabilistic vali�
dation approach� and our formal approach does not
make any claim of completeness of validation� How�
ever� with exhaustive state exploration possible via
formal techniques� we do expect to develop capabilities
of reaching �closer� to a complete validation scenario�

	Determining� a priori� the level of detail needed to be rep�
resented is an open problem

once an automated form for generation and testing
over IT�DT�s can be accomplished�

These are early results that we present in this pa�
per to highlight the e�ectiveness of the proposed ap�
proach� We acknowledge that we need to cover a va�
riety of classes of protocols before claiming the overall
e�ectiveness of our approach�

� Conclusions� Limitations and Future

Directions

The current V
V techniques are limited in han�
dling the large state space involved in high dependabil�
ity operations� We have introduced a new approach to
FI based validation which extends the domain of for�
mal techniques beyond veri�cation to generate novel
validation strategies for dependable operations�

Currently� we have introduced techniques for the
representation of information generated over the spec�
i�cation and veri�cation process� We have developed
the basic guidelines for generating IT and DT� and are
developing detailed approaches to the incorporation of
dense�continuous time considerations� These will al�
low us to conduct V
V of real�time protocols which
are currently very di�cult to test using classical FI
techniques� We have yet to fully incorporate the spec�
i�cation of system load 	and stress� into the formal
engine� At present we are limited to approximating
these conditions using distributions� in the future we
are looking at approaches to model stress and load as
parametric inputs� We are also currently investigating
approaches to formally specify 	and interface� various
levels of abstractions over the implementation stages�
For example� the ability to formally model at the block
level� systematically leading to a speci�cation at the
circuit� gate and device level is a signi�cant challenge
that we plan to address�

A current limitation is the need of a specialized PVS
syntax to perform the formal speci�cations or to pose
the deductive queries in the DT� Our intent in the fu�
ture is to develop a GUI interface to simplify this step�
Given the features of our proposed approach� we en�
vision our techniques to complement conventional FI
techniques to provide for improved protocol valida�
tion� To this extent� we are looking at automating
and interfacing the IT�DT generation and iteration
process to other existing FI toolsets such as DEPEND�

As mentioned in the abstract� we have introduced
initial approaches to validation using formal tech�
niques� A few simple examples have been presented
to show the viability of this approach� Subsequently�
we plan to re�ne the approach to make it amenable
for practical V
V of dependable operations�

References
�	� Alur� R� Henzinger� T A� �Logics and Models of Real

Time� A Survey� Real Time� Theory in Practice� �JW
de Bakker� K Huizing� W de Roover� G Rozenberg� eds��
LNCS ���� Springer�Verlag� pp ���	��� 	���

��� Arlat� J et al�� �Fault Injection for Dependability Valida�
tion�� IEEE Trans� Software Engineering� vol 	�� pp 	���
	��� Feb 	���

��� Avresky� D et al�� �Fault Injection for the Formal Testing
of Fault Tolerance�� FTCS���� pp ��
��
�� 	���

��� Echtle� K� Chen� Y� �Evaluation of Deterministic Fault
Injection for Fault�tolerant Protocol Testing�� FTCS����
pp �	����
� 	��	

�
� Echtle� K et al� �Test of Fault Tolerant Systems by Fault
Injection�� FTPDS� IEEE Press� pp �����
	� 	��

��� Iyer� R and Tang� D� �Experimental Analysis of Com�
puter System Dependability�� Book chapter in �Fault Tol�

erant Computer System Design�� editor� DK Pradhan�
Prentice Hall� pp �������� 	���

��� Jahanian� F and Mok� A� �Safety Analysis of Timing
Properties in Real�Time Systems�� IEEE Trans� on Soft�

ware Engineering� pp �������� Sept 	���

��� Lamport� L and Melliar�Smith� P M� �Synchronizing
Clocks in the Presence of Faults� JACM� ���	�� pp
�����
Jan 	��

��� J�C Laprie� �Dependable Computing and Fault Tolerance�
Concepts and Terminology� Proceedings of FTCS���� pp
��		� 	��

�	�� Manna� Z and Pnueli� A� �Veri�cation of Concurrent Pro�
grams� The Temporal Framework�� TR STAN�CS�	��	
��
Stanford Univ� 	��	

�		� Owre� S et al�� �Formal Veri�cation for Fault�Tolerant Ar�
chitectures� Prolegomena to the Design of PVS�� IEEE

Trans� Software Engineering� Jan 	��

�	�� Owre� S� Shankar� N� The Formal Semantic of PVS� SRI�
CSL������ Aug 	���

�	�� Rushby� J� �Formal Methods and the Certi�cation of Crit�
ical Systems�� SRI�TR CSL��
�� Dec 	���

�	�� Rushby� J� �A Formally Veri�ed Algorithm for Clock
Synchronization Under a Hybrid Fault Model� In ACM

PODC� �����	�� 	���

�	
� Rushby� J and von Henke� F� �Formal Veri�cation of Al�
gorithms for Critical Systems� IEEE Trans� Software En�

gineering� vol 	�� pp 	����� Jan 	���

�	�� Suri� N� Walter� C and Hugue� M� �Synchronization Is�
sues in Real�Time Systems�� Proc� of IEEE� vol ��� no 	�
Jan 	���

�	�� Walter� C� �Evaluation and Design of an Ultra�Reliable
Distributed Architecture for Fault Tolerance�� IEEE

Trans� on Reliability� Oct 	���

�	�� Walter� C� Lincoln� P� and Suri� N� �Formally Veri�ed
On�Line Diagnosis�� IEEE Trans� on Software Engineer�

ing� vol ��� no 		� Nov 	���

