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Abstract

A cluster-based ultra-reliable architecture is pre-
sented, offering synchronization and system function-
ality comparable to that of fully connected systems,
with reduced system overheads. Existing combina-
torial and Markov models do not sufficiently model
concurrently occurring faults in such large systems. A
reliability model considering the distribution of con-
current faults across the system clusters is shown to
increase the accuracy of reliability and system fault-
tolerance estimates. The hybrid fault model, which
classifies faults based on their behavior, further im-
proves reliability estimates and enhances the fault
handling capability of each cluster. Linear growth in
cluster reliability with respect to cluster size is possi-
ble, as are refinements in the convergence and consis-
tency algorithms for synchronization.

1 Introduction

Existing ultra-reliable system designs, such as
SIFT [18] and FTMP [6], rely on fully connected
inter-processor structures to maintain synchronization
based operations across the system through all possi-
ble fault scenarios, including Byzantine faults. As the
performance requirements of complex control systems
require increased processing power, these systems need
to be extended. The exponential growth of link com-
plexity with system size makes the fully connected
structure un-realizable. While large, sparsely con-
nected, ultra-reliable systems have been designed [14,
13, 5] to improve performance, they have been un-
able to simultaneously reproduce the fault resiliency
of fully connected architectures. Instead, they rely
on trade-offs among the system characteristics of syn-
chronization, fault tolerance, reconfiguration, and per-
formability.

*Research supported in part by ONR Contract # N00014-
91-C-0014
te-mail : suri@batc.allied.com

The cluster-based design presented here uses a
divide-and-conquer strategy similar to [14] to meet the
objective of supporting fault tolerant real time control
tasks at a cluster and system level, without the algo-
rithmic overhead of a fully connected system. This
approach alleviates the compromises made in other
large ultra-reliable designs, without the node degree
and link costs associated with full connectivity. Fur-
thermore, the algorithms for all system operations are
formally validatable.

Also of concern in the design of large, ultra-reliable
systems is accurately assessing the system reliability
against the design objectives. A large body of research
exists for modeling cluster level reliability. However,
we show that the combinatorial and Markov methods
used to model large system models do not consider
concurrent fault occurrence cases and result in impre-
cise reliability estimates. A further improvement in
these estimates is made by classifying various fault
types at the cluster level.

In Section 2, we discuss the design basis for the
architecture. Section 3 describes the proposed clus-
ter model and its characteristics of synchronization
and fault tolerance. Section 4 details the reliability
model for such systems, and introduces the hybrid
fault model. This reliability modeling approach, based
on realistic distinctions among fault effects can be ap-
plied to any ultra-reliable system architecture. We
conclude with a summary of our contributions, and
future research endeavors.

2 Background and Motivation

The complete interconnection structure of SIFT[18]
and FTMP(6] provided direct support for consistency
based distributed and fault tolerant operations. How-
ever with graph and algorithmic overheads associated
with these designs, extending these to large system
designs impacts the performance and operational as-
pects. The hexagonal mesh structure of HARTS [13]
and cluster-based approach of FTPP [5] increased the



number of processors within the system, but either re-
laxed the overall system synchronization assumptions
or added expensive, special-purpose hardware to sup-
port the required synchronization primitives. Before
addressing cluster-based architectures, we examine the
challenges in designing such systems.

The operational framework of large hard real time
fault-tolerant control systems places stringent require-
ments on system functions. To meet the fault-
tolerance and performance requirements, tasks must
be performed redundantly on multiple processors,
with groups of tasks associated with groups of proces-
sors. Provable, fault-tolerant synchronization must be
provided across the entire system. Synchronization re-
quires both a local time frame within each cluster and
a global time base across the entire system. Individ-
ual task groups need locally synchronous frames for
agreement functions. System functions, such as dead-
lines, require globally synchronous frames for decisions
throughout task interactions.

Synchronization primitives and low inter-node mes-
sage transit times, that are naturally provided by a
fully connected structure, must be maintained with
fewer links in a cluster model. Since performance
is also an important design issue, closely related
tasks needing physical processor proximity to mini-
mize communication overheads can be accommodated
by fully connecting the nodes within a cluster. The
inter-cluster linkages support synchronization opera-
tions, with each node in a cluster capable of obtaining
information about other system nodes and clusters.
The ability to change task-to-processor or task-to-
cluster associations and to reconfigure in the presence
of faults requires dependable synchronization among
both nodes and clusters. The graceful degradation of
the system functions across all clusters must also be
supported. The system reliability and its resiliency to
Byzantine faults should be maximized, while minimiz-
ing the number of interconnection links in the system.

The system objectives demand that relatively tight
synchronization at both the intra-cluster and inter-
cluster levels be maintained in the presence of reduced
interconnections. So, the reliability of a system then
becomes a function of the reliability of the inter-cluster
linkage. A symmetric interconnect design aids the
computation of system reliability and facilitates algo-
rithm design and support. Earlier designs restricted
reliability considerations specifically to intra-cluster
operations. Since the proposed design requires each
node to participate in both cluster and system oper-
ations, the loss of a cluster, but not necessarily all of
its nodes, permits the remaining operational nodes to

continue participating in the system’s metabolic oper-
ations. A direct consequence is higher reliability and
performance than predicted for comparable designs.

3 The Cluster Model

The cluster architecture is a software-synchronized,
frame-based synchronous system with low graph met-
ric complexity and algorithmic overhead. As the rel-
atively sparse connections among nodes and clusters
distinguishes the cluster model from its predecessors,
we first describe the architecture and its salient char-
acteristics based on these interconnections. Then, we
present the synchronization properties which give the
cluster model the functionality comparable to com-
pletely connected systems.

3.1 The Cluster Architecture

Let ¢ = (V,F) represent the directed system
graph. The |V| = N nodes and the ' edges (syn-
chronization and communication links) are partitioned
into n clusters, with the i'” cluster expressed as C; =
(Vi, Eb), |Vi] = vi. The links within the cluster (F;)
are specified by the intra-cluster and inter-cluster com-
munication structures. For ease of reference, the nodes
in cluster C; are numbered sequentially and denoted
by V%, V integers o € {1,...15}. Node V,* is con-
nected to all other nodes within C; via intra-cluster
links. Inter-cluster links are assigned according to
intra-cluster node numbers, with the inputs to a node
in cluster C; received from the node in cluster C}, hav-
ing the same node number (modulus the cardinality of
Vi if v # v;). That is, for each node V,* € V;, V#

k3
receives inputs from node Vk(a)md"k of cluster (%, V

ke{l,...,n}, k #i. In cluster C;, the node degree
is given by v; + n — 1. Using this connectivity struc-
ture, a node has direct access to all other nodes in the
same cluster and a two hop access to any other system
node.

While other graphs exist with similar link and de-
gree reductions [14], the cluster model interconnect
structure offers three significant benefits detailed in [?]
and summarized below. First, a unique variation of
convergence-based clock synchronization mechanisms
is supported. Second, startup synchronization at both
cluster and system levels is feasible and formally val-
idatable in the presence of Byzantine failures. Such
synchronization is usually assumed by other struc-
tures, with the techniques for achieving it left unspec-
ified. And third, consistency is possible at both the



24 6 4 552 216 60 24 9 62
40 8 5 1560 480 69 40 12 70
64 8 8 4032 960 76 64 15 76
100 10 | 10 | 9900 | 1900 80 100 19 81

Table 1: Link and Deg. Reduction for Diff. Node Sets

[na [ Val [ np [ Vel [ ne [V [ D/t | E | %E |
1 100 0 0 0 0 99/33 | 9900 | 00.00
10 10 0 0 0 0 18/6 1900 | 80.80
5 10 10 5 0 0 18/6 2000 | 79.80
6 5 10 7 0 0 19/6 2140 | 78.30
6 5 8 6 3 7 21/7 2169 | 78.00
8 5 10 6 0 0 21/7 2260 | 77.17
17 6 0 0 0 0 22/7 2244 | 77.33
20 5 0 0 0 0 23/7 2400 | 75.75
25 4 0 0 0 0 27/9 2800 | 71.70

Table 2: E and D for Diff. Cluster Sizes, N=100

discrete cluster level and at a combined system level.
Table 1 quantifies the link(E) and degree(D) reduc-
tions for the system, comparing the cluster model(C)
to fully connected(FC) structures of similar sizes. In
Table 2, the fault tolerance, node degree and link com-
plexity are compared for three clusters with node sets
Vi, Vi, and V. of different sizes for a fixed V.

3.2 Synchronization Primitives

Convergence and consistency operations are per-
formed using two layered protocols. Each node partic-
ipates in both the cluster level and inter-cluster level
convergence and consistency functions. The architec-
ture supports a variety of synchronization primitives
including those described in [3], [4], [12], [15], [11].
We assume algorithm variants of those used in the
MAFTI[9].

Virtually all existing convergence algorithms are
based on fully connected structures, in which each
non-faulty participant derives the same set of clock
values for all other nodes. The achievable synchro-
nization skew for an N node system is 6. The com-
munication cost is O(N?) and each node receives N
values.

For the cluster model described above, different
clusters may contain different numbers of nodes.
Nodes within the same cluster receive different sets of
input signals as they are connected to different inter-
cluster nodes. However, interactive convergence can
still be achieved. This is a unique variant of the in-
teractive convergence problem, based on defining the
minimum overlapping information required in a non-
fully connected system to achieve a convergence prop-

erty. The resulting synchronization skew is 36 and the
cost is O(N(v;+n—1)). We point out that in [14], the
convergence-related cluster model relies on a guaran-
tee that all nodes in a cluster receive identical sets of
input signals and is altogether a different convergence
scenario. Additionally, the design of [14] is a con-
vergence model and can be shown to be inadequate
to support inter-cluster consistency, which is a design
objective for the proposed cluster model.

Consider all clusters C, for i € {1,... w}, w < n,
that exceed the minimum Byzantine resilient size of
v; = 3f;+1, where f; is the number of node faults that
cluster C; can tolerate. During startup, the system
tolerates Zlfvzl fi; node failures. A two-round inter-
cluster startup algorithm can directly sustain w + 1
faults, assuming a minimal one fault per cluster cov-
erage. Furthermore, the system can sustain LwT_lj
cluster faults in the presence of w Byzantine resilient
clusters. Then, synchronization skew to within 26 is
achievable between any two nodes of the system for
up to 2 faults and to 36 for up to L%J Byzantine
faults.

However, since an overall objective was high perfor-
mance, the cost of achieving this skew and supporting
the system consistency operations must also be as-
sessed. The divide-and-conquer strategy of the archi-
tecture provides considerable algorithmic support, as
lllustrated by comparing the time complexities of ex-
ecuting synchronization algorithms on different struc-
tures, shown in Table 3.

3.3 Fault-Tolerance Limits

Since each node, V%, in the system has v; intra-
cluster links and (n — 1) inter-cluster links, L"’"'S—"_ZJ
faults can be tolerated solely on the basis of the sys-
For simplicity, we as-
sume that all clusters are of the same size, with v; = v,
and each cluster can tolerate up to L”;lj Byzantine
faults. Next, suppose that an optimistic fault distri-
bution can be assumed, such that of m concurrently
occurring faults across n cluster, at most L”;lj faults
occur within each cluster. If a cluster is able to de-
tect and subsequently isolate a faulty node through
its local consistency operations, the node fault can be
masked, and a spare module can be integrated into
the system. The specified system fault tolerance is
thus maintained without requiring a global decision
to reconfigure the faulty node out of the system.

Thus, the cluster model supports minimally
L%J faults and maximally ZL”"'g—_ZJ faults, as-
suming a uniform fault distribution, where each clus-

tem convergence algorithms.

ter remains below its individual fault-limit and has a



[ System | N | CNV Ohd. (Msgs/round) | TAC Ohd.(msg/node) | $(m=0) | 5(m=1) |
Full 128 O(N?) O(N™FT) 25 s 25 s
HARTS | 128 | O(N(N —1)(2m + 1)log N) | O((N(2m + 1)log N)™T1) | 630 us | 1170 us
Cluster 128 O(N(v+n —1)) O(l/l-yS;lJ-H + nI-nT_lj-H) 5 s 5 s

Table 3: Comparing Full, Hypercube and Cluster System Complexity

single spare node per cluster.

Consider a discrete cluster fault with more than its
local limit of | “5%| node faults. Even though the clus-
ter is faulty, the system wide consistency operations
can still detect and isolate the faulty cluster when the
number of faulty clusters is less than L”T_lj Note that
we are still considering the faults as existing concur-
rently. Although the system fault-tolerance limit is
dynamic, based on the fault distributions across the
entire system, we can bound this limit.

Suppose that a single cluster is faulty and has been
detected and isolated. The fault-tolerance of the sys-
tem is then reduced to [2t2=2=1| Both a node fault
and a full cluster fault have identical impact upon the
fault tolerance limits, even though the system’s sensi-
tivity to future faults differs.

If we now assume at that at most m = |[“I=2|
faults can be tolerated by the convergence limits, the
fault distribution that causes the most cluster failures

affects a maximum of —3—

55 1+1
cluster consistency operations, it is necessary to satisfy
the condition :

clusters. For inter-

n—1 m
JZ v—1 :
3 5] +1

|

Similarly, the minimal fault-tolerance limit is

_9_ __m
ntv-2 Y541
3

This limit neglects spares and assumes a fixed fault
distribution and the execution of cluster level consis-
tency operations for fault detection and isolation.

The discrete handling of faults within clusters also
reduces the software overhead for this function. The
message complexity for a fully connected N-node sys-
tem to mask m faults is O(N™*1).

In a system with n clusters of size v, each clus-
ter runs its fault detection procedures concurrently,
resulting in the overall complexity of O(v %J‘H),

where v and [“31]| are several orders of magnitude

3
smaller than N =n x v and m = L%J

It is unrealistic to assume that an N node sys-
tem achieves its maximum fault-tolerance limit. For

example, a 100 node system with 25 clusters and 4

nodes per cluster can tolerate up to 9 Byzantine faults.
A fully connected system could cover 33 Byzantine
faults, but this is a highly improbable and unrealis-
tic fault coverage scenario. There is also the issue
of latency of fault coverage. The m + 1 rounds of
message exchange required to handle m faults in such
a system, with m = 33 in this case, also implies a
m + 1 round time latency in completing the Byzan-
tine agreement algorithm. In a cluster model with
an appropriate fault distribution, m faults could exist
concurrently, but still appear as sequential faults to
most clusters. Not only are these faults handled con-
currently and with low algorithmic latency, the corre-
sponding cost(complexity) of performing the coverage
is also low. This establishes the architecture basis for
the reliability modelling.

4 Cluster Model Reliability

We now show how the system reliability can be ob-
tained as a composite function of cluster reliability
and propose refinements to such a model.

4.1 Conventional Reliability Modeling

A conventional model obtains the system reliabil-
ity in two phases. First, the cluster reliability, R., is
obtained as a function of the number of node faults
in a cluster, under the assumption of identical relia-
bility among the clusters. Subsequently, the system
reliability, 2., for sustaining up to z faulty clusters
is derived as a combinatorial expression based on R,
values, i.e.,

xr
Reys = Z( B )Rg—l(l—}zc)z (1)
i=0

Alternatively, a Markov(or semi-Markov) model
can be developed for the same case, showing each sys-
tem state in detail. Since most of the system states
are taken to be equivalent, they can be collapsed and
the same combinatorial expression results. Using this
expression, system reliability is simply a function of
the number of cluster faults in the system and is in-
sensitive to the distribution of node faults among the
clusters.



The cases where ¢ clusters are faulty through z node
faults or where ¢ cluster faults occur through y, y # =
node faults are indistinguishable for Eq. 1. The model
ignores the variation of system states within different
clusters. None of these distinct fault states is seg-
regated in the combinatorial expression. Hence, the
system reliability expression is insensitive to fault dis-
tributions. Further, concurrency of faults in different
clusters is also neglected.

By definition, a Markov chain represents a sequence
of events. Thus, transitions are sequential, and the
usual approximation to modeling concurrent events is
as near-coincident bifurcations. In the Byzantine fault
model, the system is designed to tolerate m concurrent
faults. There are no precise methods of handling this
aspect in a Markov model. Usually a cascaded fault
model[1] considers changes in system states through
the occurrence of a single fault at a time, resulting in
inherent inaccuracies in the predicted reliability.

4.2 Cluster Reliability

As discussed in Section 3.3, analysis of the cluster
model reliability requires a different approach. For
simplicity, consider an N = n x v node system toler-
ating up to m concurrent Byzantine faults. Each clus-
ter is at least minimally Byzantine resilient, and can
maintain individual consistency-based fault-detection,
masking and recovery procedures. The occurrence of
m concurrent faults in the full system, where the con-
currency is with respect to a global time frame, dis-
tributes the faults over the various clusters. If f; nodes
fail in cluster V;, for v > 3f;, then the cluster can de-
tect, isolate and recover from the faults. If, instead
v < 3f;, then cluster V; fails. This simple cluster fail-
ure can be modeled using coincident faults without
losing any accuracy for a single cluster. However, the
m faults occurring concurrently in time are reduced to
“sequential” faults on a spatial basis across the clus-
ters due to localized fault handling in each cluster.

A new issue of fault distribution in the reliability
model is thus spawned. In Eq. 1, the binomial co-
efficient, (?), is derived by considering a single clus-
ter to be faulty, followed by the recovery or failure
of the cluster, with each cluster considered one at a
time. This “sequential” spatial fault distribution, re-
quires an enumeration of all possible cases of spreading
the m faults across the clusters, with different clusters
receiving differing number of faults. The concurrent
fault handling model and the sequential model dis-
cussed below both address this scenario. We assume
the use of discrete time Markov models though con-
tinuous time models are equally applicable.

4.2.1 Concurrent Fault Model

Most existing models consider concurrently occurring
faults at both the cluster and inter-cluster levels as
either nearly simultaneous faults or nearly coincident
faults, invariably modeling them as a transition path
to a failed system state. At most these model concur-
rency within a cluster and never at the system level.

Realistically, in a large system there is a non-
zero probability of faults occurring concurrently, that
increases with the number of nodes in the system.
Hence, we must compute the probability of a sys-
tem being operational given that exactly m concur-
rent faulty nodes exist in the system. System failure
is defined in terms of exceeding either the consistency
limit on faulty clusters, fcons = L”T_lj, or the con-
vergence limit on faulty nodes fcony = L%J

We consider such a concurrent fault case in the clus-
ter model. The number of ways to spread m faults
among n clusters, allowing multiple faults in a clus-
ter, is ("*7"71)[10]. However, as we demonstrate in
the example below, this is an upper bound, because
the number of faults which can occur in a single cluster
is limited by the number of nodes in the cluster. Then,
we must determine the number of clusters failing for
each fault distribution.

Example 1 Consider a system with N = 80, n = 20,
v = 4 with fault tolerance(ft) = 7. Table | enu-
merates the vartous fault distribution cases when at
most 5 faults occur. The tuple (x,y,...) describes a
fault distribution with x faults in one cluster, y in an-
other and so on. Fach cluster is capable of sustain-
g a single Byzantine fault. The column Perm refers
to the number of ways a fault pattern can be spread
across the clusters. P refers to the probability of oc-
currence of each distribution. Fach fault distribution
can occur across clusters in a variety of ways, e.g.
E6 can occur in W‘_s), ways. Scenario E5 shows
that a number of fault distributions are not possible
for the defined structures. The distributions such as
(5,0,0,0,...) cannot exist for clusters of size 4, and
these are marked with an “X.” ad

Thus, we see that the binomial coefficient, (TZ), no
longer applies. Instead, we must determine the total
number of ways that a cluster can be faulty over the
full set of faults that the system can handle, for all
m € {1,...,Mmas}. Each of these fault distributions
then needs to be evaluated for all of these fault ranges.

The discrete mathematics problem presented by the
cluster model is non-trivial. The first step is to gen-
erate all possible fault distribution vectors (FDV’s).



Ref | # N Fault # C P Perm | Perm
Flts Distn Flts n=20 | n=10
[A1 ] 1 [(1,0000,..)] 0o [ 1 [ 20] 10|
B1 2 (1,1,0,00,..) | 0 | 1/2 190 45
B2 2 (2,0,0,0,0,...) | 1 1/2 20 10
C1 3 | (1,1,1,00,..) | 0 | 1/3 ] 1140 120
C2 3 | (1,2,000,..) | 1 1/3 380 90
C3 3 | (3,0000,..) | 1 1/3 20 10
D1 4 | (1,1,1,1,0,...) | 0 | 1/5 | 4845 210
D2 4 | (1,1,2,00,..) | 1 1/5 | 3420 360
D3 4 | (1,3,000,..) | 1 1/5 380 90
D4 4 | (40,000,..) ] 1 1/5 20 10
D5 4 | (2,2,000,..) | 2 | 1/5 190 45
El 5 (1,11,1,1,..) ] 0 | 1/6 | 15504 X
E2 5 (1,1,1,20,..) | 1 1/6 | 19380
E3 5 (1,1,3,00,...) | 1 1/6 | 3420 X
E4 5 (1,4,0,0,0,...) | 1 1/6 380 X
E5 5 (5,0,0,00,..) | X X X X
E6 5 (1,2,2,00,...) | 2 | 1/6 | 3420 X
E7 5 (2,3,0,00,..) | 2 | 1/6 380 X

Table 4: Fault Distribution across Clusters

For a specific m, this is equivalent to enumerating all
ways of representing the number m as a sum of non-
negative integers : FDV’s. No closed form expression
exists for this quantity.

Once the FDV’s have been computed, the faults
in that vector must be distributed among the differ-
ent clusters and their nodes. Table 4(col. P) shows
that, for a given m, each case has an equal probabil-
ity of occurrence. However, since the total number of
distributions is not known a priori, this probability is
obtainable only after enumerating for a given m. Also,
when clusters are chosen to be of different sizes, with
different fault tolerance limits, enumerating the distri-
butions become even more difficult. This computation
quickly becomes intractable.

Figure 1 illustrates the Markov model for Ta-
ble 4(n = 10) with 4 concurrent faults. For each clus-
ter, the faults within a cluster may still need to be
treated as near-coincident faults, admitting the pos-
sibility of inadequate coverage. Examples of such be-
havior appear in Table 4 for cases B2, C2, C3 etc.

An alternate way of modeling system reliability,
Rsys, is to treat it as function of the number of faults
instead of as a function of time. A conventional fully
connected system capable of sustaining f sequential
faults has a decreasing reliability value till a f, .,
limit is reached, and falling to zero the moment the
fault limit is exceeded. In the concurrent fault case,
the reliability drops to zero for f > 1.

In contrast, when using a concurrent fault model,
no change in the reliability occurs until f; faults have

Concurrent Fault Model

system state : ( fault distributions )

a: 1/5(210)
(0,0,0,..,0) b : 1/5(360)
c: 1/5(90)
d: 1/5(10)
e : 1/5(45)
(1,1,1,1,0,..,0) (21,1,0,..,0) (3,1,0,. .,0)  (2,20,..,0)
failed state

Equivalent Markov Model

system state : ( # of failed clusters, residual fault tolerance )

a b c

@ failed state
> s s
10 10 1.0

a : 1/5(210) f(lammda_node).dt

b : 3/5(360 + 90 + 10 ) f(lammda_cluster).dt
c: 1/5(45) f(lammda_cluster). dt

Figure 1: Concurrent Fault Markov Model

occurred, because all clusters remain fully functional.
After f; faults have occurred, some of the fault distri-
butions can cause multiple cluster failures leading to
a system failure. However, there is also a finite prob-
ability of occurrence of distributions for which more
than f; faults do not impair the system, resulting in a
staggered step function. It is interesting to note that
for certain values of m concurrent faults, no FDV’s
are obtainable which cause the system fault tolerance
limits to be exceeded and causing system failure.

4.2.2 Sequential Fault Model

This fault model is a refinement of existing Markov
models, assuming sequential fault occurrences and
transitions, with fault detection possible in various
states. Figure 2 illustrates a model for a 40 node
system of 10 clusters. We assume that two cluster
faults cause system failure, and that at most four node
faults can occur. The permutations and fault distribu-
tions are as described in Table 4 for n = 10, although
they are now obtained recursively from the preceding
states. Each row of the model illustrates the distribu-
tions for a given m. The states in each row are dis-
joint, precluding the use of the standard technique of



Sequential Fault Markov Model

system state : ( < fault distribution >, # of failed clusters )

failed state

,0>,1)

Key: | x=lammda_node. dt

Figure 2: Sequential Fault Markov Model

collapsing states into equivalence classes. The starred
(*) states in the path from (0,...,0) to the failure
state (2,2,0,...,0) indicates one set of states consid-
ered in conventional modeling.

All other operational state distributions are aggre-
gated in the conventional model, even though they are
discrete states and have non-zero occurrence proba-
bilities. The R, term of Eq. 1 lumps all operational
states into one and is only indicative of the probabil-
ity of being in one or more operational states. There
is no differentiation among the various combinations
of operational states possible with the fault distribu-
tions. The imprecision in conventional reliability cal-
culations are caused by disregarding these states and
their associated transitions. Table 5 illustrates differ-
ences in the reliability values obtained for the clus-
ter model using the conventional(C) and the proposed
schemes(C[dist]). The values for FTPP and for stan-
dard clusters assume reconfiguration at the cluster and
system level. The cluster model(C[dist]) values are
computed assuming no reconfiguration.

Based on this analysis, we make the following state-
ment, to be formally proven in future work.

Statement : The system reliability of a distributed
system with local (intra-cluster) and global (inter-
cluster) fault containment regions is a function of both
the number of node and cluster faults, and the spatial
distribution of those faults across the system.

In a future model, we will combine the two models
to allow the occurrence of concurrent faults from any
state in the sequential model to the other states.

| System® (N) | P (10hrs) | P (100hrs) | P (200hrs) |
FTPP(80) 1.9x 1078 1.957x 107 | 3.918 x 10~ 7
C(40) 1.49x 10711 [ 1.09x 10~% | 8.639 x 108
C(40)[dist] 1.94x 1071 | 6.76 x 10711 | 4.97x 10710

%Aproc = 1x107*/hr, coverages = unity

Table 5: Reliability variations for Fully Connected,
Basic Cluster and with fault distributions

4.3 The Hybrid Fault Model

We can also improve the reliability estimates by
relaxing the assumption that all faults are Byzan-
tine. The hybrid fault tazonomy, based on our work
n [16], [17], and on the following definitions, classi-
fies faults according to the errors they cause and the
techniques needed to tolerate those errors.

The scope of a fault is the portion affected by that
fault. A symmetric fault generates errors that are seen
identically throughout the fault scope. Otherwise, the
fault is asymmetric. Active or dynamic redundancy
techniques achieve fault-tolerance by fault-detection
alone, or in conjunction with location and recovery.
Passive or static redundancy techniques mask fault
effects, thus avoiding errors.! Non-iterative passive
redundancy techniques require a single round of mes-
sage exchange while iterative techniques, such as inter-
active convergence and interactive consistency [3],[2],
require multiple iterations of message exchange among
participants. Fault-tolerant voting techniques, such
as majority and median, are non-iterative passive re-
dundancy techniques on which iterative passive re-
dundancy techniques are often based. Non-malicious
faults can and will be detected? in a non-faulty node
by the active redundancy techniques implemented in
that node, while malicious faults must be masked us-
ing passive redundancy techniques. Hybrid techniques
combine active and passive redundancy techniques to
enhance fault fault tolerance.

Combining the attributes of malice and symmetry
produces the three mutually exclusive and collectively
exhaustive fault sets of the hybrid tazonomy:
malicious faults (B), malicious symmetric faults (S),
and malicious asymmetric faults (A). The worst-case,
or most severe, faults in are those in A, correspond-
ing to the classic Byzantine fault where a faulty node
supplies two different, yet feasible, values to different
nodes. Faults in § are less severe than the faults in
A, but are more severe than faults in 5. Faults in

non-

!For further details, see [8].
2By definition, a fault that is undetected by the active redun-
dancy techniques implemented in a non-faulty node is malicious.



B include benign faults, crash faults, and the subset
of Byzantine faults that can be detected using active
redundancy techniques, such as sanity checks.

The overly-pessimistic reliability models assume all
faults to be of type .A. An overly-optimistic model
takes all faults to be in B. The hybrid fault model[7]
combines commonly used single fault-type reliabil-
ity models with the hybrid taxonomy to cover mixed
fault types. The standard fault tolerance algorithms
are replaced by hybrid algorithms that identify non-
malicious faults and ignore them during masking or
voting. If no hybrid algorithms are used, then the hy-
brid model reverts to the standard worst case single-
fault model with no improvement.

For synchronization in the cluster model, the fault
set is F = S|JB|JA for both the node and cluster
faults; so, all possible faults are covered. A minimum
of n = 2f4 4+ 2fs + fs + 7 + 1 nodes is sufficient
to tolerate f4 + fs + fs faults, with f4 < 7 within
each fully connected cluster, assuming that a hybrid
interactive consistency algorithm is used and that 7 =
r, the number of rebroadcast rounds implemented in
the algorithm. At least 7+ 1 good nodes are assumed
to be necessary for the system to remain operational.

Table 6 shows the improvement in estimated relia-
bility over the Byzantine Generals’(BG) model assum-
ing exponential node failure rates of 1x 10~* per hour.
The additional fault scenarios covered by the hybrid
model(HM) are also listed, with the assumed probabil-
ities of fault types (fa, f5, fs) taken as (.01,.98,.01).
Table 7 shows the effects of improved cluster-level re-
liability estimates upon the system reliability in a 40
node cluster system, with two failed clusters leading to
a failed system state. In both tables, the combinatoric
expression of Equation 1 and the reliability expression
given in [7] are used to estimate the reliabilities un-
der the assumption that no repair or reconfiguration
occurs.

5 Conclusions

We have presented a cluster based architecture that
provides tight cluster level and system level synchro-
nization without the graph and algorithm complexity
limitations of a fully connected structure. We also
demonstrated the imprecision of conventional combi-
natorial techniques for modeling cluster based sys-
tems. The reliability of a distributed system was
shown to be a function of both the number of faults
and their spatial distribution, an aspect disregarded in
earlier schemes. Discrete Markov modeling techniques

Model | N 1— Rsys Fault Handling
(1 hr) Capability
BG 4 | 6.0x 1078 fa=1
BG 5 | 1.0x 107 fa=1
BG 6 | 1.5x10°7 fa=1

HM 4] 24x107% | f4=1,f3=0,fs=0

fA:07fBS27fS:0

fA:O,fB:O,fSZ].

HM 5 | 41x10711 | f4=1,f5<1, fs=0

fA:07fBS37fS:0

fAZOnyS]-!fS:l

HM 6 | 15x10711 | f4=1,f5<2, fs=0

fa=1,f3=0,fs<1

fA:07fBS47fS:0

fA=07f6§27f521

f.A:()ny:OnyZZ

Table 6: Hybrid Model System Reliability

Clus. BG Model Hybrid Model
@) [ (TR : (TR)5,: | R)e : (-R)my
@20 hrs : @50 hrs @20 hrs : @50 hrs
(10,4) 2.39E-5 : 3.91E-10 9.77E-7 : 3.07E-14
(8,5) 3.98E-5 : 8.36E-10 2.06E-8 : 3.53E-17
(7,6) 5.96E-5 : 1.75E-9 6.15E-9 : 1.39E-17

%(1-R)c = (1-R) for C

Table 7: System Reliability for Different Cluster Sizes

have been developed to cover such reliability modeling
scenarios.

At the cluster level, we have described methods to
distinguish faults and classify them depending upon
the type and severity of errors they cause. This is
shown to provide a more realistic estimation of the reli-
ability of a system than the existing overly-pessimistic
and overly-optimistic models. This mechanism also
provides a way of choosing linearly increasing cluster
sizes with associated linearly increasing reliability val-
ues, contrary to the predictions of the usual Byzantine
reliability models.

We need to extend the system level reliability mod-
els to consider (a) varying cluster sizes, (b) allowing
for reconfigurations at the inter-cluster level and (c)
modelling correlations among clusters. The fault dis-
tribution model and the reliability model using fault
classifications have currently been obtained on an in-
dividual basis. For a full and comprehensive system
reliability model, these need to be integrated along
with consideration of link faults.
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