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Abstract

Real�time systems must accomplish executive and application tasks within speci�ed timing

constraints� In distributed real�time systems� the mechanisms that ensure fair access to shared

resources� achieve consistent deadlines� meet timing or precedence constraints� and avoid dead�

locks all utilize the notion of a common system�wide time base� A synchronization primitive is

essential in meeting the demands of real�time critical computing� This paper provides a tutorial

on the terminology� issues� and techniques essential to synchronization in real�time systems�

� Introduction

The success of a real	time system in meeting its service requirements depends upon the correct	
ness and timeliness of its responses and its resilience to faults
 Regardless of its design or target
applications� a real	time system must have some notion of time
 The time base can be absolute�
corresponding to a physical clock� or relative� based on speci�c events
 A synchronization primitive
is implemented to establish and maintain a common time base among distributed functional units
and between computational tasks
 This tutorial presents an overview of the various issues and
approaches taken to ensure acceptable synchrony


The notions of correctness and� especially� timeliness of distributed system services require
a consistent global time base
 In applications such as distributed databases� synchronization is
implicit in the task precedence constraints and in the phase	lock and phase	commit protocols which
help serialize operations
 For example� a memory write followed by a read from the same location
can yield di�ering results if a read is initiated prior to completion of the write in shared memory
 Fair
access to shared resources� data correctness and deadlock avoidance require a consistent ordering
of events among cooperating processes


Many techniques have been developed for circuit level synchronization� supporting VLSI arrays
or concurrent system models� which employ semaphores or distributed clock lines to achieve the
desired synchrony
 Synchronization can also be at the level of logical clocks� messages or compu	
tational tasks
 Other facets of synchronization include coordinating functional units� maintaining
consistent distributed information� and ensuring consistent scheduling� diagnosis� recon�guration�
and application	speci�c decisions
 Even though synchronization methods� goals� and limits can
di�er considerably at various levels of the system hierarchy� the issues addressed in this tutorial are
common to all
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We focus on distributed real	time systems� composed of interacting subsystems� or nodes 
 The
need to associate time with task completions has spawned much attention to increasing processing
speeds
 Speed alone is not su
cient for our target applications� which require correct� continual
and timely responses
 E
cient synchronization primitives are required for both quick accurate
responses and resiliency to a limited number of failed resources
 The internal time base which
controls intra	node operations must be augmented by a common inter	node frame of reference
to support of dependable distributed operations
 Global task deadlines are meaningless if system
nodes interpret them di�erently or do not agree that they have been met or missed
 A common time
base is thus needed to permit consistent identi�cation of the time at which events occur and their
duration
 Such synchrony is essential in real	time critical applications like control of �y	by	wire
aircraft and nuclear power plants� where system failure has catastrophic consequences including
loss of life or property


Ideally� synchronization should be inherent in a system�s control or communication primitives

However� the need to synchronize services in the presence of faults requires additional support
features in the system model� su
cient to require that synchronization constitute a necessary and
discrete system primitive
 That is� synchronization cannot be treated as an add	on feature
 In
general� synchronization can be described as a primitive that provides a basis for coordinating
system	wide services� where the the control �ow and correctness requirements of the services de	
termine acceptable primitive instantiations


A variety of system models and synchronization techniques exist in the current literature
 Both
hardware and software solutions have been devised to provide the varied levels of granularity needed
to coordinate system services
 Exact and approximate synchronization in tightly and loosely cou	
pled systems can be guaranteed based on both explicit and implicit time frame delimiters
 The
need to accommodate faulty and imperfect system services in providing a system	wide time base
increases the complexity of the synchronization problem
 Individual approaches to synchronization
can be distinguished by the level� granularity� and fault resiliency of the resulting primitives


This tutorial addresses the synchronization problem by �rst providing an overview of common
solution techniques and their applicability in Section �
 Section � introduces the terminology and
fundamental concepts which characterize di�erent forms of synchrony
 The principles and issues
pertinent to solving the synchronization problem are then presented in Section �
 Section � discusses
the key details of synchronization techniques appropriate for di�erent system models
 In Section ��
variations of the conventional approaches to synchronization problems are presented
 A summary
and an assessment of the status of real	time synchronization theory appears in Section �


� The Synchronization Problem

In uniprocessor systems�� the sequence of operations is explicitly de�ned by the programmer
through the use of control �ow instructions in software
 For larger programs� structured pro	
gramming techniques advocate the decomposition of a single module into many smaller� but more
comprehensible modules
 The problem of resolving and coordinating the control �ow among mul	
tiple modules is typically solved by relying on an omniscient observer to serialize events
 For
uniprocessors� the straightforward solution is to use a common time base derived from the proces	
sor clock
 In a distributed environment� comprising multiple processors� deriving a common clock

�The term uniprocessor refers to systems having a single program module�
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value is considerably more di
cult
 This problem of deriving a common clock value is one facet of
the synchronization problem


The objective of synchronization is to establish and maintain a consistent� system	wide time base
among the various subsystems in a distributed real	time system
 The problem can be addressed from
several perspectives� based on the desired granularity of coordination� the various synchronization
abstractions and on the application requirements
 Synchronization can be obtained at both the
process �task� and the node �clock� levels
 Task level synchrony deals with event ordering� while
node level synchrony usually refers either physical or logical synchronization of clocks
 Alternatively�
hand	shaking protocols or system reset strobes lines may be su
cient to achieve a level of synchrony
appropriate to the system and its service requirements


The system model in�uences the type of synchrony to be maintained
 In synchronous systems�
computations are performed on a frame basis� where a frame is a �xed time interval delimited
by distinguished signals
 Synchronization in such systems is achieved by ensuring that the frame
boundaries of di�erent nodes occur within a speci�ed time range or skew of each other
 In general�
asynchronous systems do not explicitly utilize the notion of time
 Serialization of actions and tasks
is achieved using locking mechanisms� interrupt signals� system calls and semaphores
 However�
coordination of actions according to certain events is an implicit form of synchronization
 Some
asynchronous system models assume that individual nodes possess a time base or are coordinated
in time� yet maintain asynchronous operations among nodes
 The novel feature of such quasi�
synchronous systems is that they can support the formation of mutually synchronous sets of nodes
as needed� with variable	length time frames between di�erent sets of nodes


Models are further distinguished by the nature of messages exchanged by nodes
 In unauthen�
ticated message protocols� the sender of a message is assumed to be identi�able
 In authenticated
message protocols� a distinct digital signature is appended to each message
 The signature allows
the receiver to unambiguously identify the sender of the message
 The signature is unforgeable and
any attempt by a faulty unit to modify the signature is detectable
 Due to the prohibitive cost and
complexity of encoding� appending� and decoding signatures� such techniques are not widely used

We will focus primarily on synchronous and unauthenticated message passing models where an
error in a received message �or lack of an expected message� is the sole indicator of a faulty node

These diverse perspectives on the synchronization problem share a common basis� as presented in
the remainder of this tutorial


� Terminology

In this section� we focus on temporal synchrony� although the concepts also apply to event syn	
chrony
 A set of nodes may be mutually synchronized� in time or in signal values� with no relation
between the relative or internal time and any absolute or external time reference in the physical
world
 This internal synchrony su
ces for system operations if there is no need for the system to
interact with the external world
 However� in real	world applications� interactions between exter	
nal I�O events and internally synchronized units require the internal system time to be mapped to
absolute or physical time� to provide a meaningful correlation between the two di�erent time bases


Each node in the distributed system is assumed to possess an individual� local clocking mecha	
nism
 Possible implementations include a quartz crystal or a counter mechanism
 Nodes communi	
cate with each other through unauthenticated messages
 We assume synchronous message passing�
with a non	negligible� but bounded� message propagation delay
 The term physical time refers to
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the absolute time� in the physical world
 The time value represented on the clock of a node� either
a clock or counter value� is called the logical time
 A mapping from logical time to physical time
is required to make the system time base useful
 If we let C represent such a mapping� at physical
time t� the associated logical time equals T� written as T � C�t�� with C�t�� referred to as an
event
 Synchrony can be internal� where a maximum relative deviation in time is speci�ed between
any two node clocks
 Similarly� synchrony can be external� with node clocks required to be close
to some absolute time reference
 A consistent mapping must be maintained between logical and
physical clocks� with attention to the relative granularities of each clock type


��� Temporal Synchronization

For an ideal clock� the rate of change in time for a logical clock matches that of the underlying
physical clock� with dC�t�

dt
� �
 The term clock value assumes a logical clock which can represent

either time or events
 Realistically� a clock module is a physical device with minor variations
occurring in the output count
 A clock�s variation over time� called the drift rate of the clock� is
denoted by �
 A typical crystal oscillator can drift by as much as ���� seconds per second
 After ��
hours� the clock would exhibit a deviation of 
�� seconds from the ideal clock value
 Since clocks can
deviate by ��� two clocks could become separated by �
�� seconds after �� hours
 To accommodate
this variability� the mapping between physical�real� and logical time� at a given time t� is de�ned
as a synchronization envelope between �����t and �����t
 This synchronization envelope is often
called either a time envelope or a clock envelope
 A clock is termed to be non�faulty if it lies within
this time envelope
 That is� the drift of the clock is bounded over the time interval �t�� t��� with

j �C�t��� C�t���� �t� � t�� j� � j t� � t� j ���

A similar version of this de�nition refers to the time proximity of two events

While di�erent clock modules may exhibit di�erent physical drift rates ���� ��� � � � � �n�� a single

time envelope� bounded by �� � �max� and �� � �max�� is assumed for the entire set of clocks or
nodes
 When two clocks with di�erent drift rates are started at the same time� they will display
a skew in their clock values after a given interval of time
 Two clocks� C� and C�� are said to be
synchronized to within a skew� �� of logical time� at a physical clock time t if both of the clock
values lie within the time envelope� and the following condition is satis�ed


j C��t�� C��t� j� � ���

Equivalently� a physical time range� ��� can be de�ned at time T as j c��T �� c��T � j� ��� where
� and �� are related by the same physical time to logical clock mapping
 Clocks are said to be
synchronized if inequalities ��� and ��� are satis�ed� as illustrated in Figure �


��� Forms of Synchronization� Approximate Agreement

The non	faulty clock de�nition� Eq
 ���� implies that all logical clocks remain close to physical
time
 As the clocks drift individually in time� the system nodes must exchange their values peri	
odically and correct their local timers� to ensure that conditions ��� and ��� are sustained
 Thus�

�The term �real time� is sometimes used in literature to refer to �physical time� and should not be confused with
the term real�time used to describe the systems of interest� as in distributed real�time systems�

�The inverse mapping� c�T � � C���T �� gives the physical time t at which the logical clock value is T �
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Figure �� Clock Envelope

approximate agreement of clock values to within � must be maintained� typically using interactive
convergence algorithms
 The terms interactive convergence and approximate agreement are often
used interchangeably in the literature
 Interactive convergence techniques are used to ensure that
the following conditions required for approximate agreement� or convergence among logical clocks
are satis�ed


�AA� Agreement�� If � � � and C� and C� are good clocks with values C��t� and C��t� at time t�
then jC��t�� C��t�j � �


�AA� Validity �� The clock value of any non	faulty node is within the range of the values of all
other non	faulty nodes� clocks at time t


ConditionAA� is satis�ed when the clock value of a non	faulty node is within the time envelope� as
shown in Figure �
 Techniques which achieve approximate agreement are presented in Section �
�


��� Forms of Synchronization� Exact Agreement

Nodes within a system may occasionally need to agree exactly or achieve consensus upon the value
of a speci�c entity
 Examples include a distributed commit action� where a consistent system
decision must be agreed upon� or agreement upon a stable schedule
 Consensus may be required
among the nodes on a task deadline� on a common clock value� on a data value� or even upon
resource allocations
 The leader election problem in both synchronous and asynchronous systems
requires exact agreement� as do the two	phase lock and commit protocols in database systems

Thus� the ability to achieve exact agreement among a set of nodes is another type of synchrony
important in providing responsive system services


The terms consensus� interactive consistency� exact agreement� and Byzantine agreement are
used interchangeably in the literature
 Interactive consistency techniques �or Byzantine agreement

�



algorithms� are used to achieve consensus� exact agreement� or Byzantine agreement� as discussed
in Section �
�
 Exact Agreement is achieved when the following conditions� are satis�ed�

�EA� Agreement �� All non	faulty nodes agree on exactly the same value �or course of action�


�EA� Validity �� If the transmitter is non	faulty� all non	faulty nodes agree on the senders value


� Issues for Synchronization

Most synchronization techniques involve adjusting logical clocks� not the physical clocking devices

In this section� we focus on the general synchronization problem� regardless of the underlying system
model
 While Section � introduced the synchronization problem� this section discusses issues that
have made the synchronization problem an important research topic
 These issues also characterize
the various synchronization approaches


��� Propagation Time and Read Errors

In a message passing system environment� a node �clock� transmits its clock value to other nodes
and receives clock values from the other system nodes
 The message propagation time involved often
a�ects the achievable accuracy of synchronization
 For a fully connected clock network in which
all messages travel the same physical distance� the propagation time can be estimated to within
a bounded accuracy
 However� if inter	clock distances are non	uniform� as in non	fully connected
systems with message routing delays� the propagation and read errors become a major source of
inter	clock skews
 The same problem occurs at the VLSI level� caused by variations in the lengths
of wires between device modules


These issues cause the clock read�error problem
 If dmin is the minimum message propagation
time and dmax is its upper bound� then �dmax � dmin� is a simplistic de�nition of the read	error�

The term �dmax� dmin� represents the discrepancy between two clocks in reading a common third
clock�s value� as illustrated in Fig
 �
 In non	fully connected systems� message propagation time
varies due to routing delays
 So� if M represents the average message transit time� the read error
will be within the interval �M � dmin�M � dmax�
 The reader is referred to the detailed discussion
presented in ���
 Since the exact propagation delay cannot be determined�� it must be estimated

Over a series of rounds this estimation process can also introduce signi�cant discrepancies between
the actual and perceived clock values� based on the time at which a receiver records or time	stamps
an incoming message
 Any delays in queuing or processing messages in di�erent nodes contributes
further to these discrepancies


The presence of faulty nodes also a�ects the read	error
 First� explicit message redundancy
is needed to cover the e�ect of fault at a particular time
 This e�ect� and that of the inherent
variability of message transit times� is illustrated in Fig
 � in terms of the reception of messages
�msg �� through �msg n� at node c
 The actual message processing time is delayed from time Y
to Z
 The duration Z � Y is not know deterministically on an a priori basis
 Second� for speci�c

�More formal de	nitions are presented in 
��� �
��
�In a fully connected system� the message routing distances are identical� Thus� the message transit time and

message propagation time are similarly related�
�At best only a delay distribution is available�
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Figure �� Read Error Scenario

system topologies� the message delivery between a pair of nodes may require routing of a message�
thus increasing the variability in the read	error problem


The nature of the clock reading process also in�uences the bounds on read	errors
 Some com	
monly used procedures are� �a� a clock sends its clock time to other nodes as a data value� eg
� of
the form �my time ismin � secs�� �b� a clock sends out a signal which is recorded �or time	stamped�
using the local clock of the recipient node� and �c� a clock determines the time of another clock
by sending a query and obtaining a response� using the techniques of �a� or �b�
 The read	error
now includes the cumulative error of individual query	send and query	respond messages
 Errors
thus accumulate more rapidly when the information exchange is query	response based than when
iterative data broadcasting is used
 The major impact of the propagation time on synchronization
is to limit the precision that can be achieved
 The maximum variability in message transit time is
a lower bound on the tightness of synchronization achievable in the given system model


��� Synchronization Skew

Due to the clock drift associated with each clock module� the synchronization procedure needs to be
repeated periodically to maintain the desired precision of synchrony� even in the absence of faults

The frequency of re	synchronization is a function of the system model and the overhead involved
in the process
 The problem is simpli�ed if the re	synchronization procedure is performed at each
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clock tick� as continual corrections are provided
 However� the cost of this procedure is prohibitive
in many system models


Over a given time period� R� the synchronization skew between two clocks grows as ��R due
to the individual clock drift rates
 If the initial skew between two synchronized clocks is �init�
then over a time interval R� the skew grows as � �init � ��R
 Although the � term is small� as
R increases� the term �R approaches the order of �init and eventually impacts the tightness of
synchronization
 Thus� a correction step must be performed periodically� to maintain the clock
synchronization conditions� as illustrated in Fig
 �
 The read	error discussed in Sec
�
�� and the
message transit time delays in large and non	fully connected systems all contribute to clock skew
in fault free systems


��� E�ect and Handling of Faults

In critical real	time applications� the e�ects of faults upon synchrony must be addressed
 Faults
make the synchronization problem more di
cult to solve because worst	case assumptions must be
used in approximating quantities such as message propagation delay and read	errors
 The fault
model used in designing a system characterizes the types of faults to be tolerated
 The simplest
models assume well	behaved fault modes that are easily detectable by a single good node� such
as missing messages� late or early messages� and spurious messages
 These models tend to be
too optimistic since they discount the possibility of certain fault behaviors
 At the other extreme
is the arbitrary or Byzantine fault model which assumes that the behavior of faulty nodes is
unrestricted and potentially undetectable at the local node level
 This assumption is is overly
pessimistic since many types of faults are detectable or can be masked using a fault tolerant voting
function
 Historically� since Byzantine faults can be arbitrarily malicious� the terms �Byzantine
fault� and �arbitrary fault� have been used interchangeably
 In Section �
�� we discuss the bene�ts
of distinguishing between the two


The following �gures illustrate the e�ects of Byzantine faults in the convergence and consensus
scenarios
 In Fig
 ��a�� node A is Byzantine faulty� sending di�ering values to nodes B and C

Since B and C each formulate di�erent data sets� there is no common reference value on which to
establish convergence
 In Fig
 ��b�� nodes B and C cannot agree on A�s value� as A sent con�icting
information to both
 In a fault	free case� any correction function used consistently by all nodes will
result in convergence
 In the presence of faults� deliberate redundancy needs to be provided to mask
the e�ects of a Byzantine fault
 These conditions signi�cantly a�ect the nature and the complexity
of synchronization operations
 For example� f � � nodes are su
cient to achieve synchrony if the
f faulty nodes are guaranteed to exhibit detectably faulty behavior� such as stuck	at faults that
violate a message or data constraint
 Conversely� if the f faulty nodes exhibit arbitrary behavior�
a minimum of �f � � nodes and multiple rounds of message exchange are required to mask the
faults
 We address this issue in greater detail in Sections �
� and �
�


� Techniques for Synchronization

We next discuss the protocols needed to achieve convergence and consensus in the presence of
arbitrary faults
 In these interactive algorithms� nodes participate in multiple rounds of information
exchange and assimilation
 The generic algorithm below is suitable for either type of synchrony�
whether implemented in hardware or software
 Dedicated hardware implementations are typically
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Figure �� Byzantine Fault E�ects

faster and more expensive than software solutions
 However� the lower cost software may incur
signi�cant costs from message and computational overhead
 These and other factors such as the
algorithmic overhead� potential fault set� and the desired granularity� speed� skew and level of
synchronization must also be considered
 Unless otherwise stated� we assume a fully	connected
network topology


Algorithm � �Generic Synchronization Algorithm�

�a� Each node broadcasts its personal value to all member nodes�

�b� Each node assimilates the information received from all other nodes�

�c� Each node determines a reference value from the values collected in step �b�� then computes and
adopts a correction �or new personal value�� needed to align itself with the reference value�

� If the algorithm termination conditions �if any� are not met� repeat steps �a� � �c��

The terms reference and correction di�er in the context of consensus and convergence algo	
rithms� as do the termination conditions
 Consensus algorithms require distributed nodes to agree
exactly on a �nal value �or vector of values�� with the correction step corresponding to selection of
the single voted value
 Convergence algorithms require distributed nodes to agree approximately�
with the correction computed by comparing each node�s personal value with a selected voted value

Explicit clock values may be exchanged� or a node�s clock value can be inferred from the arrival
times of messages from that node
 Individual techniques are distinguished by the method used to
compute the reference value and by their termination properties
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��� Distributed Agreement

For the sake of completeness in handling synchronization issues� we present a brief summary of the
Exact Agreement form of synchronization
 The reader is referred to ���� ��� for a more detailed
discussion
 However� our primary emphasis in the subsequent sections will be on the Approximate
Agreement form of synchronization


Distributed agreement techniques enable members of a group to recognize and maintain con	
sensus upon data values� a joint course of action� clock values� events� diagnostic information� or
other critical system parameters in the presence of arbitrary faults
 Byzantine agreement and in	
teractive consistency algorithms are used to achieve and maintain exact agreement conditions EA�
and EA� from Section �
�
 In ���� and ����� the authors show that in the presence of f Byzantine
faulty nodes� exact agreement can be achieved using at least f � � rounds of message exchange as
long as the number of nodes exceeds �f 
 Instead of requiring full connectivity� a graph connectivity
of at least �f � � is su
cient to ensure that a majority of non	faulty values will be received by a
node ���
 For synchronization� the Oral Messages algorithm ���� and its variations can be used to
identify that a group of initially unsynchronized nodes are in synchrony within a speci�ed skew� as
discussed in Section �
�


Similarly� approximate agreement and interactive convergence algorithms are used to achieve
and maintain conditions AA� and AA� from Section �
� in the presence of arbitrary faults
 We
address these techniques in greater detail because many synchronization methods are based on
maintaining approximate agreement among non	faulty nodes


��� The Convergence Problem

We have so far presented an algorithmic perspective on the synchronization problem
 The conver	
gence problem in synchronization arises from the inherent physical properties of clocks
 While two
nodes� clocks can be matched initially� the variable drift rate of good clocks described in Section �
makes exact synchrony impractical even in a fault	free scenario
 Thus� a permissible synchroniza	
tion skew� � � �� is assumed� where clock values are required to agree approximately to within �

units
	 The underlying principle is for nodes to apply periodic corrections to their clock values to
force them to stay in synchrony� as de�ned by Eq
 ���
 While hardware and software methods are
similar conceptually� the di�erences in their implementations lead to very di�erent characterizations
of synchrony� as described in the remainder of this section


����� Hardware Synchronization

In hardware	based synchronization� the achievable clock skew is of the same granularity of the
clock mechanism� i
e
� the crystal oscillator

 Clock signals from each oscillator are the �messages�
exchanged by nodes
 As described in Algorithm �� nodes collect the incoming signals and compute
local corrections from a reference clock value extracted from the received signals
 A hardware	model
speci�c feature becomes apparent here
 Since the output pulse of an oscillator has characteristic
signal and phase values� correction of both the signal and phase of a physical clock may be needed
to align clocks within lock	step of each other
 The correction mechanism is basically a feedback

�If needed� a similar bound� relative to an implicit time basis� can be derived for task�level synchronization�
�This can be of the order of ���	 secs�
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phase	locked loop which adjusts the phase and frequency of individual clocks
 Such granularity of
synchrony is infeasible using software techniques


The operational details are described in ����� as illustrated by Fig
 �
 The phase detector
produces an error voltage based on the di�erences in phase between the clock receiver output and
the local voltage controlled crystal oscillator
 After applying a low	pass �lter� this error voltage is
applied to the VXCO� which adjusts its frequency accordingly


As discussed at the beginning of Section �
�� exact agreement is guaranteed within f �� rounds
of message exchange in the presence of f arbitrary faults as long as the number of nodes exceeds
�f 
 This condition is not su
cient for approximate agreement� especially with respect to clock
values� because it requires the initial skew among good clocks to be �
 Each distributed system
node collects information from other nodes and picks a reference value from which to compute the
correction
 It is likely that di�erent nodes can correctly select di�erent reference values


Research has shown that many frequently proposed solutions which appear to be intuitively
correct may be �awed in this respect
 An example is shown in Fig
 �� from ����� where good clocks
collect values and select a median from that set as a reference value
 In the absence of faults�
clock values in the set fa� b� c� d� eg correspond to good clocks
 Signals received by a node are
considered in increasing order in time
 Consider the median value observed by the di�erent good
clocks
 Nodes �a�� �b� and �c� see �b� as their reference value� while nodes �d� and �e� choose their
reference as �d�
 Two groups of synchronized nodes or cliques result� fa� b� cg and f d� eg� without
a common clock between them to enable mutual synchrony
 Now� suppose fx� yg are values from
Byzantine faulty nodes� and the order of clock signals is such that a faulty value is chosen by two
good nodes as its median
 As the behavior of the faulty node is arbitrary� the medians derived on
these good clocks need not agree
 This can cause further divergence of clock values over a set of
synchronization rounds
 The mean is similarly insu
cient to ensure convergence


The sensitivity of the mean and median functions to extremal values can be solved by ignoring
such values and selecting the mean of two reference values as the �nal value
 If the data values of at
least N � ��f � �� clocks are sorted in order of magnitude �ascending or descending�� the average
of the �f��� and N � �f ��� values will yield a common reference value among the N nodes in the
presence of f arbitrarily faulty nodes
 The details of this technique appear in ����
 The condition

��



clock order seen by clock  ( a ) :  x  y  a  b  c  d  e

clock order seen by clock  ( b ) :  x  y  a  b  c  d  e

clock order seen by clock  ( c ) :  x  y  a  b  c  d  e

clock order seen by clock  ( d ) :  a  b  c  d  e  x  y

clock order seen by clock  ( e ) :  a  b  c  d  e  x  y

group 1

group 2

median value

median value

Figure �� Formation of Clock Cliques Using a Median Reference

of �f � � nodes to sustain f Byzantine faults is necessary� as shown in ��� �� ��� ��� ���� and ����

The in	feasibility of obtaining locally synchronized cliques� much less system synchronization� with
less than �f � � nodes is shown in ���


An advantage of hardware techniques is that synchronization is maintained at the clock cycle
level� providing for continual synchronization with the re	synchronization period� R� e�ectively
that of a single clock cycle
 The precision of hardware synchronization is of the order of ���� secs�
minimizing the impact of the inherent clock skew and the errors in reading clocks to within the
signal propagation delay


Hardware techniques� although highly accurate do have disadvantages
 First� dedicated circuitry
is needed in every node to implement the phase	locked loop mechanism
 Second� the basic system
model thus requires a speci�c clocking network linking the nodes� as a general message passing
system would be too slow
 These two factors make such techniques expensive and impractical
for large systems and for system with physically separated components
 It may also be di
cult
to ensure the necessary clock reliability due to the inherent complexities of the hardware devices
involved


����� Software Techniques

We next address the synchronization problem from the perspective of tasks and data
 Even in the
absence of faults� precedence related tasks may need to be executed on di�erent processors
 Thus�
synchronization among dependent tasks is required to ensure that the results of remote tasks are
available to local tasks as needed
 Phase	locking and commit protocols are also relevant in this
context
 If multiple copies of a task are executed for fault tolerance� synchronization is required to
ensure that the multiple output values are combined into a single consensus value� which is then
available for use by a subsequent task or redundant task set


Software techniques are generally used in loosely coupled systems where the order of achiev	
able synchronization skew is larger �� ���� secs to ���� secs� than the hardware clock skew
�� ���� secs�
 Unlike hardware techniques� the costs associated with software synchronization
are related to the system overhead of generating and handling the message tra
c
 Since software
synchronization pertains to logical clocks� this a�ords a more �exible solution than the hardware
implementations
 Software synchronization solutions are often favored in the majority of existing

��



systems because of their reliability� �exibility and relatively low cost


Determining a Reference Value

Some synchronization approaches exist which do not utilize the averaging �or correction� step of
the generic synchronization algorithm
 These follow the leader election approach to achieve virtual
centralization in a distributed system
 In leader election� each node sends out a query and listens
for responses� within a pre	speci�ed listening window
 When a node receives a prede�ned number
of responses within the listening window� the node corrects its value to the last value received and
informs the other nodes of its actions
 This correction corresponds to a discrete jump in time�
requiring no averaging operations


A disadvantage of this scheme is the large read	errors between node queries and responses� as
achievable synchronization skew is bounded below by the maximum message transit time
�� As a
result� authenticated messages are required by many of these methods
 In ����� Toueg presents an
approach where the accuracy and drift rates of the logical clocks are shown to match that of the
physical clocks
 The paper discusses both authenticated and un	authenticated algorithms based on
leader election which are shown to be optimal even in the presence of faults


A subsequent paper by Schmuck���� addresses an aspect of the precision of synchronization�
called �amortization�
 Since software synchronization is periodic� all correction operations are
performed at a designated frame boundary
 The impact is two	fold
 First� all signals need to be
received and processed in a de�ned window interval
 Second� clock adjustment is instantaneous�
which can violate the monotonicity of the logical clock
 The paper demonstrates that when the
corrections to the logical clock are performed continuously over a frame interval� the monotonicity
of clocks is sustained and the precision of synchronization remains una�ected


In contrast� averaging methods improve the upper bound of clock skew to the order of the clock
read	error
 These techniques apply primarily to fully connected models in which message transit
times are uniform among all nodes
 In some applications� it is acceptable for di�erent processors to
compute di�ering local data values for redundant or similar tasks
 The local data values are then
exchanged� and the local average value is adopted as the �nal value
 Using the mean function� the
�nal value is computed by summing the local values and then dividing by the cardinality of the
set
 Using the midpoint function� the �nal value is computed by taking the average of the largest
and smallest elements in the set
 In the absence of faults� both functions yield identical sets of �nal
values among nodes
 As described in Section �
�
�� the midpoint and mean functions cannot ensure
identical �nal values in the presence of faults
 If a node�s value can be interpreted di�erently by
two good nodes then di�erent good nodes may hold di�erent sets of local values� which result in
di�erent �nal values when the mean and midpoint functions are used


In ���� fault tolerant versions of the mean and midpoint functions are devised by removing
extremal values from the original set
 In an N 	node system� each node must collect N local node
values� if no value is received from a node� then an extreme value is used
 In the presence of f
arbitrarily faulty nodes� with N exceeding �f � the mean and midpoint functions are applied after
removing the f largest and f smallest values


If all good nodes receive identical incorrect values from a faulty node� then the sender is said

	Responses may correspond to time values or events�
�
Since there is no correction performed� the bound exceeds the maximum transit time and not just the variability

of the transit time�

��



to be symmetric faulty
 If good nodes receive di�erent values from the same faulty node� then
the node is asymmetric faulty
 When all good nodes are guaranteed to receive the same value
from any good node� and node faults are symmetric� then the reduced set will be fault free� and
either the mean or midpoint function ensures a unique �nal value
 If the set of values held by
good nodes can legitimately disagree� or if there is an asymmetric faulty node� then the reduced
sets of values held by good nodes could be di�erent
 In this case� the simple exchange	and	vote
procedure may not be su
cient to ensure that the values adopted by all participants are close to
each other
 Instead� iterative algorithms based on convergent voting functions must be used� where
the �nal values are exchanged� collected� and voted again
 A convergent voting function reduces
the range of the set values to which it is applied
 So� eventually� the range becomes arbitrarily
small
 Both the f�fault tolerant midpoint and f�fault tolerant mean functions described above are
convergent� with respective convergence factors of �

� and f
�N��f�
 Even if the initial values are

skewed or appear so due to faults� a single application of either function and exchange of voted
values� decreases the range of the new value set
 Subsequent votes and exchanges will eventually
result in all nodes holding values that are very close to each other
 These interactive convergence
algorithms are so named because the nodes iterate using convergent voting functions to achieve
�nal values within a prede�ned skew of each other
 Upon termination� the participating nodes
are said to be in approximate agreement
 Termination of these algorithms typically requires exact
agreement�� on when convergence is achieved


��� Phases of Synchronization

The synchronization techniques described previously were designed to maintain steady	state oper	
ation
 However� there are actually three phases of synchronization� cold	start� steady	state� and
warm	start����
 When a system is powered up� no consistent system state or time base exists
 Once
their clocks are initialized� nodes broadcast information� observe the behavior of other nodes� and
attempt to align with one another
 This process of data assimilation and alignment comprises the
initial or cold�start phase of synchronization� which must establish a common time frame among
good system nodes by bringing their clocks within an acceptable skew of each other
 The broadcast�
observation� and alignment process is continued until a su
cient number of nodes are in synchrony�
forming an operating set 
 At this point� the nodes in the operating set terminate the cold	start
phase and enter the steady state phase� which maintains the acceptable synchronization skew
 Any
good nodes that were not synchronized when the operating set was formed enter warm�start� the
third phase of synchronization
 In this phase� the nodes must identify the current operating set and
become aligned with it
 This phase permits good nodes to be integrated into an existing operating
set� either initially or following node reset or repair
 The methods used to maintain steady	state
operation are combined to support the other phases� as mentioned below


Initial Synchronization

The techniques discussed in Section �
�
� are su
cient to synchronize cold	starting nodes
 A cold	
start algorithm based on leader election is presented in ����
 When each powered node begins to
operate� it broadcasts distinguished start�up messages� and then listens for other such messages
over a pre	speci�ed time interval
 When a node receives a start	up message� it responds with an

��This can include prediction of the round number when agreement will be achieved�
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acknowledged message
 Since the system is synchronous� message delivery times between nodes
are bounded
 Thus� when a node receives a su
cient number of acknowledged messages within
the listening window� adjusts its local time according to arrival time of the group of messages

The instantaneous and discrete correction applied also ensures that time remains a monotonically
non	decreasing function
 A quasi	averaging approach is presented in ����
 The initial alignment of
nodes� clocks are again achieved through a leader election process
 However� an averaging operation
is used to compute the corrections applied to achieve synchrony
 The methods in ���� and ���� di�er
only in the granularity of the time correction


A di�erent approach is presented in ����� where the entire procedure is based on an averaging
convergence method
 Instead of using a �xed reference value to compute a local correction� two
distinct reference signals are provided
 In a synchronous system� these signals correspond to the
delimiters of a �xed length frame
 Each node evaluates its proximity to both references and com	
putes its correction dynamically� based on the closer reference signal
 Since each node broadcasts a
distinct signal at its frame boundaries� cold	starting nodes simply determine the number of signals
of a particular type obtained in a speci�ed time interval
 A novel feature is the support of both
positive and negative time corrections
 Since the mapping between the local clocks and physical
clocks is not de�ned until steady	state synchrony is achieved� the monotonically non	decreasing
property of a physical clock is not violated


These methods permit the node clocks to de�ne and converge to a single time reference
 The
termination of this phase occurs as soon as the deviation between any two clocks is within the
bound given in expression ���
 Termination of cold	start also can also be achieved using a consensus
technique� in which all nodes achieve consensus on a system state vector that indicates the set of
mutually synchronized nodes
 Once the global time base and initial system state vector have been
agreed upon� any method that assures consensus can be used to maintain a consistent state vector


Integrating Incoming Units

The warm	start phase is a simpler operation than cold	start
 The operating� but not yet synchro	
nized� node merely listens to the system synchronization signals and sets it time within the clock
envelope of the synchronized signals
 As before� both leader election and averaging techniques are
applicable
 Algorithms are presented in ���� ��� ��� which support warm	start
 Generic algorithms
which adapt to all three phases provide a minimal cost solution to the synchronization problem

The algorithms in ���� and ���� are of this category


� Recent Developments in Synchronization

Alternatives to the conventional hardware� software� and logical synchronization methods have been
developed to enhance the fault resiliency and e
ciency of synchronization
 This section highlights
some recent developments


	�� Hybrid Synchronization

Hybrid synchronization primitives are derived by combining software and hardware techniques and
exploiting the bene�ts of each approach
 A softwaremodel is typically superimposed over the system
functions� with some functions o�	loaded to dedicated hardware
 For large system topologies�
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the cost of a dedicated clocking network often precludes hardware synchronization
 If software
synchronization alone is used� the latency and computationalmessage overhead limits the achievable
tightness of synchronization
 Message routing delays also limit the tightness of synchronization that
can be maintained
 System faults only exacerbate the message routing� tra
c volume and delivery
time deviations
 Thus� as a scalable general solution for distributed systems� synchronization based
solely on either hardware or software techniques is often ine
cient or impossible


In ����� dedicated hardware units are used to support a software synchronization protocol

Communication between nodes is still through messages� but the custom hardware at each node
handles message tra
c to reduce the system overhead
 Messages continue to propagate throughout
the re	synchronization interval� reducing both message congestion and minimizing delays due to
message transit
 The interval during which a node records incoming messages prior to computing
its timing correction is also shortened
 The achievable synchronization skew exceeds that of pure
hardware techniques� but is still less than the minimum software synchronization skew
 Message
transit delays are e�ectively masked by this approach� and the method is resilient to faults


	�� Non
fully Connected Models

Synchronization in large� fully	connected systems is prohibitively expensive and usually physically
impractical� especially when using hardware solutions
 Viable synchronization methods have been
developed for large systems without full connectivity


The �rst method ���� uses the conventional software synchronization approaches of Section �
requiring each node to collect information from other nodes
 Hybrid techniques are then used
to minimize the e�ect of message transit and routing delays
 The consensus problem requires
a similar aggregation of data from the system nodes� with information about all member nodes
received redundantly over �f � � disjoint routes


An alternative approach in ���� requires only selective information assimilation
 In this cluster	
based model� nodes within a cluster are fully connected� but not across clusters
 Each node obtains
information from all of its cluster nodes� and from at least one node in every other cluster in
the system
 Synchronization is thus provided with di�erent granularity at the intra	cluster and
inter	cluster levels
 While this hardware synchronization method achieves approximate agreement�
it cannot achieve consensus
 Using a di�erent cluster model� ���� ��� supports both software and
hardware synchronization techniques to achieve both approximate and exact agreement� subject to
the synchronization bounds of ����


	�� Probabilistic Synchronization

Thus far� we have dealt with deterministic synchronization algorithms in which the probability of
achieving synchrony is unity
 However� the inherent lower bounds on synchronization skew caused
by message propagation and transit delay� especially in large non	fully connected system� may
render deterministic synchronization inadequate for a given system model
 If unbounded random
message delays are permitted� the achievable synchronization skew may be too large to be useful
��

In such systems� the required skew is signi�cantly less than is achievable using the best software
methods� and the cost of a hardware	based protocol is prohibitive
 Probabilistic synchronization
techniques were developed to deal with the limitations of deterministic methods


��In a system� transmission errors� page faults� lost messages etc� contribute to these delays�
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Probabilistic techniques are used to achieve synchrony with a prede�ned accuracy
 The draw	
back of these methods is that the probability of achieving synchrony� while �nite� is not guaranteed
to be unity
 Cristian��� initiated the probabilistic approach� based on the assumption that message
propagation times are randomly distributed
 The algorithm utilizes a query based approach
 A
node A sends out a request to determine the clock time of a speci�c node
 Based on the assumed
distribution of message transit times� node A can calculate the accuracy achievable based on the
arrival time of reply to its query
 If the reply to the query is received later than the maximum
receive time associated with a particular time reading accuracy� the message� is ignored
 The query
and clock reading procedure is repeated until the other node�s clock time has been read with the
desired accuracy
 There is no guarantee that over multiple reading attempts� the desired reading
accuracy condition will result
 The algorithm is not fault	tolerant and� given the message overhead
caused by multiple read attempts� the maximum number of read attempts must be predetermined
in any implementation of this method
 This may decrease the probability of achieving synchrony
because that probability is proportional to the number of read attempts


Arvind ��� has improved this algorithm by using an averaging method to limit the e�ects of
random variations in message propagation times
 The performance of Christian�s algorithm is
improved using a message transmission protocol which guarantees a user	speci�ed upper bound on
message delivery time
 A novel feature of the algorithm is its use of the existing system message
tra
c to achieve synchronization


The algorithms by Cristian and Arvind follow a master	slave protocol� where the master node
is the time reference to which all other nodes synchronize
 Unfortunately� the use of a single master
is a performance bottleneck and limits the fault	tolerance of the algorithms
 E
cient distributed
approaches appear in ���� ���


	�� Randomized Agreement

We now focus on non	deterministic solutions to the exact agreement problem
 Under the conven	
tional approach� the necessary and su
cient conditions for achieving Consensus in the presence
of f Byzantine faults are �a� a minimum of �f � � nodes� and �b� f � � rounds of information
exchange
 The impossibility of achieving consensus in asynchronous systems with even a single
fault is proven in ���


A novel non	deterministic technique which supports both asynchronous and synchronous sys	
tem models is the randomized Byzantine agreement protocol which uses random numbers
 Cryp	
tographic techniques developed by Shamir���� are used by Rabin���� considering an authenticated
message protocol
 In principle� a secret sequence S is shared among N nodes
 Each of the N nodes
possesses a subsequence of S� selected randomly and independently by participating units
 The
sequences are chosen such that a set of k out of N processors can reconstruct S by exchanging their
secret subsequences� and S cannot be reconstructed by less than k nodes
 Unlike the algorithms of
Section �� these procedures do not broadcast aggregated data sets in consecutive rounds
 Selective
information dispersal techniques limit the amount of message tra
c in the system
 In another
algorithm� Rabin achieves consensus with probability � using a �xed number of rounds ��� of data
exchange� independent of both N and f 
 Another non	deterministic solution uses R data exchange
rounds to reach agreement� with a probability of ��R that agreement will not be achieved
 In the
technique of Ben	Or���� a fair coin is tossed independently in each processor
 These coin	tosses are
repeated until a pre	speci�ed large number of outcomes coincide
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N fault tuples � �fB� fS� fA�

BG HFM

� � �� �� �� ��� ��� �� ��
��� �� ��

� � �� �� �� ��� ��� �� ��
��� �� ��� ��� �� ��
��� �� ��

� � �� �� �� ��� �� �� �� ��
�� �� �� ������� �� ��
��� �� ��

� � �� �� �� ��� �� �� �� ��
�� �� �� ��� ���� �� ��
��� �� ��

Table �� Fault Coverage under the Classical BG and HFM Approaches

The number of Byzantine faults tolerable by a �xed round protocol is increased in Perry����
beyond the limits propose by Rabin in ����
 Protocols are derived which tolerate f faults using at
least �f � � nodes in an asynchronous model and at least �f � � nodes for a synchronous model

These protocols also apply to non	authenticated message tra
c


	�� Hybrid Fault Model
Based Synchronization

The fault	tolerant synchronization methods discussed earlier were designed to tolerate arbitrary
faults� even though not all faults have arbitrary e�ects
 An alternative treatment of faults is to
classify them according to the e�ect perceived by other nodes


Under the hybrid fault model� presented in ���� arbitrary faults are partitioned into three disjoint
classes� benign �fB�� malicious symmetric �fS� and malicious asymmetric �fA�
 A node is benign
faulty if all good recipients of a message from that node can detect an error in the message
 If at
least one good recipient detects no message error from the faulty node� then the node is malicious
faulty
 A fault is malicious symmetric if the erroneous messages received by all good nodes from
the faulty node are identical
 Otherwise� the fault is malicious asymmetric
 This hybrid taxonomy
recognizes that the set of arbitrary faults consists of a continuum of fault types of with varied
severities and occurrence probabilities
 Instead of sustaining a single worst	case� i
e
� Byzantine
fault� di�erent combinations fB � fS and fA faults can be supported� providing a more accurate
model of the fault tolerance of a given system model


Once the possibility of mixed faults is considered� many of the synchronization methods we have
presented can be extended to take advantage of the ability to detect some fault types
 For example�
in ����� we present a version of the Oral Messages Algorithm which solves the consensus problem
for arbitrary faults� and permits reliable identi�cation of benign faulty nodes without increasing
the number of messages sent
 Hybrid approximate agreement algorithms are presented in ���� with
the associated reliability modeling techniques
 Table � illustrates the fault tolerance capabilities of
the hybrid algorithms over those of the classic Byzantine General models for both convergence and
consensus algorithms
 The e�ects of mixed faults on system fault tolerance remain a strong area
of interest


��



	�	 Mechanical Veri�cation of Clock Synchronization

Coverage of more than a few faults in a system is often made impractical by the overhead associated
with redundant resource management
 In a real	time critical control system� it is nearly impossible
to maintain correct operation in the presence of generic or design faults because these faults are
duplicated throughout the system
 Since fault avoidance is more cost e�ective than attempting to
tolerate such faults� formal methods for component and algorithm design are being explored
 The
goals of these techniques are to minimize intolerable designed	in faults and to increase the portions
of the system that can be formally validated


The success of the clock synchronization methods we have discussed depends on the correctness
of the algorithms and their implementations
 Recent research e�orts have focussed on the use of
formal methods� such as formal speci�cation and veri�cation of algorithms� to avoid such faults in
synchronization functions
 Many of the clock synchronization algorithmsdescribed herein have been
formally veri�ed using mechanical theorem provers or speci�cation and veri�cation systems
 In �����
clock synchronization algorithms based on interactive convergence are formally veri�ed� and errors
in the published analysis ���� were discovered and corrected
 A schematic protocol for Byzantine
fault tolerant clock synchronization is mechanically veri�ed in ����� with the results compared to
the hand proofs in ����� and minor errors in the original exposition were again uncovered
 In �����
the Oral Messages algorithm of ���� is similarly veri�ed


In each of these cases� the process of mechanical veri�cation uncovered minor algebraic mistakes�
as well as unnecessary assumptions about the system and its clocks� both physical and logical

More importantly� where the intricate hand proofs were often di
cult to understand� the formal
veri�cation process made the proofs of correctness more accessible
 As hand proofs are sensitive
to the skills of the prover� mechanical proofs are sensitive to the correctness of the theorem prover
and its underlying logic
 Work is continuing in the area of mechanical proof systems and formal
veri�cation� with concentration on the ability to extract correct protocols from the proof process


� Discussion

In this paper� we have provided an overview of the state of the art and practice in achieving and
maintaining synchronization
 We have motivated each aspect of synchronization� and indicated the
pros and cons of di�erent methods of achieving synchrony at di�erent levels in the system hierarchy

We have discussed synchronization techniques according to the type of system coordination desired�
i
e
� exact or approximate agreement� as appropriate to the system and application domains
 As
the costs of implementing convergence and consensus algorithms were not speci�cally highlighted�
Table � tabulates these overheads for di�erent system models


While it easy to recognize that robust synchronization primitives� capable of sustaining a variety
of faults� are essential to the success of distributed real	time or responsive systems� it is often
di
cult to decide which set of paradigms to adopt
 We have demonstrated that the synchronization
techniques appropriate for a given system and application can depend upon the fault model� the
system con�guration model and the communication model� the type of information exchange that
needs to be synchronized� the desired granularity of synchrony� the expected operating environment
and many other factors
 We have attempted to indicate the tradeo�s to be considered among
methods used to maintain a common time base within a system or component


On the surface� the fundamental issues of synchronization appear to have been well addressed by
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System CNVa Ohd� �Msgs� CONS Ohdb��Msgs�

Full O�N�� O�Nf���

Hypercube O�N�N � ����f � �� log N� O��N��f � �� log N�f���

Cluster O�N�� � n� ��� O��b
���

�
c�� � nb

n��

�
c���

Probabilistic O�N log�N� �
Randomized O�N��

aCNV � Convergence� CONS � Consensus
bN � � of nodes� f � faults� � � cluster size� n � � of clusters�

Table �� Alg
 Complexity in Full� Hypercube and Cluster Systems

the vast body of work pertaining to synchrony
 Areas requiring further research include minimizing
the cost of maintaining the level of component replication and communication complexity needed to
be resilient to Byzantine faults� and maintaining system performance while achieving approximate
or exact agreement in a timely fashion
 A close examination of the di
culties in implementing
some of these techniques shows that we are far from a set of practical primitives


Our current understanding of the consensus and convergence aspects of synchronization may
have appeared relatively mature� with the hand proofs checked and re	checked before journal arti	
cles were published
 However� the mechanical veri�cation of these algorithms has uncovered errors
which� while minor from the proof standpoint� could lead to failure in a production version of the
algorithm
 Regardless of the clearness of the result or the elegance of a proof� the abstractions
we adopt are often inadequate to represent the real behavior of system functions
 Accepted fault
models are being revised according to the methods needed to maintain synchrony in the presence
of certain faults
 The cost of the extremely pessimistic Byzantine fault model is being weighed
against the probability of a Byzantine fault in a given system
 Existing single fault type models�
voting functions� and interactive algorithms are being modi�ed to take advantage of the behavior
of a system under mixed fault models
 A practical theory of synchronization needs to be devel	
oped before the responsive systems needed to support real	time critical control applications can be
realized
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