
Fast Kernel Error Propagation Analysis in
Virtualized Environments

Nicolas Coppik
TU Darmstadt

Darmstadt, Germany
nc@cs.tu-darmstadt.de

Oliver Schwahn
TU Darmstadt

Darmstadt, Germany
os@cs.tu-darmstadt.de

Neeraj Suri
Lancaster University

Lancaster, UK
neeraj.suri@lancaster.ac.uk

Abstract—Assessing operating system dependability remains a
challenging problem, particularly in monolithic systems. Com-
ponent interfaces are not well-defined and boundaries are not
enforced at runtime. This allows faults in individual components
to arbitrarily affect other parts of the system. Software fault
injection (SFI) can be used to experimentally assess the resilience
of such systems in the presence of faulty components. However,
applying SFI to complex, monolithic operating systems poses
challenges due to long test latencies and the difficulty of detecting
corruptions in the internal state of the operating system.

In this paper, we present a novel approach that leverages static
and dynamic analysis alongside modern operating system and
virtual machine features to reduce SFI test latencies for operating
system kernel components while enabling efficient and accurate
detection of internal state corruptions.

We demonstrate the feasibility of our approach by applying it
to multiple widely used Linux file systems.

I. INTRODUCTION

Monolithic operating system (OS) kernels are large, complex,
and widely used software systems. Although, unlike micro-
kernel architectures, they do not enforce isolation between
components at runtime, they are nonetheless commonly devel-
oped as collections of separate subsystems and modules, which
may differ in size and complexity and implement different types
of functionality. Moreover, modules, such as device drivers or
file systems, may be developed and maintained by separate
teams of developers, resulting in substantial differences in code
quality and, consequently, the number and density of faults in
different modules. To assess the dependability of an OS kernel
in the presence of faulty modules, we need to analyze how such
faulty modules can affect other parts of the kernel, such as other
modules or the core system. A well-established technique for
this purpose is software fault injection (SFI), in which software
faults are deliberately injected into a target module. In this way,
many faulty module versions can be created. By executing these
faulty versions, the system is exposed to their faulty behavior
to test how resilient it is to the type of faults that were injected.

The common workflow for SFI tests is: (1) faulty versions
are generated, (2) each faulty version is loaded into the
kernel, (3) the system is subjected to a test workload, and
(4) the behavior of the system is monitored. With conventional
monitoring, the possible test outcomes are limited to externally
observable effects: if the system fails (e.g. kernel panic), reports
an error, or its behavior otherwise deviates from a fault-free
execution (e.g. different output), the faulty module has affected

the overall system behavior; otherwise, the faulty version is
assumed to have no effect. The latter case poses a particular
challenge as there are different possible causes for the lack
of an externally observable effect: (1) the injected fault was
not activated by the test workload, (2) the fault is benign, i.e.,
it was activated but does not affect the system behavior or
state under the test workload, or (3) the fault was activated
and affects or corrupts the system state, but the SFI test ends
prior to any effects becoming externally observable. The third
case is problematic since executing the system for longer may
have led to an observable deviation that was missed because
of a short test run. We follow the Laprie taxonomy [3] and
refer to instances in which faults in a module or component
affect other parts of the system as error propagation, which
is what occurs in case (3). Identifying instances of potential
error propagation requires error propagation analysis (EPA)
and is particularly important in the context of OS kernels as
these are long-running systems, and the limited test durations
typically used in SFI testing do not (and, due to the impact
on test latency, cannot) reflect that fact.

Prior work has attempted to tackle this issue by introducing
additional instrumentation to the faulty module for tracing the
modifications made by the faulty module either to the system
state or to externally visible parts of its own state [10]. These
modifications can then be compared to those made by the
non-faulty version of the same module, with the assumption
that instances in which the behavior of the faulty version
diverges from the non-faulty version constitute potential error
propagation. This approach yields promising results but it also
introduces further overhead, increasing the already substantial
SFI test latency, especially for complex modules or long
workloads. False positives are also an issue with such a detector
since the system may exhibit non-deterministic behavior.

In this work, we investigate how to mitigate the impact of
aforementioned instrumentation on SFI test latency without
affecting the validity of SFI test results. Long test latencies
are a known problem with SFI tests, for which various
mitigation approaches have been proposed. Our proposed
approach enhances the state of the art to be applicable to
kernel code.

This paper is structured as follows: We cover related work in
Sec. II. We then present our proposed approach and prototype
implementation in Sec. III. Our experimental evaluation is

discussed in Sec. IV. We discuss insights and limitations in
Sec. V and provide concluding remarks in Sec. VI.

II. RELATED WORK

In this work we aim to reduce SFI test latencies for kernel
code to improve the practical applicability of EPA, which is
often hindered by long test latencies. Related work includes
approaches for reducing SFI test latencies (Sec. II-A), more
general work on test parallelization that tackles several related
issues (Sec. II-B), and work on EPA (Sec. II-C).

A. SFI Test Latencies

Test latencies are a well known problem in fault injection,
and numerous approaches to reduce them have been proposed.
Most of these focus on parallelizing the execution of fault
injection experiments using different isolation mechanisms to
prevent interference between concurrent executions.

D-Cloud [5, 14] is a cloud system that enables fault injection
testing of distributed systems using VMs to isolate the systems
under test. We also use VMs to isolate different SFI experiments
but our work targets kernel code rather than distributed systems.

Other techniques rely on more lightweight process isolation
to avoid the overhead of strong VM isolation. This includes
AFEX [4] as well as FastFI [25]. FastFI accelerates SFI
experiments through parallelization and by avoiding redundant
executions of code that is common to multiple faults and of
faulty versions in which the fault location is never reached
under a given workload. Unlike FastFI, we make use of the
stronger isolation guarantees provided by VMs, which allows
us to apply our technique to more targets, including kernel
code, and lets us avoid the error-prone handling of potential
resource conflicts on file descriptors that FastFI requires.

While VMs provide strong isolation, executing multiple fault
injection experiments in parallel can still affect results due to
the impact of a higher system load on test latencies, as shown
in [28]. We take care to choose appropriate timeout values for
our workload to avoid such effects and compare results across
different degrees of parallelism on the same hardware.

B. Test Acceleration

Outside of the context of SFI testing, numerous ways of
speeding up software testing in general have been investigated.

Many such approaches use parallel test execution and rely
on the assumption that test cases are independent and can be
executed in any order or concurrently without altering results
(e.g., [11, 21, 23]). Recent work has shown that this assumption
may not hold in practice [19, 26]. A related problem arises
in SFI tests, where executing tests in parallel may also lead
to interferences. Recent work investigating the static detection
of conflicts between software tests [26] is not applicable to
SFI testing since it relies on each test having a distinct entry
point. In a typical SFI setup, all tests use the same workload
and hence the same entry point.

Besides parallelization, tests can also be sped up by avoiding
redundantly executing code multiple times and not executing
unnecessary code. VmVm [6] avoids unnecessarily resetting

the entire system state between test executions by determin-
ing which parts of the system state each test affects, and
O!Snap [13] uses disk snapshots to reduce test setup and
execution times as well as cost in a cloud setting. Both FastFI
and our work avoid repeatedly re-executing the entire workload
by cloning system state at appropriate points, but do so using
fundamentally different methods: While FastFI relies on forking
a process, we clone VM instances as described in Sec. III-C.
This VM cloning resembles the VM fork primitive described in
SnowFlock [18], however, our implementation does not require
modifications to the VMM and is intended for cloning VM
instances on a single host machine rather than in the distributed
or cloud scenarios targeted by SnowFlock.

C. Error Propagation Analysis

Our work makes use of TrEKer [10], a technique for tracing
error propagation in OS kernels using execution traces at the
granularity of individual memory accesses.

Execution traces are commonly used to assess the outcome
of fault injection tests [2, 27]. The execution of an unmodified
system is traced one or more times. These executions, called
golden runs, are used as an oracle that executions in which
faults have been injected can be compared against.

Execution traces can be collected in several ways, including
using debuggers [1, 9] or full-system simulation [24]. These
techniques allow for fine-grained tracing and control over the
SUT, but they also induce substantial execution overhead,
especially full system simulation. If this overhead is not
acceptable, dynamic binary instrumentation (DBI) can be
used to collect traces (e.g., [20, 29]). However, DBI is not
straightforward to apply to kernel code, and while several tools
and frameworks exist [8, 12, 16, 17, 15], they have not been
used to collect execution traces for fault injection tests. Like
TrEKer, we use compile-time instrumentation.

III. APPROACH

We propose an approach to quickly identify how faults in a
component of a monolithic operating system affect other parts
of that system. We provide a brief overview of the systems we
are focusing on and how their components interact in Sec. III-A.
Then, we explain how EPA can be conducted in such systems
in Sec. III-B, and how we address the limitations of prior
work. This leads to an overview of our proposed approach in
Sec. III-C. We describe our implementation in Sec. III-D.

A. System Model

In general, we follow the Laprie taxonomy [3]. We assume a
component-based system in which each component implements
a function according to some specification, realized through the
externally observable part of its state, i.e., its external state. If
that external state deviates from its specification, a component
failure has occurred, which may have been caused by a prior
deviation (error) in the component’s internal state. The cause
of an error is a fault, and the process by which a fault causes
an error is called fault activation. Alterations in subsequent
states caused by an error are instances of error propagation.

(a) F1 F2 F3 F4 F 1
5

. . .

(b) F1 F2 F3 F4 F 2
5

. . .

(c) F1 F2 F3 F 1
4 F6

. . .

Common Prefix

Fig. 1: The common prefix problem. Each Fi is a function and
F j
i is the jth faulty version of that function after fault injection.

These abstract notions map onto the monolithic OS kernels
we are studying as follows:

• The system is the operating system kernel, and sys-
tem components are individual kernel modules. Kernel
modules are conceptually separate entities implementing
distinct functionality, but no runtime isolation is enforced.
We do not assume the existence of an explicit specification
for the function they are intended to implement.

• A component’s external state or interface consists of data
passed between the component and the rest of the system
through function call arguments, return values (in either
direction), and shared memory communication.

• We focus on permanent faults in the form of software
bugs and do not consider transient or hardware faults.

B. Kernel Error Propagation Analysis

We base our approach on the analysis proposed in
TrEKer [10]. This approach suffers from some key limitations
that we address in this work, most notably the instrumentation
overhead, which further exacerbates the problem of long SFI
test latencies. Moreover, TrEKer requires a large number of
golden runs to obtain stable results, which results in long
execution and analysis times to obtain and process these
golden runs. With enough golden runs, TrEKer achieves a
false positive rate below 1 %, but this can still amount to
hundreds of misclassified executions given the large number of
faulty versions that SFI in complex kernel modules may yield.

We propose an approach to reduce both overall SFI test
latency and false positive rates with fewer golden runs. We
propose integrating all faulty versions of a module into a single
binary and using fast VM cloning to avoid redundant executions
of common execution prefixes for different faulty versions,
thereby also reducing non-determinism between executions.

C. Improving Kernel EPA with Fast VM Cloning

As our approach is conceptually related to that of FastFI [25],
we first briefly summarize the FastFI execution model in
Sec. III-C1 and discuss why it is not directly applicable to OS
kernels. We then describe our own approach and its integration
with error propagation analysis in Sec. III-C2.

1) FastFI Summarized: FastFI is a technique for reducing
SFI test latencies by (1) avoiding redundant, repeated exe-
cutions of code paths that are shared by different SFI tests

F1 F2 F3 F4

F 1
4

F 2
4

F 3
4

F5

F6

F5

. . .

. . .

. . .

. . .

Fig. 2: The FastFI approach. The redundant re-execution of
functions Fi in the common prefix is avoided. Each faulty
version is executed in a new process once the faulty function
F j
i is reached.

VM0 F1 F2 F3 F4
. . .

Controller

F 1
4 F5

. . .

F 2
4 F6

. . .

F 3
4 F5

. . .VM1

VM2

1

2

3

4

Fig. 3: Our enhanced VM-based approach. Each faulty version
is executed in a VM that resumes execution from a snapshot.

(and therefore by different faulty versions), (2) avoiding the
execution of faulty versions in which the given workload cannot
activate the fault, and (3) facilitating parallelization of SFI
testing. FastFI is based on the insight that, in SFI testing, the
same workload is executed for each version, and prior to the
execution reaching the part of the code that a fault has been
injected in, the same code is executed for each version. We refer
to this as the common prefix problem and show a simplified
example in Figure 1. In this example, three SFI test executions
(a)-(c) are depicted by illustrating the executed functions Fi.
Faulty versions of a function are illustrated with F j

i . The
code in functions F1 through F3 is executed during each SFI
test even though it contains no injected faults. The repeated
execution is therefore redundant. The solution proposed in
FastFI is shown in Figure 2. Here, F1 through F3 are only
executed once, and new processes are forked for each faulty
version when a function for which such versions exist is reached.
While this approach can achieve substantial speedups as shown
in [25], it is not applicable to kernel code for several reasons.

First, FastFI uses forking to duplicate the state of the system
under test at appropriate points during the execution. As we
are studying kernel code, we cannot rely on OS-provided
abstractions, such as processes. Due to its reliance on the
process abstraction, FastFI cannot handle multi-threaded code,
SUTs consisting of multiple processes, and SUTs that rely on
external resources besides the file system. While these are not
insurmountable challenges for the systems FastFI has been

applied to, they render it inherently unsuitable for kernel code.
Secondly, FastFI integrates the entire control logic (which

performs the forking, monitoring, and logging) in the system
under test, which is not a desirable solution for kernel code as
it could impose substantial delays in timing-critical portions
of the system and impose additional technical challenges due
to the lack of the availability of a process abstraction.

Next, we describe how we address these limitations, and
how we integrate EPA in our enhanced approach.

2) Fast VM Cloning: To overcome the limitations that
render FastFI unsuitable for our target systems, we propose a
conceptually related approach that uses VM snapshots rather
than processes, reduces the amount of control logic embedded
in the SUT, and facilitates integration with trace-based EPA.

The resulting approach is illustrated in Figure 3, which
continues the example from Figure 2. The execution of the
target system starts in a virtual machine, VM0, where functions
F1 through F3 are executed. When function F4 is reached,
the system notifies the controller (1), a separate process
running outside the VM. The controller is where most of the
control logic, which was embedded in the SUT in the FastFI
model, resides in our approach. At this point, the controller
suspends the execution of VM0 and instructs the VMM (we use
QEMU [7]) to take a snapshot of the system. The controller
decides how many VMs to create based on the number of
available faulty versions of the current function and the desired
degree of parallelism, spawns the new VMs, and resumes
execution from the snapshot (2). Here, two parallel instances
are used, VM1 and VM2, and they start executing F 1

4 and
F 2
4 . Execution is monitored by the controller, and once a VM

finishes executing the workload, it is suspended, the snapshot is
loaded and the next faulty version is executed. In our example,
VM1 finishes executing F 1

4 , is restored to the snapshot by the
controller (3) and then executes F 3

4 . One key advantage our
approach of not embedding control logic in the SUT offers
is that we can resume execution in VM0 before all faulty
versions have finished executing. Therefore, in this example,
VM0 can resume executing the unmodified system as soon as
VM2 finishes and a CPU core becomes available (4). This
is particularly valuable in cases where a faulty version causes
the SUT to hang until a timeout detector is triggered as such
cases no longer completely halt experiment progress, giving our
approach a performance advantage over the FastFI approach.
Experiment outcomes are logged in the controller. By the time
VM0 and all other VM instances that have been spawned have
finished, every faulty version that is reachable by the given
workload will have been executed.

Our approach also allows for the integration of TrEKer-style
EPA. We integrate the existing TrEKer implementation with our
new approach by adjusting the TrEKer runtime to send trace
entries to our controller. This integration offers benefits besides
performance improvements (which are particularly important
due to the overhead of memory access tracing). In particular,
since our approach avoids re-executing common prefixes for
different faulty versions as well as the original version of the
system, the execution traces that have to be stored for later

Kernel
Module

SFI Patches
Static

Analysis
Version
Merging

Logic
Generation

Instrumentation
Building &

Linking

Integrated
Kernel
Module

Fig. 4: An overview of our implementation.

offline analysis get smaller and there is no opportunity for traces
to diverge prior to fault activation due to non-deterministic
behavior of the SUT. We study the impact this has on the false
positive rate of the EPA in Sec. IV.

D. Implementation

Our implementation consists of two parts. The first consists
of the analyses and tools required to obtain a single, integrated
kernel module containing multiple faulty versions. An overview
of this process is shown in Figure 4. The second part is the
runtime logic, consisting of the controller and runtime kernel
module, which we describe in Sec. III-D2.

1) Compile Time: We start by applying an SFI tool1 to the
target kernel module, resulting in a number of patch files, each
corresponding to a single faulty version. Next, we determine
for each such patch what function it modifies and where that
function is located in the original, unpreprocessed source code.
We use a custom GCC plugin to efficiently obtain function
location information and parse the patch files to create a
mapping. With this information, we then perform the version
merging and logic generation steps as shown in Figure 4.
Instead of creating a copy of the kernel module for each
faulty version, we merge all faulty versions into a single
module by creating a copy of the modified function for each
such version. We also include a separate copy of the original
function implementation. Then, in the logic generation step,
we replace the original function implementation with a small
amount of runtime logic to determine which version should
be executed. Unlike FastFI, this does not include any logic for
orchestrating or monitoring the execution of different faulty
versions. Rather, our support logic calls out to a runtime support
module (Sec. III-D2), which in turn communicates with the
controller as shown in Figure 3. We then instrument, build, and
link the resulting code. By instrumenting only after merging all
faulty versions, we avoid redundant instrumentation overhead
resulting from instrumenting the same code multiple times.
This yields a single, integrated kernel module which is fully
instrumented and contains all faulty versions.

2) Runtime: The runtime of our implementation consists
of two parts: The first is the controller, which runs on
the host and is responsible for spawning VMs, controlling

1We use SAFE [22] to simulate representative residual software faults.

parallelism, monitoring experiment outcomes, and logging
tracing information. The second is the runtime module, which
is a kernel module that is loaded in the experiment VMs
and enables communication between the controller and the
experiment VMs as well as providing logging interfaces to the
instrumented kernel modules and supporting functionality to
the version selection logic described in Sec. III-D1.

We implemented the controller as a Rust program which
manages the VMs for SFI experiments and performs result
detection and logging. While we aim to achieve fast VM
cloning (a crucial factor in realizing the speedups we are
aiming for), we choose not to use a custom VMM to keep the
applicability of our approach as broad as possible. Instead, we
use QEMU and rely on its existing snapshotting functionality,
along with a file system providing copy-on-write (CoW)
functionality on the host, to quickly clone VMs. This lets
us take advantage of the mature implementation, numerous
features and supported (emulated) devices of QEMU while
still achieving high performance when cloning VMs.

The runtime module is a Linux kernel module written in
C. It provides an interface to the integrated kernel module to
aid in version selection and handles communication with the
controller over a VirtIO serial device. It also passes the log
messages required for trace-based EPA to the controller over
the same interface. Using a VirtIO device for logging, rather
than, for instance, SSH, as in TrEKer, lets us keep overhead
as well as noise on the system to a minimum.

At runtime, when the original VM reaches a function for
which faulty versions exist, the following events occur:

1) The version selection logic in the integrated module calls
the runtime module and provides the number of faulty
versions that need to be executed.

2) The runtime module notifies the controller and blocks
until a response is received.

3) The controller stops VM0 and takes a snapshot.
4) Depending on the desired degree of parallelism P , the

controller creates up to P copies of the VM snapshot. To
ensure that this step is fast, the snapshots are kept on a
file system supporting lightweight CoW copies. In our
implementation, we use a RAM-backed XFS file system.

5) The controller creates a workqueue for the faulty versions
of the current function and spawns controller threads for
each new VM, which start QEMU processes, load the
snapshots, and respond to the runtime module indicating
which faulty version to execute. These threads also monitor
the execution to determine the SFI experiment outcome
and log the tracing data relayed by the runtime module.

6) Depending on P , the controller either resumes VM0 or
waits until one of the spawned VMs has finished executing.

When VM0 reaches another function for which a faulty
version exists, this process is repeated. It is not repeated if
VM0 reaches the same function again or if one of the spawned
VMs reaches a function with faulty versions. This ensures that
at most one faulty version is active in any VM, and none are
active in VM0. When VM0 reaches the end of the workload

and the controller detects that the experiment is complete, it
waits for all spawned VMs to complete and terminates.

IV. EVALUATION

We evaluate our approach by applying it to several real world
Linux file systems. We provide a description of our experiment
setup, target file systems, and workloads in Sec. IV-A. The
research questions we address in this evaluation are detailed
in Sec. IV-B. Experimental results are reported in Sec. IV-C

A. Experiment Setup

We first describe the execution environment we use for our
experiments in Sec. IV-A1. We then cover our evaluation targets
in Sec. IV-A2 and the workloads we use for our experiments
in Sec. IV-A3.

1) Execution Environment: We conduct our experiments on
the following two machines:

S1: This system is equipped with an AMD Threadripper
2990WX CPU with 32 physical and 64 logical cores,
128 GiB of RAM and a 1 TB NVMe SSD.

S2: This system is equipped with an AMD Threadripper
2970WX CPU with 24 physical and 48 logical cores,
64 GiB of RAM and a 1 TB NVMe SSD.

Both systems run Ubuntu 19.10. We use QEMU 4.0.0 as the
VMM for our experiments, with KVM acceleration enabled.
All SFI experiments are conducted on S1, while S2 is used to
generate and build faulty versions.

2) Evaluation Targets: We apply our technique to 7 Linux
file systems, of which an overview is given in Table I. All file
systems are extracted from Linux 5.0.

The VMs we use in our SFI experiments are configured with
1 vCPU, 2 GiB of RAM and a qcow2 disk, which is used
by QEMU for snapshots but not visible to the guest system.
All files required for our experiments with integrated kernel
modules are placed in the initramfs, along with BusyBox
1.28.1. The VMs run Linux 5.0. We use a custom kernel
configuration that supports the required VirtIO functionality
used in our logging and controller implementation. To reduce
scheduling and timing non-determinism, and noise in general,
we disable preemption and run a tickless kernel. Since our
approach assumes that VMs only have a single CPU core, we
also disable SMP support in the kernel.

When we perform experiments using individually built
faulty versions of kernel modules, placing all required files
in initramfs would not be feasible, and regenerating the
initramfs for each experiment execution would entail
excessive per-execution overheads. Instead, we provide a read-
only virtfs share to the VMs which contains all required
kernel modules. For experiments comparing our approach to
conventional SFI test execution with separate faulty versions,
we use the same kernel as in experiments with our approach,
and we take a VM snapshot after boot but prior to workload
start to avoid having to reboot the VM after each experiment.

TABLE I: The Linux file systems used in our evaluation.

Module Description LOC

hfsplus General purpose journaling read/write
FS

9111

isofs CD-ROM read-only FS 2922
ntfs General purpose journaling FS, limited

read/write
17021

overlayfs Union mount read/write FS 7086
romfs RomFS EEPROM read-only FS 722
squashfs Compressed read-only FS 2791
vfat General purpose read/write FS 6328

3) Evaluation Workloads: Even though all our evaluation
targets are file systems, we cannot use identical workloads
across all of them. This is because some of the included file
systems are read-only, whereas others differ in their supported
feature set. We use the following workloads in our experiments:

• Read-write: This is the workload we use for full-featured
file systems. It encompasses module insertion, file system
mounting, a variety of common file system operations
such as directory listing, file creation and deletion, reading
and writing, unmounting, and module removal. It is used
for hfsplus and vfat.

• Limited read-write: We use this workload for our exper-
iments with the ntfs file system as the kernel module
does not support file creation. The workload resembles
the regular read-write workload apart from the omission
of the file creation step.

• Read-only: This is the workload we use for read-only
file systems. It encompasses module insertion, mounting,
common file system operations for read only file systems
(i.e., directory listing and reading), unmounting, and
module removal. This workload is used for isofs,
romfs, and squashfs.

• Overlay: This is the workload we use for overlayfs.
Since the prepared file system images used in other
workloads are not applicable for overlayfs, we use this
specialized workload. It resembles the read-write workload
but does not use a prepared image.

B. Research Questions

To evaluate the impact our proposed approach has on
the performance and precision of kernel SFI and EPA, we
investigate the following research questions:

RQ 1 Can our approach speed up sequential SFI test execu-
tion?

RQ 2 Can our approach speed up parallel SFI test execution?
RQ 3 How does our approach affect the number of executed

faulty versions?
RQ 4 Can our approach reduce build times for SFI experi-

ments?
RQ 5 Does our approach affect SFI result validity?
RQ 6 How does our approach affect detection rates and false

positives in error propagation analysis?

TABLE II: Number of executed and activated faulty versions
in each execution mode.

Module

Classic Execution Integrated Execution

Executed Activated Executed Activated

Abs Rel % Abs Rel % Abs Rel % Abs Rel %

hfsplus 2885 100 1228 42.56 1814 62.88 1235 68.08
isofs 1519 100 799 52.6 1246 82.03 799 64.13
ntfs 7158 100 2432 33.98 4997 69.81 2438 48.79
overlayfs 4180 100 1527 36.53 2117 50.65 1527 72.13
romfs 289 100 250 86.51 272 94.12 250 91.91
squashfs 1107 100 654 59.01 929 83.92 654 70.4
vfat 3210 100 1468 45.7 1960 61.06 1468 74.9

C. Results

In the following, we report our experimental results. All
reported numbers, excepting build times, are averages over
three repeated executions.

1) RQ 1: Sequential Speedup: To determine whether our
approach can speed up sequential SFI testing, we compare
execution times between our approach and the conventional
execution model using faulty versions with TrEKer instrumenta-
tion. The speedups we achieve over the conventional execution
model are shown in Figure 5. For sequential execution, the
relevant numbers are the speedups reported above the bars
for a degree of parallelism of 1 for each target file system.
The speedups we achieve range from 1.32× for squashfs to
2.45× for overlayfs. As we do not make use of parallelism
here, these speedups are entirely the result of the ability of our
approach to execute fewer faulty versions (which we discuss in
more detail in Sec. IV-C3) and its ability to avoid the common
prefix problem discussed in Sec. III-C.

Our approach beats the conventional model for all evaluated
file systems with speedups from 1.32× to 2.45×. We conclude
that our approach can speed up sequential SFI testing.

2) RQ 2: Parallel Speedup: We investigate whether our
approach is capable of accelerating parallel SFI test execution
by comparing it to the conventional execution model across
different degrees of parallelism ranging from 1 to 32.

Figure 5 shows, for each file system and degree of paral-
lelism, the speedup achieved relative to sequential execution
in the same mode. The factors above the bars correspond to
the speedups achieved by our approach over the conventional
execution model at the same degree of parallelism. Times inside
or above the bar give the absolute execution time.

We see that, except for squashfs at a degree of parallelism
of 32, our approach always outperforms the conventional
execution model at the same degree of parallelism. However, it
is also apparent that speedups relative to conventional execution
at the same degree of parallelism reduce with increasingly
parallel execution. This is because, in some cases, our approach
is not able to utilize the full computational resources available
at higher degrees of parallelism throughout the entire SFI
test execution. This can happen when, for example, the faulty
versions for an SFI target are distributed across a large number
of functions so that there are only a few faulty versions per

3h
 1

7m
 1

7s
6h

 4
9m

 3
0s

1h
 4

0m
 0

4s
3h

 2
6m

 5
5s

50
m

 0
6s

1h
 4

3m
 5

7s

25
m

 2
6s

52
m

 2
2s 14

m
 0

8s
26

m
 2

8s

11
m

 0
7s

14
m

 0
3s

2.
08

x
2.

07
x

2.
07

x
2.

06
x

1.
87

x
1.

26
x

21
m

 0
8s

30
m

 3
6s

10
m

 4
8s

15
m

 2
9s

5m
 2

7s
7m

 5
1s

3m
 0

2s
4m

 1
6s

2m
 0

6s
3m

 0
8s

2m
 0

2s
2m

 2
1s

1.
45

x
1.

43
x

1.
44

x
1.

41
x

1.
49

x
1.

15
x

1h
 3

2m
 5

5s
2h

 1
1m

 2
9s

47
m

 1
5s

1h
 0

5m
 4

5s

23
m

 5
8s

33
m

 5
2s

12
m

 0
6s

18
m

 1
8s 6m

 3
7s

10
m

 1
6s 4m

 5
0s

6m
 3

7s

1.
42

x
1.

39
x

1.
41

x
1.

51
x

1.
55

x
1.

37
x

1h
 1

4m
 3

3s
1h

 3
8m

 4
4s

37
m

 4
5s

49
m

 3
3s

18
m

 5
9s

24
m

 5
1s

9m
 4

1s
12

m
 5

2s 5m
 2

8s
6m

 3
4s

4m
 1

1s
3m

 4
6s

1.
32

x
1.

31
x

1.
31

x
1.

33
x

1.
2x

0.
9x

8h
 5

5m
 4

4s
18

h
13

m
 1

3s

4h
 3

4m
 4

7s
9h

 1
1m

 0
6s

2h
 1

7m
 5

9s
4h

 3
8m

 1
9s

1h
 1

0m
 2

2s
2h

 1
8m

 5
6s

39
m

 5
3s

1h
 0

9m
 5

7s

31
m

 2
2s

36
m

 4
8s

2.
04

x
2.

01
x

2.
02

x
1.

97
x

1.
75

x
1.

17
x

3h
 0

0m
 2

8s
6h

 0
7m

 4
9s

1h
 3

1m
 2

2s
3h

 0
5m

 3
6s

45
m

 4
9s

1h
 3

3m
 5

6s

23
m

 2
9s

47
m

 2
4s 13

m
 2

3s
24

m
 2

2s

10
m

 2
3s

13
m

 2
4s

2.
04

x
2.

03
x

2.
05

x
2.

02
x

1.
82

x
1.

29
x

2h
 1

1m
 3

3s
5h

 2
1m

 5
6s

1h
 0

6m
 4

8s
2h

 3
9m

 1
9s

34
m

 0
6s

1h
 2

0m
 0

3s

18
m

 2
0s

40
m

 4
7s

11
m

 4
3s

21
m

 0
0s

10
m

 3
1s

11
m

 5
3s

2.
45

x
2.

39
x

2.
35

x
2.

22
x

1.
79

x
1.

13
x

romfs squashfs vfat

hfsplus isofs ntfs overlayfs

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

1 2 4 8 16 32
0

10

20

30

0

10

20

30

Degree of Parallelism

S
pe

ed
up

 F
ac

to
r

Classic

Integrated

Fig. 5: Execution times and relative speedups for SFI experiments (based on wall time). Speedups compared to sequential
execution are shown on the Y-axis. Speedups of integrated compared to conventional execution are shown at the top. Absolute
times are reported above/inside bars. Average results of three repetitions are shown, with error bars indicating min/max values.

function. In that case, our approach will not be able to fully
utilize all available CPU cores with the faulty versions of a
single function, and some cores will remain idle until the root
VM (VM0) has reached the next function for which faulty
versions exist. The conventional execution model, on the other
hand, can simply run as many VMs in parallel as it has cores
available. We note that, while wall time speedups for our
approach are lower at higher degrees of parallelism, user time
speedups remain high since our approach reduces the overall
code to be executed, with squashfs at a degree of parallelism
of 32 achieving a user time speedup of 15.2×.

Looking at speedups relative to sequential execution in the
same mode as shown in Figure 5, it appears that our approach
scales less well than the conventional execution model. This
is for the reasons related to CPU utilization described above.
However, our approach does achieve increasing speedups with
increasing degree of parallelism for all file systems, with further
optimization potential in our prototype implementation.

We conclude that our approach is capable of accelerating
parallel SFI test execution, although the benefits in execution
time diminish for very high degrees of parallelism.

3) RQ 3: Executed Versions: We investigate how our ap-
proach affects the number of executed faulty versions and
activated faults by comparing the number of executed and

activated faulty versions in the conventional execution model
and in our approach as reported in Table II. The table lists
executed faulty versions, both absolute and as a percentage
of all faulty versions, and activated faulty versions, absolute
and as a percentage of executed faulty versions in the same
mode. The conventional execution model requires execution of
every faulty version. Therefore, 100 % of faulty versions are
executed in this mode. This includes faulty versions with faults
in functions that the workload does not trigger, resulting in
activation rates below 60 % for all file systems except romfs,
which, due to its fairly simple structure, achieves quite high
code coverage with our workload and a fault activation rate
of 86.51 %. Our approach requires the execution of fewer
faulty versions than the conventional execution model, ranging
from 50.65 % to 94.12 %. This corresponds to a reduction in
the number of executed faulty versions of 250 to 2438. As
this reduction is the result of not executing inactive faulty
versions, our approach also reaches higher activation rates
ranging from 48.79 % to 91.91 %. While, in the conventional
execution model, we only saw an activation rate above 60 %
for a single file system, with our approach, all file systems but
one achieve such an activation rate.

We conclude that our approach can effectively reduce the
number of faulty versions that need to be executed in SFI

-2
h

03
m

 1
0s

-5
4m

 3
5s

-1
h

03
m

 4
3s

-2
8m

 4
9s

-5
h

46
m

 2
1s

-3
h

02
m

 5
5s

-2
h

44
m

 3
1s

-1
h

18
m

 1
7s

-1
0m

 2
1s

-4
m

 4
6s

-4
0m

 4
3s

-1
8m

 5
8s

-2
h

15
m

 0
4s

-1
h

04
m

 4
1s

99
.7

17
9.

6
56

.6
18

7.
4

825
6.

7
47

.4
21

4.
2

10
0.

4
11

3.
7

6313
7.

7
72

.2
21

4.
9

0

100

200

300

hfsplus
n=2885

isofs
n=1519

ntfs
n=7158

overlayfs
n=4180

romfs
n=289

squashfs
n=1107

vfat
n=3210

Module

S
pe

ed
up

 F
ac

to
r

Uninstrumented TrEKer

Fig. 6: Build time speedups with and without instrumentation

testing. We achieved fewer executed faulty versions and higher
activation rates for all evaluated file systems.

4) RQ 4: Build Times: We investigate the impact of our
approach has on build times for SFI experiments, both with the
instrumentation required for kernel error propagation analysis
using TrEKer and without it. User build time speedups for all
7 file systems used in our evaluation, both instrumented and
uninstrumented, are shown in Figure 6. Absolute time savings
are listed vertically inside or above the bars. Speedup factors are
shown on the y axis and above the bars. For all modules and in
both modes, building an integrated module containing all faulty
versions is substantially faster than building each faulty version
separately. Note that we use incremental compilation in the
latter case to minimize the work required for each faulty version.
Speedups range from 8× to over 250×, with the instrumented
case achieving lower speedups across all modules. This is
particularly noticeable for ntfs, which is also the file system
with the most faulty versions in our evaluation. We attribute
this to inefficiencies in the instrumentation code and note that,
although it achieves the lowest speedup, the instrumented ntfs
build is also the one with the largest absolute time reduction.

With speedups ranging from 8× to 256×, we conclude that
our approach can substantially reduce build times for SFI
experiments.

5) RQ 5: Result Validity: We investigate the impact of
our approach on SFI results when traditional failure mode
detectors are used and whether result validity is adversely
affected. To that end, we report on the observed results
for integrated executions at different degrees of parallelism
with activated fault and compare them to the results for
sequential conventional executions. Figure 7 shows the observed
result distributions for all evaluation targets. The sequential
conventional executions are labeled seq on the X axis; the
integrated executions are labeled with the respective degree

of parallelism (1 to 32). We distinguish four common classes
of SFI test results (failure modes): “No Failure”: The test
run finished without any error indication; “Timeout”: The test
run did not finish within its execution time budget and was
terminated; “Workload Failure”: The test run terminated with
an error indication from user-mode; “Kernel Failure”: The test
run terminated with an error indication from the kernel (e.g.
kernel panic). We set the execution time limit to 30 s for all
runs since this value is considerably higher than the fault-free,
but instrumented, execution time for all our target modules
and should hence avoid premature timeout detections.

Across all modules and execution modes, “No Failure” is
the most common result, with the exception of romfs for
which “Workload Failure” is the most common. “Timeout” is
the least common result with less than 10 % of runs having this
outcome, which suggests that our execution time budget choice
was sensible. The result distributions remain stable across
repeated runs and across different degrees of parallelism. We
observe the largest variability for hfsplus (P = 16) in both
execution modes with a maximum difference of result class
counts of 30 (less than 3 %) between repeated executions.
To assess whether the result distributions are significantly
affected by integrated execution when compared to conventional
sequential execution, we conduct pairwise Pearson’s χ2-tests
of independence between the conventional sequential execution
and each integrated execution. We test the null hypothesis H0

that “the obtained result distribution is independent from the
execution mode”, with the alternative hypothesis H1 that “there
is an association between result distribution and execution
mode”. We try to reject H0 with a significance level of
α = 0.05. Table III reports the resulting p and Cramer’s V
values along with the decision whether we can reject H0.
Cramer’s V is a measure of association based on the χ2-
statistic and ranges from 0 to 1, where the larger the value, the

romfs squashfs vfat

hfsplus isofs ntfs overlayfs

seq 1 2 4 8 16 32 seq 1 2 4 8 16 32 seq 1 2 4 8 16 32

seq 1 2 4 8 16 32

0

250

500

750

1000

0

500

1000

1500

0

250

500

750

0

200

400

600

0

100

200

300

0

250

500

750

0

30

60

90

120

Execution Mode

C
ou

nt

No Failure

Timeout

Workload Failure

Kernel Failure

Fig. 7: Result distributions for SFI experiments with classic failure mode detection. Average results of three repetitions across
sequential classic execution (seq) and six different parallelism degrees for integrated execution (1 to 32) for all runs with
activated fault are shown. Error bars indicate min/max values.

TABLE III: Results of χ2-tests. p values and Cramer’s V are reported for each test. The Rej column indicates if H0 (no
association between SFI results and execution mode) can be rejected (3) or not (7).

par = 1 par = 2 par = 4 par = 8 par = 16 par = 32

Module p V Rej p V Rej p V Rej p V Rej p V Rej p V Rej

hfsplus 0.943 0.0072 7 0.786 0.0120 7 0.818 0.0112 7 0.974 0.0055 7 0.925 0.0080 7 0.983 0.0048 7
isofs 0.943 0.0090 7 0.957 0.0081 7 0.963 0.0077 7 0.967 0.0074 7 0.955 0.0083 7 0.967 0.0074 7
ntfs 0.981 0.0035 7 0.978 0.0037 7 0.980 0.0036 7 0.953 0.0048 7 0.974 0.0039 7 0.969 0.0042 7
overlayfs 0.986 0.0040 7 0.999 0.0018 7 0.998 0.0021 7 0.981 0.0044 7 0.979 0.0045 7 0.969 0.0052 7
romfs 0.980 0.0110 7 0.976 0.0119 7 0.976 0.0119 7 0.965 0.0135 7 0.967 0.0132 7 0.981 0.0109 7
squashfs 0.990 0.0053 7 0.987 0.0059 7 0.983 0.0065 7 0.993 0.0049 7 0.995 0.0043 7 0.995 0.0043 7
vfat 0.900 0.0081 7 0.888 0.0085 7 0.916 0.0076 7 0.897 0.0082 7 0.898 0.0082 7 0.884 0.0086 7

stronger the association. With p � α for all modules across
all execution modes, we fail to reject H0. Hence, we cannot
establish that there is an association between result distributions
and execution mode. Accordingly, Cramer’s V does not hint
at association with V < 0.015 for all tests.

We conclude that integrated execution does not affect SFI
results of traditional failure mode detectors when compared to
conventional sequential execution.

6) RQ 6: Detection Rates: To investigate the effect of
integrated execution on the trace deviation rates detected by
the TrEKer EPA, we analyze the execution traces that we
collected during the sequential runs of our SFI experiments
in both conventional and integrated execution. As apparent
from Figure 7, the “No Failure” class is the most common SFI

outcome. More than 60 % of the runs with activated fault for all
modules fall into this class, with the exceptions of romfs with
38 % and squashfs with 52 %. For EPA, this is the most
interesting result class as traditional failure mode detectors
cannot detect any deviation despite the fault being activated.
Either the injected fault is benign and has no effect or the
effects have not manifested yet in a way that can be detected by
traditional detectors. Both cases can be distinguished by EPA
techniques such as TrEKer since execution trace deviations
can be detected in the latter case. We report the TrEKer trace
deviation rates for that case in Figure 8 with the bars labeled
“Mutation Activated”. In addition to the rates, the plots also
contain the absolute numbers inside or above the bars.

In order to assess the false positive detection rates, we

0/
16

57

27
/8

41

17
/7

20

9/
64

2

3/
47

25

85
/1

47
8

0/
26

53

40
/1

02
5

0/
39

9/
96

0/
45

3

38
/3

41

0/
17

42

60
/9

49

0.00

0.03

0.06

0.09

hfsp
lus

iso
fs ntfs

ove
rla

yfs
ro

mfs

sq
uash

fs vfa
t

Module

T
ra

ce
 D

ev
ia

tio
n

R
at

e
Mutation Not Activated

Mutation Activated

(a) Conventional Execution Mode

0/
57

9

13
/8

51

0/
44

7

16
/6

37

0/
25

58

44
/1

47
9

0/
59

0

24
/1

02
6

0/
22

9/
95

0/
27

5

28
/3

41

0/
49

2

27
/9

44

0.000

0.025

0.050

0.075

hfsp
lus

iso
fs ntfs

ove
rla

yfs
ro

mfs

sq
uash

fs vfa
t

Module

T
ra

ce
 D

ev
ia

tio
n

R
at

e

Mutation Not Activated

Mutation Activated

(b) Integrated Execution Mode

Fig. 8: Trace deviation rates for both execution modes. Averages
from three repetitions are shown. Error bars indicate min/max
values. Numbers inside/above bars indicate absolute counts in
the format detections/total.

also perform an analysis of “No Failure” run traces without
activated fault (labeled accordingly in the plots). Any deviation
detected in such a run cannot occur due to an injected fault
and is therefore a false positive. The TrEKer analysis detects
deviations by comparing execution traces against fault-free
golden run traces, i.e., traces without injected faults. Since
we took special care to create a low-noise and deterministic
execution environment for our experiments, we use only a
single golden run as comparison basis. We also attempted
comparisons against 1000 golden runs, but we did not see
meaningful changes in detection rates that would justify the
increased analysis effort.

Overall, we observe low false positive rates, which are at
0 % across all modules when using integrated execution. In
conventional execution, we observe some false positives for
isofs (2.4 %) and ntfs (below 0.1 %). The deviation rates

with activated fault range from 1.4 % to 11.1 % for conventional
and from 1.5 % to 9.5 % for integrated execution. Overall,
fewer deviations are detected with integrated execution for
all modules, except for isofs. We attribute this reduction to
less noise in the execution traces due to the fine-grained VM
snapshotting employed for integrated execution.

With a 0 % false positive rate across all our target modules
when comparing against a single golden run, we conclude
that integrated execution is effective and does not introduce
additional noise.

V. DISCUSSION

As the investigation of our research questions in Sec. IV
shows, our approach is applicable to real world kernel code
and can effectively accelerate sequential and parallel SFI
testing without adversely affecting result validity. We therefore
conclude that our approach enables effective SFI testing of
kernel code on modern, parallel hardware.

We identify the following three main threats to the validity
of our study:

1) The choice of target modules, system setup, configuration,
and workload.

2) Limitations of the error propagation analysis approach
used in our study.

3) Interactions between non-deterministic or timing-
dependent behavior in the system under test (SUT) and
our snapshot-based experiments.

We evaluate our approach on seven widely used file systems
from the Linux kernel using different workloads to exercise
common file system functionality. However, kernel modules
implementing different, unrelated functionality may behave
differently. A different choice of workload may also yield
different results. We tailor the configuration of the kernel
on the target system to minimize noise and facilitate our
VM cloning approach. To this end, we disable SMP support
and preemption and run a small, BusyBox-based userspace.
Different kernel configurations may increase scheduling noise,
thereby affecting results or result stability. A more full-featured
userspace, for example, from a common desktop-focused Linux
distribution, could also increase noise on the system and
affect the experimental results. Our system configuration is a
likely reason for the lower false positive rate we observed
relative to the TrEKer experiments using the same error
propagation analysis approach. Such a target system may, for
instance, require substantially more golden runs to achieve
stable results. Our results may not generalize to other target
modules, workloads, or configurations.

We use an augmented version of the TrEKer error propaga-
tion analysis in our experiments. As noted in [10], this approach
restricts instrumentation and trace analysis in some respects to
reduce overhead and improve performance. It may therefore
miss behavioral divergences in some instances. The detection
rates reported in Sec. IV-C6 are subject to these restrictions.
As we do not depend on the accuracy of the reported detection
rates in our investigation of our other research questions, these
limitations do not otherwise threaten the validity of our results.

Even though we have taken care to minimize noise and non-
deterministic behavior on the system with our configuration,
the SUT may still exhibit non-deterministic behavior between
different executions, or timing-dependent behavior that leads to
seemingly non-deterministic variations between executions. Our
snapshot-based execution model may limit the first but could
potentially increase the second. This can, in turn, influence
the detection rates of the error propagation analysis. Since our
approach does not result in any false positives for the modules
used in our evaluation, this does not seem to occur in our
evaluation, but, as noted above, other configurations may yield
different results.

VI. CONCLUSION

In this paper, we introduced a novel approach for accelerating
the SFI testing and error propagation analysis of operating
system kernel code. Our approach speeds up SFI test exe-
cution in three ways: We avoid redundant code execution,
automatically skip the execution of inactive faulty versions, and
facilitate paralleziation of SFI experiment execution. Moreover,
our approach substantially reduces build times by integrating all
faulty versions into a single module, thereby avoiding redundant
compilation effort.

In our evaluation on seven widely used Linux file system
implementations, we achieve sequential speedups of up to
2.45×, parallel speedups of up to 36.8× using 16 parallel
instances, and build time speedups of up to 100.4× with
instrumentation and 256.7× without. SFI result validity is
not affected by these speedups.

ACKNOWLEDGMENTS

This research work has been funded by the German Federal
Ministery of Education and Research and the Hessen State
Ministry for Higher Education, Research and the Arts within
their joint support of the National Research Center for Applied
Cybersecurity ATHENE. This work was supported in part
by EC H2020 CONCORDIA GA#830927 and the Lancaster
Security Institute.

REFERENCES

[1] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. “GOOFI:
generic object-oriented fault injection tool.” In: Proc. of DSN.
2001, pp. 83–88.

[2] M. R. Aliabadi, K. Pattabiraman, and N. Bidokhti. “Soft-LLFI:
A Comprehensive Framework for Software Fault Injection.”
In: Proc. of International Symposium on Software Reliability
Engineering Workshops (ISSREW). 2014, pp. 1–5.

[3] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. “Basic
concepts and taxonomy of dependable and secure computing.”
In: 1.1 (Jan. 2004), pp. 11–33. ISSN: 1545-5971. DOI: 10.1109/
TDSC.2004.2.

[4] Radu Banabic and George Candea. “Fast black-box testing of
system recovery code.” In: Proc. EuroSys. 2012, pp. 281–294.

[5] Takayuki Banzai, Hitoshi Koizumi, Ryo Kanbayashi, Takayuki
Imada, Toshihiro Hanawa, and Mitsuhisa Sato. “D-Cloud:
Design of a Software Testing Environment for Reliable
Distributed Systems Using Cloud Computing Technology.”
In: Proc. CCGRID. 2010, pp. 631–636.

[6] Jonathan Bell and Gail Kaiser. “Unit Test Virtualization with
VMVM.” In: Proc. ICSE. 2014, pp. 550–561.

[7] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic
Translator.” In: Proceedings of the Annual Conference on
USENIX Annual Technical Conference. ATC ’05. Anaheim,
CA: USENIX Association, 2005, pp. 41–41. URL: http://dl.
acm.org/citation.cfm?id=1247360.1247401.

[8] Prashanth P. Bungale and Chi-Keung Luk. “PinOS: A Pro-
grammable Framework for Whole-system Dynamic Instrumen-
tation.” In: Proc. of VEE. 2007, pp. 137–147. ISBN: 978-1-
59593-630-1. DOI: 10.1145/1254810.1254830.

[9] J. Carreira, H. Madeira, and J. G. Silva. “Xception: a technique
for the experimental evaluation of dependability in modern
computers.” In: 24.2 (Feb. 1998), pp. 125–136. ISSN: 0098-
5589. DOI: 10.1109/32.666826.

[10] Nicolas Coppik, Oliver Schwahn, Stefan Winter, and Neeraj
Suri. “TrEKer: Tracing Error Propagation in Operating System
Kernels.” In: Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering. ASE 2017.
Urbana-Champaign, IL, USA: IEEE Press, 2017, pp. 377–387.
ISBN: 978-1-5386-2684-9. URL: http://dl.acm.org/citation.cfm?
id=3155562.3155612.

[11] Alexandre Duarte, Walfredo Cirne, Francisco Brasileiro, and
Patricia Machado. “GridUnit: Software Testing on the Grid.” In:
Proceedings of the 28th International Conference on Software
Engineering. ICSE ’06. ACM, 2006, pp. 779–782. ISBN: 978-
1-59593-375-1. DOI: 10.1145/1134285.1134410. URL: http:
//doi.acm.org/10.1145/1134285.1134410.

[12] Peter Feiner, Angela Demke Brown, and Ashvin Goel.
“Comprehensive Kernel Instrumentation via Dynamic Binary
Translation.” In: Proc. of ASPLOS. 2012, pp. 135–146. ISBN:
978-1-4503-0759-8. DOI: 10.1145/2150976.2150992.

[13] A. Gambi, A. Gorla, and A. Zeller. “O!Snap: Cost-Efficient
Testing in the Cloud.” In: 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST). Mar.
2017, pp. 454–459. DOI: 10.1109/ICST.2017.51.

[14] T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada,
and M. Sato. “Large-Scale Software Testing Environment
Using Cloud Computing Technology for Dependable Parallel
and Distributed Systems.” In: Proc. ICSTW. 2010, pp. 428–433.

[15] A. Henderson, L. Yan, X. Hu, A. Prakash, H. Yin, and
S. McCamant. “DECAF: A Platform-Neutral Whole-System
Dynamic Binary Analysis Platform.” In: PP.99 (2016), pp. 1–1.
ISSN: 0098-5589. DOI: 10.1109/TSE.2016.2589242.

[16] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xun-
chao Hu, Xujiewen Wang, Rundong Zhou, and Heng Yin.
“Make It Work, Make It Right, Make It Fast: Building a
Platform-neutral Whole-system Dynamic Binary Analysis
Platform.” In: Proc. of ISSTA. 2014, pp. 248–258. ISBN: 978-
1-4503-2645-2. DOI: 10.1145/2610384.2610407.

[17] Piyus Kedia and Sorav Bansal. “Fast Dynamic Binary Trans-
lation for the Kernel.” In: Proc. of SOSP. 2013, pp. 101–115.
ISBN: 978-1-4503-2388-8. DOI: 10.1145/2517349.2522718.

[18] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin
Matthew Scannell, Philip Patchin, Stephen M. Rumble, Eyal
de Lara, Michael Brudno, and Mahadev Satyanarayanan.
“SnowFlock: Rapid Virtual Machine Cloning for Cloud Com-
puting.” In: Proceedings of the 4th ACM European Conference
on Computer Systems. EuroSys ’09. Nuremberg, Germany:
ACM, 2009, pp. 1–12. ISBN: 978-1-60558-482-9. DOI: 10.
1145/1519065.1519067. URL: http://doi.acm.org/10.1145/
1519065.1519067.

[19] Wing Lam, Sai Zhang, and Michael D. Ernst. When Tests
Collide: Evaluating and Coping with the Impact of Test
Dependence. Tech. rep. University of Washington Department
of Computer Science and Engineering, 2015.

[20] Anna Lanzaro, Roberto Natella, Stefan Winter, Domenico
Cotroneo, and Neeraj Suri. “An Empirical Study of Injected
Versus Actual Interface Errors.” In: Proc. of ISSTA. 2014,

pp. 397–408. ISBN: 978-1-4503-2645-2. DOI: 10.1145/2610384.
2610418.

[21] Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sar-
fraz Khurshid, and Darko Marinov. “Parallel Test Generation
and Execution with Korat.” In: Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software
Engineering. ESEC-FSE ’07. ACM, 2007, pp. 135–144. ISBN:
978-1-59593-811-4. DOI: 10.1145/1287624.1287645. URL:
http://doi.acm.org/10.1145/1287624.1287645.

[22] R. Natella, D. Cotroneo, J.A. Duraes, and H.S. Madeira. “On
Fault Representativeness of Software Fault Injection.” In: 39.1
(Jan. 2013), pp. 80–96. ISSN: 0098-5589.

[23] T. Parveen, S. Tilley, N. Daley, and P. Morales. “Towards a
Distributed Execution Framework for JUnit Test Cases.” In:
2009 IEEE International Conference on Software Maintenance.
Sept. 2009, pp. 425–428. DOI: 10.1109/ICSM.2009.5306292.

[24] M. Sand, S. Potyra, and V. Sieh. “Deterministic high-speed
simulation of complex systems including fault-injection.” In:
Proc. of DSN. 2009, pp. 211–216. DOI: 10.1109/DSN.2009.
5270335.

[25] O. Schwahn, N. Coppik, S. Winter, and N. Suri. “FastFI:
Accelerating Software Fault Injections.” In: 2018 IEEE 23rd
Pacific Rim International Symposium on Dependable Comput-
ing (PRDC). Dec. 2018, pp. 193–202. DOI: 10.1109/PRDC.
2018.00035.

[26] Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj
Suri. “Assessing the State and Improving the Art of Parallel
Testing for C.” In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis.
ISSTA 2019. Beijing, China: ACM, 2019, pp. 123–133. ISBN:
978-1-4503-6224-5. DOI: 10.1145/3293882.3330573. URL:
http://doi.acm.org/10.1145/3293882.3330573.

[27] Anna Thomas and Karthik Pattabiraman. “LLFI: An interme-
diate code level fault injector for soft computing applications.”
In: Proc. of SELSE. 2013.

[28] Stefan Winter, Oliver Schwahn, Roberto Natella, Neeraj Suri,
and Domenico Cotroneo. “No PAIN, No Gain?: The Utility of
PArallel Fault INjections.” In: Proc. ICSE. 2015, pp. 494–505.

[29] Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi. “WuKong:
Effective Diagnosis of Bugs at Large System Scales.” In:
SIGPLAN Not. 48.8 (Feb. 2013), pp. 317–318. ISSN: 0362-
1340. DOI: 10.1145/2517327.2442563.

