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Abstract—Modern operating systems (OSs) consist of numer-
ous interacting components, many of which are developed and
maintained independently of one another. In monolithic systems,
the boundaries of and interfaces between such components are
not strictly enforced at runtime. Therefore, faults in individual
components may directly affect other parts of the system in vari-
ous ways. Software fault injection (SFI) is a testing technique to
assess the resilience of a software system in the presence of faulty
components. Unfortunately, SFI tests of OSs are inconclusive if
they do not lead to observable failures, as corruptions of the
internal software state may not be visible at its interfaces and,
yet, affect the subsequent execution of the OS beyond the duration
of the test.

In this paper we present TREKER, a fully automated approach
for identifying how faulty OS components affect other parts of
the system. TREKER combines static and dynamic analyses to
achieve efficient tracing on the granularity of memory accesses.
We demonstrate TREKER’s ability to support SFI oracles by
accurately tracing the effects of faults injected into three widely
used Linux kernel modules.

Index Terms—Software Fault Injection, Robustness Testing,
Test Oracles, Execution Tracing, Operating Systems

I. INTRODUCTION

Complex modern software systems1 generally consist of
many interacting components. In larger systems, these com-
ponents may be developed or maintained by different teams
of developers and may differ in numerous aspects, including
code quality and the amount of residual faults. In order to
assess the resilience of the overall system, it is necessary to
understand how it is affected by individual faulty components, a
condition named error propagation in the Laprie taxonomy [1].
For this purpose, software fault injection (SFI), the deliberate
introduction of faults in specific components to simulate their
behavior in the presence of residual software faults, is an
established approach [2]–[4].

In SFI tests, the system under test (SUT) is exposed to
erroneous behavior of a component it is interacting with, the
injection target. These fault injections are similar to mutations
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1We will refer to software systems in the sense of software compositions from
separately developed and compilable modules as “systems” in the following.

for mutation testing, but commonly based on different assump-
tions regarding the types and distributions of the introduced
faults (see [5], [6] for an overview of common fault assumptions
in either application). After the injection, interactions between
the SUT and the injection target are triggered by a test
workload. To assess error propagation from the injection target
to the SUT, the behavior of the SUT is observed while it is
processing the workload to identify behavioral deviations in
response to the injection. Unfortunately, oracles of this type
are generally insufficient to make any conclusions whenever
no such behavioral deviations are observed. In such cases it is
unknown whether the fault (1) has not been activated, (2) has
been activated, but its effects have not propagated to the user
interface, or (3) does generally not affect the system behavior.

While the first case can be identified by additional code that
logs the activation of injected faults, disinguishing the latter two
requires introspection of the system during test execution. SFI
test frameworks commonly use execution trace comparisons
across setups with and without injected faults as a secondary
oracle to distinguish between these cases [2], [7], [8].

A. The SFI Oracle Problem for OSs

While the usage of execution traces alleviates the aforemen-
tioned oracle problem, it is challenging for an important class
of SUTs: Operating system (OS) kernel components, because
all kernel components are interacting within the same address
space and with the same privileges. Without memory protection
between kernel components all memory is shared and directly
accessible via pointers. This makes every memory operation
in the system a potential cross-component interaction affecting
the SUT that needs to be traced. Existing memory tracing
approaches for user space applications (e.g., using Valgrind [9]
or Pin [10]) are not applicable for OS kernels. Existing tracing
approaches for OS kernels (e.g., SystemTap [11] or LTTng
[12]), on the other hand, only provide tracing on the granularity
of function calls instead of individual memory accesses. A naı̈ve
tracing of all memory operations is infeasible, as the kernel
code base is large and some parts, such as hardware interrupt
handling routines, are performance critical.

B. TREKER: Solving the SFI Oracle Problem

To correctly identify and characterize the effects of residual
software faults in kernel components, we present TREKER,



a scalable, fully automated approach for TRacing Error
propagation in operating system KERnels that relies on a
combination of static and dynamic analyses to infer error
propagation from a faulty kernel component to other parts of the
kernel. TREKER limits the trace points to the injection target
and infers error propagation from deviations in the injection
target’s state and behavior that are visible to other parts of
the kernel, thereby effectively improving the soundness of SFI
tests for OSs at the cost of execution time overheads for trace
collection and analysis.

We demonstrate TREKER’s ability to trace the effects of
faults in three widely used kernel components on the Linux
kernel. We find that up to ∼10% of seemingly successful runs
in our fault injection experiments would be misclassified by
conventional oracles.

The remainder of the paper is organized as follows: Section II
gives an overview over related work. Our proposed approach is
detailed in Section III. We discuss TREKER’s implementation
in Section IV and the experimental analysis in Section V.
Concluding remarks can be found in Section VI.

II. RELATED WORK

To classify the results of SFI tests on kernel code, TREKER
traces the effects of injected software faults in OS kernels. We
discuss existing trace-based approaches for user mode software
in Section II-A, alternative approaches for kernel-level SFI
tests in Section II-B and trace comparison in Section II-C.

A. Execution Trace Based Oracles for User Mode Software

Execution tracing has been widely adopted to determine the
outcome of SFI tests [2], [6]–[8], [13]–[16], similar to our
motivation for TREKER. Execution traces of the unmodified
SUT are recorded and later used as a golden run oracle to
compare executions with injected faults against. To record
execution traces, three different techniques are used.

One class of approaches (e.g., [13], [14], [16]) uses de-
buggers to record execution traces. This imposes execution
latencies that are not tolerable by most SUTs, among them
OS kernels targeted by our work. Interrupt service routines,
for instance, need to have short response times and exceeding
those may result in unintended OS failures during test.

A second class of approaches (e.g., [17], [18]) uses full-
system simulation for execution tracing. Full-system simulators
implement the semantics of low-level hardware operations
for a given platform in software. The SUT is executed on
this simulated hardware model. Although the simulation of
every single hardware operation in software imposes massive
execution time overheads, this is not observable by the SUT.
Any latencies observable by the SUT are based on the simulated
hardware timer. Therefore, full-system simulators are generally
suitable for tracing OS kernel executions, but massively impair
test throughput due to the simulation overhead.

The third class of approaches (e.g., [7], [19]) relies on
dynamic binary instrumentation/translation (DBI/T), e.g., using
Pin [10] or Valgrind [20]. Similar approaches have been
developed for OS kernels [21]–[24], but none of them has been

used for execution tracing in SFI tests. As TREKER instruments
kernel code during compilation, it is independent from kernel
modules that need to co-evolve with changing kernel interfaces.
In this respect it differs from the work of Feiner et al. [22]
or Kedia et al. [24]. Moreover, approaches based on binary
translation only work for a specific hardware architecture and
require adjustment for others. PinOS [21], for instance, is
limited to IA-32. The applicability of TREKER, in contrast, is
not limited to any specific OS kernel or hardware architecture,
as long as the instrumentation target can be compiled for that
architecture with Clang/LLVM. As both PinOS and DECAF
[23], [25] rely on virtualization, they cannot be applied for
hardware-specific kernel code, such as device drivers, if that
hardware cannot be emulated by the underlying hypervisors.

B. Oracles for Kernel-Level SFI Tests

Due to the SUT/architecture specificity of available kernel
tracing tools, SFI tests for these SUTs commonly employ other,
less accurate oracles.

Koopman et al. have introduced a classification of OS
failure modes that they consider relevant and implemented
corresponding detectors in the Ballista project [26]. Their
classification comprises five different failure modes, collectively
referred to as the “CRASH scale”, where each letter of the
acronym stands for a failure mode. Catastrophic failures are
failures that render the entire system unusable, e.g., kernel
panics. Restart failures denote cases where the OS silently
stops serving requests made by the executing test case. Cases
where the OS detects a problem and notifies the executing
test (e.g., by signaling a segmentation fault) are called Abort
failures. Silent failures denote the violation of the kernel’s
specified behavior without corresponding notification to the
executing test. Hindering failures, on the other hand, are failures
that mislead debugging efforts, e.g., by returning a wrong error
code. Arguing that these are the most critical failure classes,
Ballista and similar approaches to OS robustness testing limit
their oracles to the detection of the first three classes of the
CRASH scale [27]–[31].

TREKER focuses on the detection of silent or “non-crashing”
failures, such as silent data corruption (SDC), which constitute
a significant threat to reliability [32]–[35] and have been mostly
ignored by existing work on OS level SFI tests. The reliable
detection of restart failures requires kernel execution traces
containing every single executed instruction. While TREKER
is capable of implementing such a tracing policy, the required
heavy-weight instrumentation may result in performance degra-
dation similar to the approaches discussed in Section II-A. We,
therefore, limit the scope of our approach to the detection of
error propagation in the case of terminating test executions and
employ existing timeout-based detectors for restart failures.

While a number of tools (e.g. SystemTap [11] and LTTng
[12]) exist to trace the execution of OS kernel code using
probes (cf. [36], [37] for SFI tracing), they are only capable
of tracing function invocations and not individual memory
accesses. To identify how faults affect SUT state, i.e., the data



the SUT operates on, TREKER selectively instruments memory
operations that are invisible to these tools.

C. Trace Comparison

To detect error propagation, TREKER compares traces of
executions with injected faults to golden run traces of the
unmodified SUT. Trace comparison is also commonly used for
fault localization. Wong et al. give an extensive overview [38].
Such approaches typically compare traces of the same version
of the SUT with different inputs to identify the root causes
of behavioral divergences. Therefore, they are not directly
applicable to the scenario targeted by TREKER.

III. SYSTEM MODEL

We propose an approach for identifying how faults in
components in a monolithic operating system affect the rest of
the system. To that end, this section starts with a brief overview
of the underlying fault taxonomy, followed by a discussion of
the systems we consider and their component interactions.

A. Faults and their Consequences

As hinted at in Section I, we follow the Laprie taxonomy [1].
Any system or system component2 is assumed to implement
a system function according to a functional specification. The
system implements the system function as a sequence of states.
The fraction of a system state that is perceivable at the system’s
interface is called the external state. The sequence of external
states implementing the system function is referred to as service
and the deviation of service from the functional specification
is called a failure. The deviation of an external state in the
sequence that constitutes the service may be caused by a prior
deviation of the system’s internal state that is invisible at the
interface from a correct implementation of the system function.
Such a deviation of the system state is called an error. The
cause of an error is termed as a fault. By these definitions, a
fault is “something that possibly leads to an error”, an error
“something that possibly leads to a failure”, and a failure “a
deviation of observed behavior from specified behavior.”

When a fault causes an error, this is referred to as fault
activation, and the effect an error has on subsequent system
states is called error propagation.

B. Monolithic Operating Systems and Composition

We assume that monolithic operating systems consist of (a) a
core part which provides essential functionality and is, therefore,
always necessarily present and (b) an arbitrary number of
modules implementing additional functionality.

Modules can interact with one another or the core kernel
through function calls, thereby exchanging information via
parameters and return values. Furthermore, the system does
not enforce any memory isolation between its components. All
modules and the core kernel share the same memory address
space and can, in theory, freely access and modify each others’

2We mean “system or system component” whenever we refer to “system”
in this subsection.

data structures. Finally, modules can also access and modify
any global data structures in the system.

Although the implementation we describe in Section IV
utilizes runtime loading and unloading of kernel modules, the
fundamental approach described here does not conceptually
rely on the availability of this functionality.

Due to the lack of runtime isolation or protection mecha-
nisms, a faulty module can affect other modules or the core
kernel in a variety of ways. In particular, tracing mechanisms
that only consider parameters and return values of function
calls cannot capture differences in communication through
shared memory. However, due to the aforementioned lack
of isolation, distinguishing between memory accesses that
constitute potential shared memory communication, particularly
write accesses by a faulty component, and those that do not
is usually not straightforward without examining the entirety
of all other modules and the core kernel. However, the result
of such an analysis would be dependent on the particular
modules present in the system in question and changes to this
configuration might well yield different results. Therefore, we
limit our analysis to the faulty component itself and analyze
which fraction of its state can be expected to be accessible
by any other component in the system, independent from the
actual system configuration. We denote this fraction of expected
externally visible behavior as the component’s interface. The
interface includes parameters of function calls from and return
values of function calls to the component as well as memory
accesses to locations that can reasonably be assumed to be used
for transmitting data to other components via shared memory.
We detail in the following what we do and do not consider
such interface relevant memory accesses within a component
targeted by our analysis.

Read accesses are not generally considered part of the
component interface. If the value that is read was previously
written by the faulty module itself, the read access clearly does
not constitute external communication. If, on the other hand,
the value was written by another module, we do not consider
the read access itself to be behavior visible to other components:
While a faulty module may attempt to read from the wrong
address, resulting in an unexpected value, this does not directly
result in externally visible differences in behavior. Cases where
it has indirect influence (for instance, if the faulty module
proceeds to use the wrong value as a function parameter) will
be captured under our notion of interface at the point where
the behavior in question becomes externally visible.

Local write accesses are store operations to addresses that are
not known to any components other than the faulty one. Most
notably, this includes accesses to stack-allocated local variables
unless their address is passed to another component (either
directly, e.g., as a function parameter or implicitly by writing
it to another externally visible memory location). Access to
regions of memory that are allocated and freed without ever
being referenced in an externally visible manner (that is, as
with stack addresses, passed to external functions or written
to externally visible addresses) in between also fall into this
category. Such accesses are not considered externally visible



int global = 0;

void c_foo(int* x) {
    int a = 1;
    e_bar(&a);
}

void e_bar(int* y); {
    ...
}

void c_baz(int* z) {
    int c = 2;
    *z = c;
    global = c;
}

1

2

3

@global = global i32 0

define void @c_foo(int*)(i32*) {
  %2 = alloca i32*
  %3 = alloca i32
  store i32* %0, i32** %2
  store i32 1, i32* %3
  call void @e_bar(int*)(i32* %3)
  ret void
}

define void @c_baz(int*)(i32*) {
  %2 = alloca i32*
  %3 = alloca i32
  store i32* %0, i32** %2
  store i32 2, i32* %3
  %4 = load i32, i32* %3
  %5 = load i32*, i32** %2
  store i32 %4, i32* %5
  %6 = load i32, i32* %3
  store i32 %6, i32* @global
  ret void
}

Fig. 1. Three different cases in which write accesses can be externally visible,
in C and (simplified) LLVM IR.

for the purposes of our analysis and are therefore not deemed
part of the component interface.

Externally visible write accesses are store operations to
addresses that are known to components other than the faulty
one. This includes all addresses that are passed to the module
from another component, for instance as a parameter or
return value, as well as globals and addresses belonging to
memory that has been allocated by the module itself but
then communicated to other components. As mentioned above,
it also includes all memory addresses that are reachable by
following pointers from another externally visible address.

Of these three categories, the one most relevant for our
analysis is the last one, externally visible write accesses. We
distinguish between three different cases of external visibility
of write accesses: 1) Writes to an address that the component
passes to another component or to addresses that are reachable
from such an address; 2) Writes to an address that was passed
to the component by another component or to addresses that are
reachable from such an address; 3) Writes to global variables
or to addresses that are reachable from a global variable.

These three cases are illustrated in Figure 1. In the first case,
a function in the component (c_foo) writes to a variable (a)
and then passes the address of that variable to an external
function (e_bar). Should the external function dereference
that address, the result of the written value would be accessible
to it. Note that we do not inspect whether such an access
actually occurs, we just check whether it is possible. In the
second case, a function in the component (c_baz) has received
a pointer (z) as an argument and writes to that address. If the
caller of c_baz is an external function (e.g., e_bar), that
write access is visible to that caller. In the final case, a function
in the component writes to a global variable (global).

In all of these examples, the external visibility of the stores
in question is fairly straightforward to recognize, requiring
at most one pointer dereference. However, more complicated

cases exist, for which we introduce the following notion of
reachability: An address p is directly reachable from an address
q if p is stored at q (i.e. *q = p) or q is the base address of
a data structure (e.g., an array or struct) and p is the address
of a member of that data structure (e.g., p = &(q->foo)).
An address p is indirectly reachable from an address q if there
is an address r such that p is directly reachable from r and r
is reachable (directly or indirectly) from q.

We consider the externally visible behavior of a component
at its interface with the rest of the operating system to
consist of the values of parameters passed to functions outside
the component, the values returned to callers outside the
component, the externally visible memory addresses it writes
to and the values it writes to them.

Error propagation occurs when a faulty component exhibits
externally visible behavior that a fault-free version of the same
component will never exhibit under the same workload.

IV. TREKER: TRACING ERROR PROPAGATION IN OS
KERNELS

The implementation work required to realize our proposed
approach comprises two essential parts: An instrumentation tool
capable of gathering the information required to fully capture
the externally visible behavior of a target component and an
analysis tool to perform the filtering and transformations re-
quired to distinguish between the cases described in Section III.
We describe these parts in Section IV-A and Section IV-B,
respectively. Trace comparison is described in Section IV-C.

A. Component Interface Identification and Instrumentation

The purpose of the instrumentation phase is to gather all the
information required to reconstruct an accurate model of the
externally visible behavior of the target component. To that
end, it needs to capture the addresses and values of memory
accesses as well as function calls, parameters and return values.
Function call instrumentation needs to be performed both on the
caller side, when the target component calls functions in other
components, as well as the callee side, when other components
invoke functions of the target component.

In order to avoid limiting TREKER to a specific OS or
architecture, we have decided to implement compile time in-
strumentation as an LLVM [39] optimization pass, allowing us
to support native execution on a various different architectures.

As an LLVM optimization pass, the instrumentation step
operates on LLVM IR, a Static Single Assignment (SSA)
representation. Unlike x86 assembly, only a small number
of LLVM instructions operate on memory, most notably the
load and store instructions. In addition to the memory
accesses themselves, the instrumentation also needs to capture
accesses to fields of data structures, or more specifically the
computation of their addresses based on the base address of
the data structure. In LLVM, this is typically modeled by the
getelementptr instruction.

Furthermore, the instrumentation should capture basic tracing
information, such as function entry and exit, arguments and



return values. Therefore, it also handles function calls (caller-
side), function entry and function exit (callee-side).

Finally, TREKER is designed to handle kernel code, ne-
cessitating a way to instrument inline assembly which is
common in operating systems code. Attempting to parse and
process inline assembly directly suffers from many of the same
drawbacks that make binary instrumentation an unattractive
choice for kernel tracing, including lack of portability across
different architectures and significant added complexity. In
practice, however, inline assembly is usually specified using
extended inline assembly syntax. Such extended inline assembly
statements take a list of input and output variables and clobbers.
The instrumentation can rely on these arguments and constraints
to extract which memory addresses may be read from or written
to by the inline assembly without parsing it directly. Based on
this information, instrumentation can be performed as it would
be for load or store instructions.

For each of the instrumentation points identified above,
the instrumentation pass inserts a function call with the first
argument indicating its type. The subsequent arguments differ
for the different types of instrumentation points. In addition to
memory addresses and values, the information passed to the
function also includes static type information (e.g., whether
a value is of a pointer type) and hashes of global variable
names where applicable. This way, later analysis steps (e.g., the
trace analysis described in Section IV-B) can identify pointer
values in the trace without having to rely on heuristics, such as
checking whether a value belongs to a previously seen address
range (as in [7]).

The instrumentation pass inserts calls to inst_wrapper.
For our experiments on Linux kernel modules, we applied
a patch to the Linux kernel that implements a stub for this
function and a kernel module that, once loaded, handles the
logging at instrumentation points. Prior to loading this “runtime”
kernel module, the kernel stub is effectively a no-op, allowing
the instrumented module to function even when the runtime
has not been loaded. For other application scenarios, such as
user-level code, different implementations of the runtime, for
instance in a library, would be possible as well.

When the runtime module is loaded, it changes a function
pointer in the inst_wrapper stub to point to the actual
logging implementation. That implementation uses printk
to output information at each instrumentation point in order
to enable reliable tracing even in cases where the target may
crash. For other use cases, a trivial performance optimization
would involve caching trace data in memory to reduce the
number of calls to printk.

B. Trace Analysis

We have implemented a trace analysis tool that is capable
of performing the reachability analysis for externally visible
write accesses that we have described in Section III as well
as deriving symbolic values for the addresses of memory
accesses in order to facilitate comparisons between traces. We
first describe our implementation of the reachability analysis,
followed by our symbolic address generation.

1) Reachability: We have introduced a notion of reachability
that incorporates both reachability through pointers as well as
through access to member fields of data structures in Section III.
Our implementation of reachability analysis applies this notion
to individual execution traces. First, we split the trace by
dynamic function calls. For each function call, we extract
the caller, arguments, return value and called functions. For
calls to internal functions, we additionally extract the trace
entries generated during that function call. This results in a
tree structure in which nodes represent dynamic instances of
function calls and edges represent a caller-callee relationship.

Next, we perform the aforementioned reachability analysis
for each of the three different cases in which stores performed
by the instrumented component may be externally visible.

For the first case, writes in the component that are reachable
from arguments passed to an external function, we first identify
each node representing a call to an external function taking at
least one pointer argument in the aforementioned tree. Then,
for each such node, we iterate backwards over the preceding
trace entries until we encounter another node representing an
external function call. During this traversal, we build up a
separate graph which we term the reachability graph from the
encountered trace entries as follows:

• For load or store entries, check if the address node has an
outgoing edge representing a previously seen load or store
from that node, and if so, skip this trace entry. Otherwise,
if the read or written value is a pointer, add an edge from
the address node to the value node.

• For data structure member access entries (i.e.
getelementptr instructions in LLVM IR), add
an edge from the source (i.e. base address) to the
destination (member address) node.

Non-existent address nodes are created on demand during
the construction of the reachability graph.

In this reachability graph, we identify the set of nodes (ad-
dresses) that are reachable from any of the nodes representing
pointer arguments passed to the external function. This set
of addresses is a subset of the addresses that are visible to
the external function, and for each of these addresses, the last
write access is deemed visible to the external function. An
illustration of a graph for this case can be seen in Figure 2:
The stack-allocated struct s_baz is accessible via the pointer
p passed to the external function and both of the stores to its
members are visible to the called function.

For the second case, writes in the component to global
addresses or addresses reachable from them, we iterate over
the trace, constructing a reachability graph as follows:

• For load or store entries, if the address node already has an
outgoing edge representing a read or write access, remove
it. Add an edge from the address node to the value node.

• For data structure member entries, add an edge from the
source to the destination address.

• Mark global addresses when they are encountered and
annotate the corresponding node.



struct s_baz {
int x, y;

};

void c_foo(int* x) {
  struct s_baz s;
  struct s_baz* p;
    s.x = 0;
    s.y = 1;
  p = &s;
    e_bar(&p);
}

define void @c_foo(int*)(i32*) {
  %1 = alloca %struct.s_baz
  %2 = alloca %struct.s_baz*
  %3 = getelementptr %struct.s_baz, %struct.s_baz* %1, i32 0, i32 0
  store i32 0, i32* %3
  %4 = getelementptr %struct.s_baz, %struct.s_baz* %1, i32 0
  store i32 1, i32* %4
  store %struct.s_baz* %1, %struct.s_baz** %2
  call void @e_bar(s_baz**)(%struct.s_baz** %2)
  ret void
}

%2

p

%1

s

%4

s.y

%3

s.x

Fig. 2. An example of a reachability graph and the corresponding code snippet.
Solid lines indicate values stored at an address, dashed lines indicate offset
calculations. Writes to s.x and s.y are visible to e_bar.

In this reachability graph, we identify the set of nodes that
are reachable from any node annotated as representing a global
variable. As in the first case, write accesses operating on any
of these addresses are deemed visible to the external function.

For the third case, writes in the component that are reachable
from arguments passed by an external function, we identify
each node representing a call to an external function that in turn
calls functions provided by the component. This corresponds to
any external function node (including the root node) in the tree
that has internal function child nodes. Then, for each component
function (that takes at least one pointer argument) called by such
an external function, we iterate over all trace entries belonging
to that function node and its child nodes, performing an in-order
traversal of a sub-tree with the component function at its root.
The traversal is stopped when we encounter another external
function node. During this traversal, we once again build up a
reachability graph, in the same manner as for global addresses,
apart from annotating nodes representing global variables. We
identify the set of nodes that are reachable from any node
representing a pointer argument passed by the external function,
and as in the previous cases, deem the last write accesses to
any of these addresses visible to the external function.

2) Symbolic Addresses: To compare traces from different
executions, where absolute addresses may differ, a mechanism
to map concrete addresses to symbolic addresses is required. We
generate symbolic addresses from reachability graphs similar
to the ones described previously. A symbolic address consists
of an anchor point, and a path starting from that anchor point.
For writes in the component that are reachable from arguments
passed by an external function and writes that are reachable
from a global value (the second and third cases discussed
above), symbolic addresses use the argument or the global
variable as the anchor point and the shortest path from there
to the address that was written to as the path. If, for instance,
a pointer x is passed to the component, and the component
writes to an address y that can be obtained by dereferencing
x and adding an offset k, the resulting symbolic address is

x *−→ k−→. For writes in the component that are reachable from
arguments passed to an external function, symbolic addresses
are created using a similar mechanism. In this case, however,
a set of anchor points consisting of return values of external
functions, stack allocations, global variables and the results
of pointer arithmetic is considered. If an address is reachable
from several anchor points, we compare the lengths of the
shortest paths from each anchor point to the address and pick
the shortest one. The same symbolification is performed for
values of pointer types.

C. Trace Comparison

Assessing the impact of faults on visible write accesses
requires a mechanism for comparing traces of executions with
activated faults to fault-free executions (golden runs). Moreover,
in order to minimize the impact of non-deterministic runtime
behavior, we need to compare a faulty execution to a set of
fault free runs. While this allows us to more precisely extract
those differences between traces that result from the activation
of a fault (i.e. behavior that a fault-free implementation would
never exhibit), it also complicates the comparison process. We
compare traces using the following two-step approach:

1) Trace Merging: First, a set of traces from fault-free
runs is processed in order to generate a merged trace structure
containing information about the addresses any execution writes
to as well as the adddresses all executions write to, along
with the corresponding values: Let t1 and t2 be traces from
two fault-free executions, both of which consist of the same
sequence of function calls and write to address a1, with the
values being v1 (t1) and v2 (t2). The resulting merged structure
then contains a write access a1 ← {v1, v2}. Furthermore, let t1
also write to address a2. The merged structure then contains,
separately, the set of addresses that all executions have written
to (Aall = {a1}) as well as the set of addresses that at least
one trace has written to (Aany = {a1, a2}). Let t3 be a trace
from a third fault-free execution which consists of a different
sequence of function calls. The addresses and values written
by t3 are stored separately from those of t1 and t2. In order
to support workloads which exercise the target module using
multiple threads or processes, merged structures are stored
separately for different threads and processes.

2) Trace Comparison: Next, this merged structure is used
in a comparison with a faulty execution. Let tf be a trace from
such an execution. First, the threads or processes in tf need to
be matched to their counterparts in the merged structure. Since
absolute thread or process IDs may differ between executions,
they do not form a reliable foundation for such a mapping.
Instead, we perform the mapping by call sequence, looking
first for exact matches. In cases where no exact match is found,
the trace exhibiting the previously unknown call sequence can
either be ignored so as to avoid introducing false positives, or
a best effort comparison with the known call sequence with the
longest common prefix can be performed. We call the former
option strict mode. In the latter option, situations may arise
in which several known call sequences have the same longest
common prefix length with the new call sequence. In this case,



we compare with all of them and report the results for the
case in which we discover the fewest divergences. Best effort
comparisons are only performed over the common prefix so
that we never compare store visibility for different functions.
For each address af that tf writes to, the trace comparison
checks if that address is also written to in at least one fault-
free execution. In case it is not, the write to af is deemed
an additional write access. Moreover, the comparison also
checks if tf writes to all addresses ai that every fault-free
execution writes to. If it does not, a write to such an ai is
deemed missing. Finally, for the set of addresses that both
the faulty and at least one fault-free execution write to, the
value vf written by tf is checked against the set of values
written by the fault-free executions. If vf is not in that set,
the write access differs from the corresponding write accesses
seen in fault-free runs. Non-pointer values are not assigned
symbolic counterparts during trace processing but may in some
cases take on different values even during most fault-free runs.
This can be the case with, for instance, addresses that are
written as non-pointer types, timestamps or random values. In
order to minimize the number of false positives introduced by
such cases, the comparison between faulty and fault-free runs
ignores any values that differed in a majority of fault-free runs
(i.e. for which the number of observed values is greater than
half the number of fault-free runs).

The numbers of missing, additional and differing stores are
gathered separately for the three cases of write access visibility.

V. EXPERIMENTAL ANALYSIS

In this section, we evaluate our approach by performing
experiments with real-world Linux kernel modules: a storage
device driver and two file systems. The questions that we
strive to answer in this evaluation are detailed in the following
Section V-A. We describe our SUT in Section V-B. Section V-C
covers the injection targets and Section V-D our choice of
workload. We report on our experimental results in Section V-E.

A. Research Questions

Is TREKER a sound detector for error propagation? To
answer this question, we analyze if there are any spurious
indications of error propagation by comparing memory traces
of SFI tests for which the injected mutations have not been
activated. As the injected faults cannot have an effect on the
correct execution of the workload in this case, any differences
in the memory traces are false positives.

Does TREKER improve the soundness of SFI tests? Even
if TREKER is a sound detector, it only improves the soundness
of SFI tests if silent error propagation actually occurs in these
tests. To assess if silent error propagation goes unnoticed
in conventional OS-level SFI tests, we analyze TREKER’s
memory traces for SFI tests that complete without any obvious
error indications.

What are the overheads resulting from TREKER’s
instrumentation? Static code instrumentation always imposes
a certain overhead at both compile-time and run-time. We

compare both compilation and execution times of TREKER
against native SFI test compilation and execution.

Does TREKER’s instrumentation affect SFI test results?
As code instrumentation modifies the SFI target’s binary code
and thereby potentially its behavior, it is conceivable that
the results of SFI tests are affected or even invalidated by
the instrumentation. In order to assess if such an effect is
observable for our approach, we compare the results of SFI
tests with and without instrumentation of the injection target
using Fisher’s exact test for independence.

B. SUT

Although TREKER supports native execution, we perform
our evaluation in a virtualized environment to avoid frequent
hard machine restarts due to system crashes resulting from the
tests. The toolchain we use in the experiments is illustrated in
Figure 3. The guest system is Debian 8.6 running in QEMU
2.6.0. It is configured with one CPU and 1GiB of RAM
and has virtual SCSI and NVMe devices attached. KVM is
enabled. The guest kernel is Linux 4.4.25, patched to support
compilation with Clang/LLVM (using a modified version of the
patch set created by the LLVMLinux3 project) and compiled
with Clang/LLVM 3.9.1. The host system is Debian 8.5 running
the distribution-provided 3.16 kernel. All experiments are
performed using four parallel QEMU instances running on
a host system equipped with an i7-4790 CPU and 16GiB of
RAM. Experiment control and timeout detection are handled
by a controller running on the same host. The timeout value
for all tests is 45 seconds, excluding boot and setup time.
In addition to the timeout mechanism, we employ detectors
operating on the serial output of the guest system to detect error
messages from the kernel. Our detectors distinguish between
five different classes of kernel error messages (Call Trace, GPF,
BUG, Oops and Panic). We also check exit codes during the
workload execution to detect workload failures that did not
result in kernel error messages, resulting in a total of eight
different experiment result classes.

C. Injection Targets and Faultload Selection

We apply our proposed approach to three different, widely
used Linux kernel modules: (1) f2fs, the Flash-Friendly File
System, a file system specifically designed for NAND Flash-
based storage devices; (2) btrfs, a copy-on-write file system
implementing various advanced features; and (3) nvme, the
kernel module providing support for NVMe devices.

For each of these modules, we perform the following series
of steps: (1) We inject software faults using the SAFE tool4 [4]
with default settings, (2) build the resulting module using our
compile time instrumentation tool (Section IV-A), (3) execute
a workload that utilizes functionality provided by the module,
and (4) observe the resulting effects during execution and via
memory trace comparison.

3http://llvm.linuxfoundation.org
4http://wpage.unina.it/roberto.natella/tools.html
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SAFE performs fault injection at the source code level using
the G-SWFIT [3] fault operators. We build and instrument the
target modules with Clang/LLVM 3.9.1.

We use prefix matching for btrfs and f2fs to maximize
the usage of recorded memory traces (see Section IV-C). As
nvme directly interfaces with the system hardware and, thus,
has a higher exposure to non-determinism, we use the strict
mode to limit false positives resulting from this.

D. Workload Selection

All three modules in our study provide functionality related
to file I/O. Two of them (btrfs and f2fs) are file systems
and the third one (nvme) provides support for an interface
standard for storage devices. Consequently, we apply the same
workload to all three modules. Specifically, the workload
consists of the following sequence of steps:

1) Loading the target module and any other required modules;
2) Creating a filesystem (F2FS for the f2fs and nvme
modules, BTRFS for the btrfs module) on either an NVMe
(nvme, f2fs) or SCSI (btrfs) device; 3) Mounting that
filesystem; 4) Creating a new file and writing to it; 5) Creating
a new directory; 6) Reading the file; 7) Removing the
directory; 8) Removing the file; 9) Unmounting the filesystem;
10) Removing the target module and all other modules that
were loaded in the first step.

The instrumentation is active throughout the execution of
the workload (that is, the runtime module is loaded prior to
the first step and removed after the last step).

This workload exercises most commonly used filesystem
features and, through module insertion, device registration, I/O
activity and removal, also exercises the essential functionality
of the nvme module.

E. Results

We report on the experimental results obtained with
TREKER and how they answer the research questions posed
in Section V-A. The overall result distribution for runs with
activated mutation according to the simple detectors discussed
in Section V-B is shown in Figure 4.

1) Soundness of TREKER: In mutation-based SFI, there
is a risk that the mutated code fraction does not get executed
during the test and, obviously, no error propagation should
occur in these cases. To reliably identify these tests, we track
the execution of mutated code by dedicated log instructions. We
then use TREKER to analyze their memory traces. Any error
propagation indicated by TREKER are false positives. Figure 5
shows the number of trace deviations detected by TREKER for
different numbers of golden runs used as comparison basis for
runs with and without mutation activation, with the latter case
representing false positives indicated by the dashed lines. For all
three modules, we observe a false positive rate below 1%. From
Figure 5, we see that the number of detected trace deviations
does not change beyond 800 golden runs. Consequently, we use
this number as a comparison basis in our further experiments
to keep the false positive rate in the presented results below
1% and the comparison stable.

2) Soundness of SFI tests with TREKER: To assess the
suitability of the proposed approach for detecting divergences in
mutant behavior during apparently successful runs, we examine
the sets of SFI test traces with mutant activations which finished
without any obvious error indication, i.e. the runs that are
marked as successful in Figure 4. We show the trace deviations
found by TREKER in Figure 6 with overall rates ranging
from 2.75% (btrfs) to 10.1% (nvme). From the analysis
of different visibility types we observe instances of at least
two different types of visibility for all modules. However,
store visibility via a global variable only occurs for nvme. We
conclude that, although the different types of visibility occur
with different frequencies, analysis of all three is needed to
obtain a complete picture of differences in memory access
behavior between executions. The significantly higher rate of
propagation to the callee rather than the caller is an interesting
observation, as it indicates that errors tend to not propagate
directly to components that invoke functionality of the targeted
modules (i.e., their callers), but rather tend to spread further
in the system. While a detailed study is needed to substantiate
such a result, this finding illustrates the insights that TREKER
fosters and that traditional SFI oracles cannot provide.

TABLE I
COMPILE-TIME OVERHEAD (OH) OF INSTRUMENTATION. USER TIMES ARE

REPORTED IN SECONDS.

Module Buildtype Median MAD OH

btrfs instr 71.86 0.21 1.7
uninstr 43.62 0.11

f2fs instr 14.07 0.14 1.4
uninstr 10.07 0.06

nvme instr 2.43 0.02 1.5
uninstr 1.62 0.02

3) Instrumentation Overhead: To assess the overhead as-
sociated with our instrumentation, we compare the durations
for compiling and executing mutated modules in different
instrumentation modes.
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Compile-time Overhead: We measure the user time5 that
make needs for building instrumented and uninstrumented
versions of our mutants from a clean work space. Table I
summarizes the median and the median absolute deviation
(MAD) of user times. Column OH reports the overhead factors
(between median values) for compilation with instrumentation
for all modules. In the median, the compile-time overhead
ranges from a factor of 1.4 for f2fs to a factor of 1.7 for
btrfs. We deem these overheads as manageable in practice,
especially since compilation is often a one-time effort and the
actual needed real-time for compilation is much smaller than
accumulated user time due to parallel compilation capabilities
of build tools like make.

Run-time Overhead: We run the same SFI tests using the full
set of mutants in three different modes: without instrumentation,
with instrumentation compiled into the mutants but disabled

5We employ the GNU time utility to collect user times.
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TABLE II
RUN-TIME OVERHEAD (OH) OF INSTRUMENTATION. WORKLOAD

DURATIONS REPORTED IN SECONDS.

Module Mode Median MAD OH

btrfs
instr active 2.714 0.139 2.5

instr inactive 1.113 0.012 1.0
uninstr 1.109 0.008

f2fs
instr active 1.951 0.061 19.3

instr inactive 0.101 0.006 1.0
uninstr 0.101 0.006

nvme
instr active 2.133 0.082 3.3

instr inactive 0.656 0.009 1.0
uninstr 0.642 0.008

during runtime, and with active instrumentation. We measure
the durations of all workload executions that complete in all
three modes. Table II summarizes the median and the median
absolute deviation (MAD) of workload durations in seconds of
real-time. Column OH reports the overhead factors (between
median values) compared to the uninstrumented execution. The
overhead for runs with active instrumentation ranges from a
factor of 2.5 for btrfs to a factor of 19.3 for f2fs. We
attribute the higher relative overhead for f2fs to the high
concentration of logging output in its mount routine. We expect
to achieve a lower overhead for such cases if data logging
is changed to use a more efficient format rather than relying
on the kernel’s printk facilities. Execution with inactive
instrumentation imposes a negligible overhead. We observe the
highest overhead for nvme with 14ms. By comparison, PinOS
[21] overheads with inactive instrumentation range from a
factor of 12 to 120. DECAF [25] incurs a 15.2% overhead with
disabled instrumentation in addition to the overheads incurred
by QEMU emulation. TREKER, in contrast, can run on bare
metal configurations to avoid this overhead. We conclude that,
with TREKER, instrumented modules could even be used in
production, but data logging should be enabled only for tests



TABLE III
p-VALUES OF FISHER’S TEST OF INDEPENDENCE OF OBSERVED RESULT

DISTRIBUTION AND INSTRUMENTATION MODE

Module p

btrfs 0.9834
f2fs 0.9978

nvme 0.8420

or execution periods of interest for trace analysis.
4) Instrumentation Impact on SFI Test Results: We examine

the effect of our instrumentation on the results of SFI tests.
We use the same set of tests with three instrumentation modes
that we used to assess the run-time overhead in Section V-E3.
We consider all tests with activated mutation and compare
the obtained result distributions for each module. We use
Fisher’s exact test to test the null hypothesis (H0) that “there
is no association between observed result distributions and the
instrumentation mode”. Table III reports the p-values obtained
from Fisher’s test. With p � 0.05 for all three modules, we
cannot reject the null hypothesis, i.e., there is no statistically
significant evidence that the instrumentation systematically
changes the result distribution.

Nonetheless, in pairwise comparisons of executions of the
same mutant with different instrumentation modes, we observe
a small number of differences in outcomes. We focus on
the comparison between runs with activated instrumentation
and uninstrumented runs and see a total of 79, 101 and
68 differences for btrfs, f2fs and nvme, respectively,
amounting to 0.79%, 1.11% and 2.46%. As it is the module
that most frequently exhibits such divergences, we discuss the
nature of the divergences seen for nvme in some more detail:
In 26 of the 68 cases, we observe a timeout only for the run
with activated instrumentation. We hypothesize that these are
most likely cases of spurious timeout detection, potentially
a result of the overheads we discuss in Section V-E3. In a
further 21 cases, we observe neither a success nor a timeout
but different failure modes. For instance, there are several
cases in which the uninstrumented run results in a kernel panic
whereas the run with activated instrumentation merely results
in a kernel oops before reaching the execution time limit.
These are, once again, likely related to longer test execution
times due to the instrumentation. We also observe two cases
in which the instrumented run completes successfully whereas
the uninstrumented run does not, suggesting non-deterministic
behavior by the mutant. Among the remaining 19 cases, we
observe twelve in which the instrumented run fails shortly
after activating a mutation whereas the uninstrumented run
does not (our data does not reveal whether the mutation was
activated during the uninstrumented run), six cases in which
the instrumented run results in a failure after the end of the
workload execution and after removal of the runtime but prior to
system shutdown and finally one in which the uninstrumented
execution times out but the instrumented run does not. We
conclude that most of the differences in outcome we observe
are related to timeout detection and execution time limits and

could be tackled by adjusting the corresponding values at
the cost of a lower test throughput, similar to what has been
reported in [40].

5) Threats To Validity: We identify the following threats to
validity: 1) Non-determinism in the memory access patterns of
the target modules that can, even in the absence of faults, lead
to divergences between execution traces for the same workload;
2) Limitations of the presented approach for identifying visible
stores, assigning symbolic addresses and detecting divergences;
3) The choice of target modules, SUT and workload.

We take several measures to minimize the effects of non-
determinism: We use a large number of golden runs as a
comparison base, assign symbolic values to memory addresses
(including pointers that are used as value rather than address
operands in load or store operations) to avoid non-determinism
introduced by concrete address values, and handle different
processes and threads individually as opposed to explicitly
tackling concurrency. The low false positive rates obtained in
our evaluation demonstrate the effectiveness of these measures.

TREKER has several restrictions on the scope within which,
for instance, store visibility is determined (e.g., only stores
between the prior external function and the current one are
considered) or symbolic values are assigned (pointer arithmetic
that is not modeled by getelementptr instructions is
not analyzed). These restrictions result from the deliberately
limited scope of our instrumentation and from performance
optimizations in the trace processing. Consequently, there may
be visible stores outside of the range considered by TREKER or
different memory addresses that are assigned the same symbolic
address. Such instances may result in the proposed approach
reporting fewer divergences than actually exist.

Finally, the evaluation targets three different kernel modules
providing related functionality, running on one kernel version
and one system setup. Other categories of kernel modules
or other operating systems may behave in a significantly
different manner, and our results may not generalize. Fur-
thermore, different workloads could exercise different parts
of the module. Long-running workloads, for instance, may be
expected to spend less time executing parts of the module for
which the instrumentation is particularly expensive, such as
module insertion, potentially leading to lower mean overheads.
Furthermore, the likelihood of error propagation may increase
with longer workload running times. We believe that TREKER
is applicable to a wide variety of usage scenarios and our
evaluation demonstrates the viability of the approach.

VI. CONCLUSION

In this paper, we have presented TREKER, an approach
for identifying how faulty OS components can affect other
parts of the system. TREKER enables tracing memory accesses
in a target module using compile-time instrumentation and
achieves low instrumentation overheads. We have presented
a method for utilizing TREKER to improve oracles for FI
experiments targeting OS components. An evaluation with
several widely used modules for the Linux kernel demonstrates
the viability of the approach, finding that conventional oracles



would misclassify up to ∼10% of seemingly successful runs.
The evaluation shows a false positive rate below 1%.
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