
Assessing the State and Improving the Art of Parallel Testing for C
Oliver Schwahn

os@cs.tu-darmstadt.de

TU Darmstadt, Germany

Nicolas Coppik

nc@cs.tu-darmstadt.de

TU Darmstadt, Germany

Stefan Winter

sw@cs.tu-darmstadt.de

TU Darmstadt, Germany

Neeraj Suri

suri@cs.tu-darmstadt.de

TU Darmstadt, Germany

ABSTRACT
The execution latency of a test suite strongly depends on the degree

of concurrency with which test cases are executed. However, if test

cases are not designed for concurrent execution, they may interfere,

causing result deviations compared to sequential execution. To pre-

vent this, each test case can be provided with an isolated execution

environment, but the resulting overheads diminish the merit of par-

allel testing. Our large-scale analysis of the Debian Buster package

repository shows that existing test suites in C projects make lim-

ited use of parallelization. We present an approach to (a) analyze

the potential of C test suites for safe concurrent execution, i.e., re-
sult invariance compared to sequential execution, and (b) execute

tests concurrently with different parallelization strategies using pro-

cesses or threads if it is found to be safe. Applying our approach to 9

C projects, we find that most of them cannot safely execute tests in

parallel due to unsafe test code or unsafe usage of shared variables

or files within the program code. Parallel test execution shows a

significant acceleration over sequential execution for most projects.

We find that multi-threading rarely outperforms multi-processing.

Finally, we observe that the lack of a common test framework for

C leaves make as the standard driver for running tests, which intro-

duces unnecessary performance overheads for test execution.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Static Dependency Detection, Parallel Test Execution, Software

Repository Analysis, Static Analysis

ACM Reference Format:
Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri. 2019.

Assessing the State and Improving the Art of Parallel Testing for C. In

Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’19), July 15–19, 2019, Beijing, China. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3293882.3330573

ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’19), July 15–19, 2019, Beijing, China, https://doi.org/10.1145/3293882.3330573.

τseq
τpar

seq τ1 τ2 τn

par

τ1

τ2

τn

Figure 1: Illustration of the intended achievement. Execu-
tion time τpar for the parallel case is defined by the longest
executing test case, whereas for the sequential case τseq it is
defined by the sum of all test case execution times.

1 INTRODUCTION
To obtain high test throughput and limit the influence of human er-

ror, dynamic software tests are themselves commonly implemented

as software for test automation. As the amount of test code has ex-

ceeded that of the application logic by far for numerous projects

[9], its execution time is critical for the performance of various

steps in software development and maintenance. For maintainabil-

ity and selective execution, the test code is organized as collections

of test cases in test suites. With the increasing parallelism of mod-

ern processors, test execution times can only benefit from increas-

ing computational power if test suites are designed for concurrent

execution. The total execution time of a test suite consisting of

test cases t1 . . . tn with execution times τ1 . . . τn would be reduced

from

∑n
i=1 τi in the sequential case to the execution of the longest

running test max({τ1 . . . τn }), as illustrated by Figure 1, if two con-

ditions hold: (a) sufficient parallel processing units are available,

and (b) all tests in a test suite are independent.
Unfortunately, this assumption of test case independence within

a test suite has proven problematic [22]. Even sequential executions

of a test suite can lead to differing test case results across differ-

ent permutations of their execution order. The major root causes

behind test dependencies found in existing software projects have

been identified as (a) shared heap memory and (b) shared files [22].

While the former has been identified as the most common reason

for test dependencies (62.7 % of all dependencies analyzed in [22]),

it is only problematic if test executions share the same memory ad-

dress space. Isolating tests in individual processes would, therefore,

solve a substantial portion of the problem, but reportedly induces

significant overheads on test executions [1]. As shared files affect

any tests operating on the same file system, file dependencies need

to be identified irrespective of address space isolation.

In this paper, we explore several implementation alternatives

(with different degrees of memory isolation) to achieve safe parallel

https://doi.org/10.1145/3293882.3330573
https://doi.org/10.1145/3293882.3330573


ISSTA ’19, July 15–19, 2019, Beijing, China Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri

executions of existing sequential test suites for projects written

in C. By safe parallel execution, we mean that the results of test

cases executed in parallel cannot differ from the results of their

original sequential execution order. We focus our work on C, the

predominant language in the Debian main package repository (as

we will show in Section 3). C features the second highest test count

across projects hosted on GitHub according to a study of Kochhar

et al. [12]. To check if tests can interfere in parallel execution,

we implement two static analyses based on the LLVM compiler

infrastructure [14]. The decision to focus on existing test suites is

motivated by the large amount of existing sequential test code that

is shipping with widely used software.

Our paper makes the following contributions.

• We present an analysis of Debian Buster’s main package reposi-

tory showing that the majority of code contained in the packages

is written in C, that no test framework dominates test implemen-

tations for C packages, and that few test suite implementations

benefit from concurrent execution.

• We develop automated static analyses for C code to find test case

dependencies on files and shared global data to identify which

parts of a test suite can safely execute in parallel.

• We develop a test harness to use this information for safely

executing tests in parallel and explore the trade-off between

address space isolation and parallel test suite performance in

different parallelization alternatives using processes and threads

for nine Debian source packages.

• We present the results of an in-depth analysis of nine software

projects from Debian Buster, for which we parallelize test execu-

tion using our dependency analyses and test harness. Our results

show that test suites in C can benefit from even modest degrees

of parallelism provided by virtually every desktop or server hard-

ware, that threads do not perform significantly better than pro-

cesses, and that our test harness (and likely any specialized test

tool) outperforms generic automation tools like make.

2 RELATEDWORK
The goal of our work is to assess if the concurrent execution of tests

in C projects can achieve better latencies without compromising

test outcomes. Articles related to our work fall in three categories:

(1) same objective and mechanism (concurrent execution for la-

tency improvement), (2) same objective, but different mechanisms

(latency improvements by other means), (3) similar mechanisms

(test interference detection), but different objectives.

In summary, only one existing approach, VmVm [1], does not re-

quire the execution of tests. Approaches based on dynamic analyses

suffer from the need to execute the test suite at least once. After the

test suite has been executed, the test results are known and there is

no benefit in obtaining them again, no matter with which run time

improvement. Hence, to detect test interferences for safe concur-

rent execution, we need to use static analysis. As we cannot reuse

VmVm’s analysis, since it runs on Java code, we develop static anal-

yses of accesses to global variables and shared files for C programs.

Concurrent Test Execution for Latency Improvement. Early ap-

proaches for concurrent test executions [5, 15, 17, 19] assume test
cases to be independent and do not analyze if their parallel execu-

tion can alter test results. As test dependencies were found to affect

permutations of test sequences [13, 22], newer approaches address

the possibility of test dependencies.

ElectricTest [2] identifies dependencies in Java tests to determine

which tests need to execute in sequence to prevent spurious results.

Dependencies are derived from traces of shared resource accesses

gathered during test execution. Lam et al. [13] assess the impact

of dynamically detected test dependencies in Java projects on test

parallelizability, achieving speedups between 1.02× and 7.14×.

CUT [8] executes unit tests in parallel and isolates them in sepa-

rate virtual machines or Docker containers to ensure that concur-

rently executing tests cannot interfere. CUT relies on external input

in the form of a directed acyclic dependency graph, which can be

provided by analyses like those presented in this paper.

O!Snap [7] uses VM snapshots to speed up test execution. To

avoid missing libraries or setup steps for running the tests, O!Snap

analyzes dependencies on the software package level. Our approach

is orthogonal, as it targets concurrency of tests within a package,

as opposed to concurrency across packages.

Candido et al. [3] investigate how common concurrent test exe-

cutions are in open source projects. Their results show that only 13

out of 110 investigated Java projects execute tests concurrently. The

authors experimentally assess the speedup (up to 75.9×) and the

rate of spurious test failures (up to 96.3 %) of naive parallelization

that ignores dependencies, emphasizing the need for dependency

analyses for test parallelization. Our complementary study for C

projects in the Debian Buster repository confirms the finding that

few projects can benefit from parallel testing out of the box.

Improving Test Latencies without Concurrency. We found only

one project that, similar to parallelization, achieves latency improve-

ments without omission of tests. VmVm [1] reduces the execution

latency of sequential test suites by replacing costly per-test initial-

ization and termination routines with lightweight reset routines

that are sufficient to provide non-interference across consecutive

tests. To identify which part of the software under test’s (SUT)

state needs to be reset, VmVm uses a static analysis to identify heap

memory that is possibly accessed by multiple tests.

Test Interference Detection. Another reason for analyzing test de-

pendencies is the identification of bugs in test code. If individual

tests are supposed to be independent from each other, any depen-

dency indicates a bug.

Muşlu et al. [16] propose to execute tests in isolation to reveal

dependencies on other tests and report an actual bug in Apache

Commons CLI using this technique.

DTDetector [22] permutes the execution order of Java test suites

to identify test dependencies via static fields. To limit execution

overhead, DTDetector samples permutations using different algo-

rithms, one of which uses test independence information to filter

permutations that cannot reveal test dependencies. To gather depen-

dency information, DTDetector executes each test once in isolation.

PraDet [6] detects manifest test dependencies with a similar

approach as DTDetector, but reduces false positives by using an

enhanced version of ElectricTest’s [2] dependency detection.

PolDet [10] detects state pollutions of shared state across Java

tests by identifying shared heap memory regions at run time and

tracking accesses to them. PolDet also tracks modifications to files,

but relies on user input for identifying which files are relevant.



Assessing the State and Improving the Art of Parallel Testing for C ISSTA ’19, July 15–19, 2019, Beijing, China

3 EMPIRICAL STUDY: C SOFTWARE IN
DEBIAN BUSTER

In our literature review (Section 2), we made the observation that

all existing work on test dependencies is focused on Java projects.

While we do not speculate about the reason, we needed to confirm

that it is not because testing of C code is an irrelevant problem. For

this purpose, we analyzed the entire main package repository of the

upcoming “Buster” release (version 10) of the widely used Debian

Linux Distribution [21] with three major objectives: (1) To assess

the amount of C code compared to other languages to confirm the

relevance of our work, (2) to assess which test frameworks are most

widely used to test C code, (3) to assess to which degree parallel

execution is able to improve test performance.

3.1 Programming Languages in Debian
We downloaded and unpacked all 25 684 source packages available

in Debian Buster [20]. To determine both the programming lan-

guages and the amount of source lines of code (SLOC) per package,

we used cloc [4] and excluded markup languages such as XML.

Figure 2a shows the total number of packages by their predomi-

nant language, i.e., the languages that contribute most SLOC to the

respective packages, and the relative contribution of each language

to the entire repository. With almost 25 %, C is the most promi-

nent language across all packages. To affirm that this finding is

not biased by differing amounts of code in the packages, we also

accumulated the SLOC number per language across all packages

as shown in Figure 2b. With around 250 million SLOC, more than

28 % of the total code in the repository is written in C. This number

excludes code in header files, as cloc cannot distinguish whether

they belong to C or C++ code, and is, thus, a conservative estimate.

C is the dominant language in the Debian ecosystem.

3.2 Test Frameworks
To analyze the use of test frameworks, we scanned the downloaded

sources for JUnit usage in the case of Java and for the presence

of typical files and directives of 34 different freely available test

frameworks
1
in the case of C. Figure 2c summarizes our findings.

We found that, with less than 5.5 %, few C projects make use of any

of the test frameworks. This is in strong contrast to the situation for

Java, where over 65 % of projects use the de facto standard JUnit.

No test framework is commonly adopted for C software in the

Debian repositories.

3.3 Test Parallelization
To detect if packages can benefit from parallel test execution, we

identify all packages that show indications for the presence of any

tests by scanning for file and folder names that include “test” as

substring. By invoking typical build and test execution targets of

GNU make2, we then build each of these packages, execute their test
suites, and measure the tests’ execution times for varying degrees

1
The full list is included in our accompanying artifact.

2
We also invoke typically found configuration steps such as autoconf or

configure and try different make targets for executing tests such as check or test.

of execution parallelism specified via make’s -j flag. We repeat our

time measurements three times per configuration to account for

possible variations due to factors that are not under our control.

Out of 6419 C packages in the repository, we identified 1617

to show indications for the presence of tests. Out of these, 627

completed our measurement without failure for all three runs. Most

packages that failed did so consistently in all three runs (99.2 %). A

remaining 8 packages exhibited flaky build or test behavior. Half

of them had test failures in the parallel case, despite successful

sequential test executions. We also observed such behavior among

10 packages that failed consistently in each of the three repetitions.

From the 627 non-failing packages, only 177 (28 %) had shorter

test execution times for the parallel case in all runs. 261 pack-

ages (41.3 %) had equal or longer test execution times compared to

sequential execution. The remaining packages did not yield clear

results, with parallel test performance sometimes exceeding the

sequential case and sometimes vice versa.

The achieved test execution time speedup factors for the 177

benefiting packages are shown in the bubble plot in Figure 3. From

the plotted data we observe that the degree by which projects

benefit from parallel test execution varies greatly. While it is not

surprising that longer sequential execution times (on the x axis) tend

to coincide with bigger time savings (bubble size), it is remarkable

that even projects with short test suite execution times between

250ms and 1 s can achieve speedups well above the median of 1.37.

If the degree of parallelism for test execution is increased from 4

to 8, we observe only modest additional speedup, as indicated by

the bubble colors, for the majority of the projects. Almost 60 % fall

in the lowest category and 30% in the second lowest. More than

half of the projects in the lowest category have a speedup of 1 or

less, i.e., they do not benefit from increased parallelization.

Test parallelization via make -j works for less than 39 % of C

packages using make for test execution.Most of these packages do

not deterministically benefit from 4-fold parallel test execution.

Few of those that do benefit from further increased parallelism.

3.4 Threats to Validity
We do not claim that the results from our study apply for other

ecosystems. With Debian, we target a large ecosystem that forms

the basis of many production software stacks [21]. While this choice

guarantees practical relevance, there are potential inaccuracies in

our analyses resulting from the need to scale them to an ecosystem

of significant size and projects with limited support for automated

analyses. Our analysis of dominant languages relies on cloc’s ac-
curacy, which is widely used for SLOC counting. Our analysis of

test frameworks depends on the list of frameworks we searched

for in the projects and the accuracy of our search heuristics. Simi-

larly, the conclusions from our test run time analysis may depend

on our build and test automation. Our conclusions are drawn from

three repetitions of the run time analysis. We have used the coeffi-

cient of variance as a rough measure to detect massive instabilities,

which we only found in one case of averaged time differences for

8-fold parallelism and which we excluded from the analysis. The

exit codes observed were stable across the three conducted runs

in more than 99% of cases, which adds to our confidence in the

absence of massive deviations from the reported results.



ISSTA ’19, July 15–19, 2019, Beijing, China Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri

25
 %

11
 %

15
.6

 %

13
 %

35
.4

 %

0

2500

5000

7500

C C++ Perl Python Other

Project Language

P
ro

je
ct

 C
ou

nt

(a) Number of packages by dominant language.

28
.6

 %

12
 % 19

.3
 % 7.

3 
%

5 
%

27
.8

 %

0

50

100

150

200

250

C C/C++
Header

C++ Java
Python

Other

Language

M
S

LO
C

(b) Millions of source lines of code (MSLOC) by lan-
guage.

5.
4 

% 65
.8

 %

0

20

40

60

C Java

Language

%
 U

si
ng

 K
no

w
n

Te
st

 F
ra

m
ew

or
k

(c) Usage of known test frameworks
in C- vs. Java-dominated packages.

Figure 2: Results of Debian “Buster” package repository analysis. SLOCs were counted with cloc [4].

1.00

1.37

2.00

3.00

4.00

0.10 1.00 1.86 10.00 100.00

Sequential Test Execution Time (s)

S
pe

ed
up

 F
ac

to
r 

w
ith

 4
 P

ro
ce

ss
es

Achieved Time Difference (s)
for 4 Processes

1 60 120

Speedup with 8 Processes
over 4 Processes

[0.79,1.03] (1.03,1.27]

(1.27,1.52] (1.52,1.76]

Figure 3: Achievable test speedup for C packages in Debian
Buster. The dashed lines indicate the median sequential test
execution time and themedian speedup achievedwith 4 pro-
cesses. The bubble sizes indicate time differences between
sequential and 4-fold parallel execution. The color coding
shows additional speedup achievable by 8-fold parallelism.

4 SAFE CONCURRENT TESTING FOR C
Our empirical study has shown that only a small fraction of those C

projects in Debian that invoke tests via make benefit from parallel

test execution. In the following we present an approach to (1) assist

C developers with the implementation and maintenance of concur-

rent test suites and (2) enable safe concurrent test executions for

legacy test suites that have been designed for sequential execution.

Figure 4 provides an overview of our approach. The three phases

of preparation, analysis, and safe concurrent test execution are

discussed in the following subsections.

4.1 Preparation
We implement our analyses as LLVM optimizer passes that perform

awhole-program analysis on the tests and the SUT. For this purpose,

Tests.c SUT.c

Clang + 
Bitcode Linker

Linked.bc
LLVM

Backend

FDA SMA BM Binary
SUT
+

Tests

Conflict Graphs
(Files, Globals, System)

Black Lists

Test
Harness

Preparation Analysis Safe Concurrent Execution

1 2 3

Figure 4: For our analyses, the tests and the SUT have to be
compiled to bitcode and linked. After running our analyses
1 – 3 , which are implemented as LLVM compiler passes,
we obtain information on potential test conflicts. Our test
harness leverages these to derive safe parallel test schedules.

we require the tests and the SUT to be compiled to LLVM bitcode

(LLVM-IR) and linked together. Everything that is not linked in at

the point at which our passes run is deemed external and any test

inter-dependencies due to external resources must be addressed via

a blacklisting mechanism, which is discussed in Section 4.2.3.

Our analyses assume test cases to be self-contained, i.e., not to
rely on external inputs. External inputs are either generated by

human testers or by external test automation tools written in other

languages. If the test suite relies on human input, its potential

performance gain from automated parallelization is limited. If input

data is generated by tools written in other languages, those parts

of the test harness would require an analysis engine for those

languages. If any input generating code can be linked with the

LLVM-IR of the tests, our approach can include it in the analysis.

4.2 Detecting Potential Test Interference
Concurrent test executions can interfere if two or more test cases

access the same data, at least one such access is modifying that data

(write access), and the test outcome of at least one other test depends

on that data. Which data is shared among concurrent tests depends

on their execution environment. Concurrently executing tests in

separate processes (as in the case of make in Section 3) share the

same operating system state (e.g., system wide configurations like

the locale) and in particular the same file system, but not the same

memory. Dependencies on shared memory only affect concurrent



Assessing the State and Improving the Art of Parallel Testing for C ISSTA ’19, July 15–19, 2019, Beijing, China

tests if they execute as threads within the same process context. We

developed separate static analyses to detect potential dependencies

(due to global variables or file system usage) in a given test suite,

because of these different parallelization strategies they enable.

We chose a static approach for analyzing potential dependencies

over a dynamic approach since static analyses have the advantage

that the analyzed tests do not need to be executed. A dynamic

analysis would already produce the desired test results, limiting the

utility of the approach to cases for which a repeated execution of

the same tests in the same configuration is desirable. Static analyses

can be integrated into the software build process which ensures

that the used dependency information always matches that of the

produced test executables. This integration is especially useful if a

software project has many build-time configuration options, which

may influence test dependencies.

4.2.1 Analysis 1 : File Dependency Analysis (FDA). To detect file
dependencies, our analysis first checks whether certain known func-

tions that are used to interact with the file system, such as fopen,
are reachable from a test case by constructing the static call graph

for the SUT and traversing it for each test case’s SUT invocations.

Then, for each call site of such a function that is reachable from

at least one test case, we traverse use-definition chains to deter-

mine which (constant) file names may be passed to the function.

A test case t may access a file f if a call site of a file processing

function is reachable from t and f is a reaching definition for a

function argument at that call site. We use the same technique for

mode arguments to distinguish read-only accesses from writing

accesses. The resulting file read and write sets Fr (t) and Fw (t) for
each test case t can be used to detect dependencies between any

pair of test cases and we construct an undirected test case conflict

graph CF = (V , E) as follows:

• For each test case, we add a corresponding vertex to V .

• For each pair of vertices ti , tj ∈ V , we add an edge to E iff

(Fr (ti ) ∩ Fw (tj )) ∪ (Fr (tj ) ∩ Fw (ti )) ∪ (Fw (ti ) ∩ Fw (tj )) , ∅,

i.e., when there is a possibility of accesses to the same file

including at least one write operation.

Our current analysis does not identify potential file accesses for

files with dynamically generated file names, but could be extended

to track string operations that are used to construct such names.

4.2.2 Analysis 2 : Shared Memory Analysis (SMA). Analogous to
Section 4.2.1, we construct the static call graph of the SUT and the

tests. We then follow the definition-use chains of all global variables

of the SUT, as well as function arguments in cases where global

variable addresses are passed as parameters, to identify which of

them may be read or written in which test case. We consider it

sufficient to focus on global variables, because (1) global variables

are implicit heap allocations and shared among threads, (2) function-

local variables are allocated on the stack and are, thus, thread-local

and not shared among concurrent threads, (3) to share explicitly

allocated heap data (e.g., via malloc), threads need to communicate

its addresses, which is only possible via previously shared memory.

Our analysis does not identify shared memory accesses to hard-

coded constant-value addresses. Such accesses constitute a severe

risk to memory safety and must be considered bad practice for

commodity systems. For embedded systems there may be cases

of software containing hard coded addresses. For these scenarios,

our analysis would need to be augmented with a (straight-forward)

mechanism to analyze constant propagation.

The result of our analysis is a mapping that assigns to each

function f in the module its read and write sets of global variables

Gr (f ) and Gw (f ). A test case t may read or write a global variable

д if any of the functions reachable from that test case according

to the static call graph may read or write д. Thus, the set of global
variables that may be read (or written) during execution of t can
be computed as Gr (t) =

⋃
Gr (fi ) and Gw (t) =

⋃
Gw (fi ) of all

functions fi reachable from t . The resulting read and write sets for

each test case can then be used to detect dependencies between any

pair of test cases by constructing the conflict graph CG for global

variables analogous to CF in Section 4.2.1.

4.2.3 Analysis 3 : Blacklisting Mechanism (BM). As previously

mentioned, we rely on a blacklisting mechanism to model test de-

pendencies on shared system resources besides files and memory.

This mechanism takes a list of functions as input that access such

shared resources, along with additional information on whether

the access is reading or writing the shared resource. We analyze

the test cases and the SUT for call sites of these functions and cre-

ate read and write sets of shared resources for each function in

the module, analogous to how we handle global variables. We then

reuse the static call graph constructed during the shared memory

analysis to determine which of the identified call sites can be in-

voked during test execution. The resulting conflicts are added to

CG , thereby effectively modeling them as global variables.

4.3 Concurrent Test Execution
The orchestration of test executions is generally implemented in

some test harness. As we found in our empirical study in Section 3,

C projects frequently use the general purpose build automation

tool make for this purpose. We implement a custom test harness

in our work to achieve the concurrent execution of test cases. Our

test harness supports different parallelization strategies that make

use of the dependency information extracted by our static analyses

to prevent test interferences.

In general, there are two options for concurrent test executions,

which differ in their risk of interfering test executions and their

run time overhead: (a) executing tests in parallel, isolated processes
or (b) executing tests in parallel threads without memory isolation.

Option (a) provides isolated address spaces, which eliminates

memory interferences for parallel tests. Option (b) does not provide

this isolation, but potentially offers lower overhead compared to

(a) since thread management operations are generally considered

lightweight and do not have to create/switch address spaces for

isolation. However, since option (b) lacks program state isolation for

each test, all tests must be analyzed for their interference potential

before they can be run in parallel. For either option we implement

two execution strategies in our test harness.

4.3.1 Multi-Process Strategies. Our first strategy (PM ) merges all

test cases into one program and forks a new process for every test

case. The only difference of this harness compared to make is that
our implementation does not schedule two tests for concurrent ex-

ecution if they have file dependencies, as this may lead to deviating



ISSTA ’19, July 15–19, 2019, Beijing, China Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri

CPU1

CPU2

t1

P1

t2

P2

t3

P3

t4

P4
PM PW

CPU1

P1
t1 t3

CPU2

P2
t2 t4

Figure 5: Multi-Process strategies PM and PW : For PM a clean
process is started for each test, whereas for PW the repeated
process initialization overhead is saved by reusing processes
as long as tests do not have dependencies.

test results. The maximum number of processes in PM is config-

urable to prevent resource contention from adversely affecting test

suite execution times, e.g., when the number of processes is much

larger than the number of CPUs in the system.

The other option for test parallelizationwith processes is aworker
model (PW ) that forks a fixed number of processes, each of which

executes several tests in sequence. This option avoids spawning

new processes (similar to VmVm [1]) when sequential tests do

not have dependencies and, thus, cannot interfere. Tests with file

dependencies cannot execute in parallel, as previously explained in

the discussion of PM , and cannot execute sequentially within the

same worker process if they have dependencies on common globals.

Figure 5 illustrates the difference between PM and PW in an

example of four independent tests t1 . . . t4 executing on two pro-

cessing units CPU 1 and CPU 2. For PW , two processes P1 and P2
are spawned, whereas a new process is created for each test in PM .

4.3.2 Multi-Thread Strategies. We employ two multi-thread strate-

giesTM andTW analogous to PM and PW :TM creates a new thread

for each test case and TW uses worker threads. In addition to the

dependency restrictions described for processes, tests cannot be ex-

ecuted concurrently or within the same worker thread if they have

dependencies on global variables. This restriction does not apply

for processes, as they execute within separate address spaces and

do not have access to other processes’ global variables.

Multi-threaded strategies, therefore, require both dependency

analyses, but are expected to outperform their multi-process coun-

terparts in terms of test execution times, because of the lower over-

head for thread creation and context switching.

4.4 Scheduling Concurrent Test Execution
We use CG and CF to schedule safe, concurrent test execution ac-

cording to the four parallelization strategies discussed above. For

PM , scheduling relies only on CF . PW , TM and TW all require both

CF and CG . We use CF to partition the set of test cases as follows:

We greedily pick and remove maximal independent subsets of test

cases Ii from CF until CF is empty. For PM , these sets are directly

used for concurrent test execution: Test cases from the same set

are executed concurrently in different processes at the chosen de-

gree of parallelism. Different sets are handled sequentially, and test

cases from different sets are never executed concurrently. In the

other cases (PW ,TM ,TW ), we extract for each Ii the corresponding
induced subgraph fromCG . The result is a set of conflict graphsC

i
G

that encode potential memory and environment conflicts among

tests that do not have file conflicts. These graphs are then used to

identify sets of independent tests that can safely execute concur-

rently (respectively, sequentially within the same process), analo-

gous to how CF is used in the case of potential file conflicts.

5 EVALUATION
In our evaluation, we address the following questions.

RQ1 What are the steps involved to transmute legacy tests suites

for our approach and how much manual effort is required?

RQ2 What kinds of dependencies do our analyses detect and

where do they originate?

RQ3 How high are the achieved speedups for parallel test suite

execution and does execution with threads perform better

than with processes?

RQ4 How much overhead does the proposed dependency analysis

impose and does the overhead amortize with the achieved

execution speedups?

5.1 Experimental Setup
5.1.1 Software Project Selection. We investigate our research ques-

tions by applying our approach to 9 real world software projects

that are included in the Debian Buster software repository. We se-

lected the projects to cover a large range of project sizes, test suite

sizes, and sequential test execution times, as shown in Table 1.

5.1.2 Experiment Execution. We ran our file and globals depen-

dency analyses on each project and recorded the resulting depen-

dency graphs. We executed the test suites at 6 different degrees of

parallelism (1, 2, 4, 8, 16, 32) and in 5 different execution modes to

assess how test duration changes. The test outcomes did not deviate

between sequential make and our executionmodes, i.e., we observed

the same test results as for make. We repeated all our experiments

30 times and discuss mean values throughout this section.

5.1.3 Execution Environment. We conducted our experiments on a

machine with Debian Buster (Linux 4.17, x86_64), which is equipped

with an AMD Ryzen 7 1700X CPU with 8 physical and 16 logical

cores (3.40 GHz), 32GiB of main memory, and a 1 TB SSD.

5.2 RQ1: Transmutation of Legacy Tests
To answer RQ 1, we report how we prepared the tests of the 9

evaluated projects (cf. Section 4.1) andwhichmanual and automated

steps were involved.

First, we manually identify the test suite and its test cases. We

exclude tests that rely on external tools or scripts written in lan-

guages other than C as these are not accessible to our analysis,

as well as tests that deterministically fail in our execution envi-

ronment or rely on external inputs (e.g., network). To allow a fair

comparison between process-based and thread-based paralleliza-

tion, we also remove tests that cannot be executed together within

the same process, e.g., because they close standard file descriptors

such as stdout or otherwise corrupt their environment (e.g., send-

ing process termination signals). We document the original number

(Total) and the number of test cases included in our study (Ana-
lyzed) in Table 1. Moreover, we verify that each test has its own

unique entry point to avoid naming collisions when merging them

for analysis. We integrated an automated, semantics preserving

source code transformation with Coccinelle [11, 18] in our tool



Assessing the State and Improving the Art of Parallel Testing for C ISSTA ’19, July 15–19, 2019, Beijing, China

Table 1: Evaluated Software Projects: Each project is listed with the amount of C code, the number of all/analyzed test cases,
the longest test case run time (in s), and the sequential test suite execution time with make and PM . Column Diffstat lists the
amount of required manual code changes. Columns Files and Globals list the number of conflict inducing files and globals
found in total and inside test code. The analysis time columns list themean time (over 30 runs) required to find these conflicts.

Name

Size Test Cases Seq. Time (s) Diffstat Files Globals Analysis Time (ms)

(C SLOC) Total Analyzed Longest Make PM +/-/! Tests Total Tests BL Total Files Globals

gnulib 204486 1130 908 4.0 23.5 12.0 130/0/65 5 5 5 4 15 86.35 556.35

libbsd 7182 16 12 55.9 56.2 55.9 70/0/15 0 0 0 1 1 0.46 1.53

libesedb 211882 22 22 <1ms 1.0 0.01 6/1971/60 0 0 0 0 0 5.10 5.92

libgetdata 96532 1649 1637 9.5 52.5 34.1 6253/875/264 36 36 1 0 4 15911.71 1106.98

librabbitmq 9833 6 6 <1ms 0.1 0.01 4/0/0 0 0 0 0 0 0.43 1.20

libsodium 26123 65 65 1.1 5.4 3.9 80/0/4 0 0 0 0 9 4.74 80.64

litl 2403 16 10 4.0 7.3 7.0 90/1/8 1 1 0 0 0 0.94 1.69

openssl 244048 548 29 0.9 2.8 2.6 83/0/9 0 0 0 0 88 28.57 47.53

sngrep 10381 10 10 1.8 11.6 11.3 708/0/16 0 0 0 0 0 0.87 1.97

chain that handles the common case of each test having its own

main function by creating unique function names. In cases where

a #include directive is used to share code for the main function

(libgetdata, sngrep), we physically resolve the include before ap-

plying Coccinelle. Further manual and semi-automated steps are

sometimes required to allow Coccinelle to correctly parse and pro-

cess the C code. For instance, we had to resolve some preprocessor

macros, either manually or using the unifdef utility (libesedb,
libgetdata, openssl).

Next, we adapt the project’s build system to produce a single

bitcode file (for analysis) and a single shared object file (for test ex-

ecution), both containing the library and test code, for which we

developed general purpose scripts. To enable the linking into one

file, we manually change the declaration of some global symbols to

static to prevent name collisions as C does not support names-

paces (gnulib, libgetdata, litl, sngrep). We then apply our anal-

yses to assess the parallelization potential of the test suite. We use

the diagnostics output of our analyses, including a set of reachable

external functions, to construct a blacklist (cf. Section 4.2.3).

To allow the execution with our test harness, the assertion logic

used in the tests needs to be adapted to communicate test outcomes

to our test harness. To that end, we manually changed assertion

macro definitions and implemented C headers to replace functions

like exit or abort, which both terminate process execution and

are often found as part of assertion logic in test suites to check test

outcomes, to support execution modes other than PM .

Of the 9 projects, only 2 (gnulib, libbsd) required blacklisting

for external functions. Manual and semi-automated code modifi-

cations are usually required before our approach can be fully ap-

plied. Table 1 lists the total amount of textual code modifications

for each considered project as diff statistic (number of added, re-

moved, and modified text lines) from the diffstat utility (Diffstat
column). Apart from libesedb, libgetdata, and sngrep, fewer
than 200 text lines were touched. The higher number of changes

for the three projects is due to the manual resolution of includes

and preprocessor macros as discussed above, which is a straight-

forward mechanical task. Overall, we were able to convert the test

suites in a matter of few days for each project, with the exception

of gnulib and openssl, which took longer as openssl’s test suite
makes heavy use of Perl scripting and gnulib includes many tests

that touch low level system functionality such as raw file descrip-

tors and process management, which is the reason why we had to

exclude a higher number of tests for those projects. We expect that

developers with intimate knowledge of a project and its tests could

perform the conversion task considerably faster.

Porting legacy test suites to our approach is feasible with reason-

able manual effort and minor code modifications to the original

test suites.

5.3 RQ2: Dependencies
To assess which kinds of dependencies exist between different test

cases and where these dependencies originate, we examine the

results of our dependency analyses. Table 1 lists the number of

conflict inducing files and globals found for each project.

We find file dependencies for three projects. For gnulib, the de-
tected dependencies correspond to files that are in fact accessed

during test execution but these accesses are benign (e.g., accesses

to /dev/null, or attempts to open a non-existent file). Our analy-

sis could be enhanced with a whitelist to account for such benign

paths. We find substantially more conflicts for libgetdata as there
is a small set of common file names used in virtually all test cases.

This prevents concurrent execution, for our approach as well as for

the make-based execution supported by libgetdata. Attempting

concurrent execution while ignoring these dependencies we ob-

served flaky test results across repeated test executions. For litl,
we detect one file-based conflict between two tests, in which both

tests access the same file. Ignoring this dependency causes flaky

behavior in parallel make-based test execution. Since all file depen-

dencies we detect originate in test code, only the test suites would

require modification to enable further parallelization.

Globals dependencies are more common than file dependencies,

and we detect them in five projects. Unlike file dependencies, most

of them originate in the project itself, not in test code. Such con-

flicts in the project itself result from the use of global variables

that are used in project code reachable from more than one test.



ISSTA ’19, July 15–19, 2019, Beijing, China Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri

libsodium litl openssl sngrep

gnulib libbsd libesedb libgetdata librabbitmq

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

1 2 4 8 16 32
0

10

20

1.0

1.2

1.4

2

4

6

0
50

100
150
200

1.0
1.5
2.0
2.5

1.000

1.004

1.008

1.012

1.0
1.2
1.4
1.6
1.8

1
2
3
4
5

1

2

3

4

Degree of Parallelism

Sp
ee

du
p

make
PM w/o analysis times
PM w/ analysis times

Figure 6: Parallel make and PM speedups relative to sequential make-based execution. For PM with analysis times, the file de-
pendency analysis runtime was added to the test execution time.

We find globals dependencies in only two test suites: gnulib and
libgetdata. In both cases, several tests declare their own versions

of global variables using the same names, which induces potential

conflicts when we link several tests together. We also observe con-

flicts in gnulib and libbsd resulting from our blacklisting mecha-

nism. In particular, both gnulib and libbsd have tests that make

assumptions about the absolute number of file descriptors, and

gnulib has several tests that call functions which alter the execu-

tion environment in a manner that affects other threads in the same

process (e.g., calling setrlimit or changing the working directory).
Our globals dependency analysis and blacklisting mechanism allow

us to parallelize these test suites despite such issues. Since most

globals dependencies originate in the projects themselves, test suite

modifications are insufficient to remove them.

File dependencies occur in few projects and exclusively originate

in test code, leading to flaky behavior when not accounted for in

parallel execution. Globals dependencies are more common and

frequently originate in the project itself.

5.4 RQ3: Achieved Speed-Ups
To assess the achievable speedups from concurrent test executions,

we analyze how test suite execution times develop with increasing

degrees of parallelism across the different execution modes.

As our Debian repository study shows that many projects bene-

fit from parallel make-based execution, we first analyze execution

times obtained with make as our baseline. Figure 6 shows the ob-
served speedups (y-axis, different scales) compared to sequential
make (cf. Table 1) for each project across increasing parallelism de-

grees (x-axis, □). We observe that 3 projects (libbsd, libgetdata,
librabbitmq) show no meaningful speedups with increasing par-

allelism for make. The other 6 show speedups ranging from 1.02×

to 5.95× (sngrep). libgetdata does not benefit from parallel make
as sequential execution is hardcoded in its Makefile. Comparing

speedups achieved with our PM mode (^ in Figure 6), being con-

ceptually closest to make (but respecting file dependencies), to

make speedups, shows that PM consistently outperforms make with
speedups over sequential make of 214× for the extreme case of

libesedb, having extremely short tests (similarly to librabbitmq).
Leaving out these extreme cases, we see speedups ranging from

1.01× to 6.55× (sngrep). The maximum relative speedup between

parallel make and PM was seen for gnulib with 2.13×. Remarkably,

even sequential PM execution is faster than sequential make execu-

tion (cf. Table 1), which shows that make imposes a non-negligible

overhead, being over 11 s for gnulib and over 18 s for libgetdata.
Comparing PM to TM and TW , we observe that only 3 projects

consistently benefit from multi-threaded test execution, which is

illustrated in Figure 7 where the achieved speedups over PM at

respective degrees of parallelism for TM , TW , and PW are shown

in the upper part (geometric mean and min/max). libesedb and

librabbitmq achieve a best case speedup of 1.9× for TM and 2.9×

for TW , corresponding to less than 7ms, whereas libgetdata
achieves a minor speedup of up to 1.03× for both TM and TW ,

corresponding to 950ms. We attribute the better multi-threaded

performance for libesedb and librabbitmq to their extremely

short tests (<1ms) where process creation overhead outweigh ac-

tual test execution. Similarly for libgetdata, we see the reason for

the betterTM performance in the high number of short tests where

over 95 % of tests are shorter than 5ms. openssl and libbsd, on
the other hand, never benefit from TM or TW . All but the above 3

projects tend to perform worse in TM /TW than in PM with a mean

speedup of 1 or less with the extreme of libsodium with 0.4×.

To underpin our observation that multi-threading is not worth-

while compared to PM , we perform a one-sided Wilcoxon signed-

rank test with the null hypothesis that there is no execution time

difference between PM and TM in the median and the alternative

hypothesis that the median difference between PM and TM is posi-

tive. We perform the test for each project separately, pair the data

points according to the parallelism degree, and use a significance

level of α = 0.05. For brevity, we omit the exact statistics and p-

values; however, we were only able to reject the null hypothesis for

the above mentioned 3 projects with p-values < 0.05 that showed

geometric means speedups larger than 1. Hence, we cannot find sta-

tistically significant evidence that thread-based execution performs

better than processes for the majority of studied projects.



Assessing the State and Improving the Art of Parallel Testing for C ISSTA ’19, July 15–19, 2019, Beijing, China

gnulib libbsd libesedb libgetdata librabbitmq libsodium litl openssl sngrep

w
/o analysis tim

es
w

/ analysis tim
es

1

2

3

0.50

0.75

1.00Sp
ee

du
p PW

TM

TW

Figure 7: Geometric mean speedups relative to PM at different degrees of parallelism. Lines indicate minimum/maximum
speedups. Speedups without analysis times are based exclusively on execution times, while speedups with analysis times
include the file dependency analysis for PM and both file and globals dependency analysis for the other modes.

Worker-based execution in PW performs similar to TW with the

exception of libsodium and openssl where PW , with a geomet-

ric mean speedup close to 1, performs better than TW . However,

worker-based execution perform sometimes slightly worse com-

pared to other modes as tests have to be assigned to workers for

serial execution without prior knowledge of individual test case du-

rations, which can lead to suboptimal performance if multiple long

running tests are assigned to the same worker. This effect can be ob-

served for gnulib, litl, and sngrep where worker-based modes

show slightly lower geometric mean speedups.

Two of the studied projects, libbsd and libgetdata, have com-

paratively long test suite execution times (cf. Table 1) without a

clear performance benefit of parallel execution. For libbsd a long

running test case (arc4random) is the reason. For libgetdata file

dependencies between virtually all test cases are the reason. To in-

vestigate the performance impact of such implementation decisions,

we created variants where the long running test case of libbsd is

restructured into 4 C functions that our analysis and test harness

can recognize as test cases and the file dependencies in libgetdata
have been removed by introducing unique filenames using a simple

sed invocation. These very simple changes enable parallel execu-

tion in PM mode with maximum speedups over make of up to 2.34×
or 32.2 s for libbsd and 5.3× or 42.4 s for libgetdata.

Using PM , we achieve parallel speedups of more than 2× over par-

allel and more than 6× over sequential make. Even sequentially,

PM consistently outperforms make, indicating that a dedicated
tool is preferable over make. Multi-threaded parallel execution is

advantageous in only few cases with limited benefits.

5.5 RQ4: Analysis Runtime Overhead and
Amortization

To assess the run time overhead of our analyses, we run them

on each project and measure the execution times. In the follow-

ing, we consider the mean values of 30 repeated measurements for

each project, which we report in the Analysis Time columns of Ta-

ble 1. Both our analyses finish in less than 1 s in all cases except

for libgetdata, where our file analysis needs almost 16 s and our

globals analysis 1.1 s to complete. This effect results from the high

number of file dependencies and test cases in libgetdata (cf. Ta-
ble 1). In general, our analysis requires pairwise comparison of read

and write sets for all file-accessing test cases, which results in qua-

dratic complexity. Reducing the number of file dependencies, as we

did for the modified libgetdata variant discussed in Section 5.4,

the file analysis time is reduced considerably by 16×.

To put the analysis run times into perspective, we relate them to

the parallel test execution speedups that we achieve over make. We

add required analysis times for each project to the test execution

time for our approach. As shown in Figure 6, when adding the file

dependency analysis time, PM (x-axis, +) still outperforms make
(□) for all projects across all degrees of parallelism. In the extreme

case of libesedb the speedup is still up to 101× and for sngrep
6.55× over make. Looking at absolute time savings of PM compared

to make at respective parallelism degrees, we observed the best

case for gnulib with 11.5 s saving. For our modified version of

libgetdata, we saved up to 41.4 s. Overall, we observed savings

between 15ms and 1500ms for 7 projects and savings above 2.5 s

for the remaining 2 (excluding our two modified variants).

To assess the impact of the globals analysis time on the viability

of the three modes that require it (TM , TW , PW ), we add file and

globals analysis times to the test execution time for these modes and

compute the resulting speedup relative to PM with added file de-

pendency analysis time. As shown in the lower part of Figure 7, this

results in a best case speedup of just 1.15 over PM (librabbitmq
in TM ). No project exhibits a mean speedup over 1.0 in any of TM ,

TW or PW . For libsodium and openssl, using either of the thread-
based modes TM and TW effectively halves performance when tak-

ing the additional analysis time into account.

The observed analysis overheads are low enough to pay off for

parallel test execution with processes in all cases. The perfor-

mance advantages of multi-threaded parallel execution are not

sufficient to justify the increased analysis overhead.



ISSTA ’19, July 15–19, 2019, Beijing, China Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri

5.6 Threats To Validity
Our analyses and conclusions depend on the selection of software

projects and may not generalize to other software. We performed all

our experiments on one platform (hardware and software), which

may bias our results towards that single platform. We use platform

supplied means for our time measurements and depend on their

precision and accuracy. We have done our best to limit the influence

of defective implementations and will submit both the raw data we

collected as well as our execution and analysis scripts as artifacts.

6 DISCUSSION & LESSONS LEARNED
As we observed in our experiments, relying on make for test suite
execution requires longer sequential execution times and achieves

lower parallel speedups compared to our test harness. libesedb
is an extreme example for this effect where make requires 2 orders

of magnitude more execution time than PM . make’s overhead can

be saved by using tools that are tailored to test suite orchestration

rather than a generic build automation tool like make. Hence, we
recommend using specialized tools for test suite management. Such

specialized tools should support the parallel execution of tests, as

we observe parallel speedups with PM in 7 out of 9 cases.

The observed performance of the multi-thread parallelization

strategies was similar to the multi-process strategies. We expected

to see both larger and more consistent differences in the execution

times for PM and TM as both strategies spawn a new execution en-

tity for each test, but thread creation is commonly considered a

lighter operation than process forking. The 3 cases where we could

observe a consistent performance advantage of multi-threading

were those (1) that had very short test run times where the cre-

ation/cleanup of the execution entity dominates the overall execu-

tion time or (2) where a highly sequential execution was enforced

in all modes (e.g., due to file conflicts) and the speedups achieved

through parallelism could not compensate for the creation overhead

of execution entities. As the analysis overhead required for multi-

threaded execution eats up the small time savings these modes offer,

we recommend PM as the default choice for parallelization. The

same considerations apply for the execution with a worker model

(PW , TW ) as we could not observe a clear performance benefit esp.

when analysis overhead is taken into account.

For choosing a suitable parallel execution mode, the nature of

the tests must be considered. Tests that persistently change their

process environment without cleanup, e.g., changing working di-

rectories or changing environment variables, cannot safely execute

in the same process, not even sequentially. As tests are often de-

signed with the implicit assumption that they execute in their own

process, cleanup code is commonly omitted. Such tests are inher-

ently unsuited for multi-threaded or worker-based execution and

they need to be removed for modes other than PM or cleanup code

needs to be added, which would increase the required manual ef-

fort. An extreme case, for which a cleanup is usually not possible,

are tests that destroy their process, e.g., by explicitly aborting pro-

cess execution, sending process signals, or causing segmentation

faults. We opted to exclude such tests in our evaluation which is

the reason for the reduction of test cases we report.

The achievable execution speedups depend on the paralleliza-

tion potential of the test suite. The more test cases there are, the

fewer dependencies they have, and the more similar the individ-

ual test case execution times are, the higher are the achievable

speedups. Ideally, test suites would be designed with these goals in

mind. However, our study of the Debian repository and our evalua-

tion indicate that only a fraction of C projects ship with test suites

that already benefit from parallel execution. Hence, a migration

path to parallel test suites is desirable to tap into the full poten-

tial of modern hardware for testing. Our approach offers such a

migration path as we demonstrated in our evaluation that exist-

ing test suites can be converted with an acceptable one-time effort.

This way, projects can benefit from parallel test execution going

forward. We furthermore demonstrated (for libgetdata) that by
mechanically removing file dependencies identified by our analysis,

the achievable speedups can be increased considerably. The loca-

tions of conflicting globals and files we found suggest that existing

test suites have further parallelization potential as a non-negligible

number of dependencies originate in test code (cf. Table 1), which

could be easily removed by test suite restructuring.

The execution time savings we observed range from the order of

tens of milliseconds to tens of seconds. These seem to be moderate

savings in absolute numbers. However, we expect substantial sav-

ings in scenarios that require numerous test suite executions such

as in mutation testing, when scaling to larger test suites, or when

conducting analyses on the ecosystem scale. For instance, for con-

ducting our experiments with gnulib in this paper, we executed

its test suite 30 times for each of the 6 degrees of parallelism. The

total execution time for these experiments was about 35min when

executed with make, and only about 19min when executed with

PM , which is almost a reduction by half.

7 CONCLUSION
In our study of the Debian “Buster” software repository, we found

that C is the predominant language (28.6 % of total SLOC) and that

only a fraction of C projects benefit from trivial parallel test execu-

tion using make. We showed that our approach of static dependency

analysis with multi-thread and multi-process execution strategies

is applicable to real world software in a study of nine software

projects. We identified file dependencies in three and globals depen-

dencies in five projects. All file dependencies originated in test code

but most globals dependencies originated in the project code it-

self, suggesting that file dependencies can be removed by test suite

modifications whereas globals dependencies cannot. Moreover, we

can efficiently execute tests in parallel, even in the presence of

such dependencies using our static analyses and test harness. We

achieved test execution speedups over make of up to 210× in ex-

treme cases and 2.1× in other cases with our multi-process strategy

PM . PM outperforms make even in the the sequential case, indicat-

ing that the use of a dedicated test orchestration tool is preferable

over make. Multi-thread strategies did not show a consistent perfor-

mance benefit for most projects we studied and offer no advantage

when accounting for analysis time.

ACKNOWLEDGMENTS
Research supported in part by H2020-SU-ICT-2018-2 CONCORDIA

GA #830927 and BMBF-Hessen TUD CRISP.



Assessing the State and Improving the Art of Parallel Testing for C ISSTA ’19, July 15–19, 2019, Beijing, China

REFERENCES
[1] Jonathan Bell and Gail Kaiser. 2014. Unit Test Virtualization with VMVM. In

Proceedings of the 36th International Conference on Software Engineering (ICSE
2014). ACM, 550–561. https://doi.org/10.1145/2568225.2568248

[2] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient

Dependency Detection for Safe Java Test Acceleration. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM
Press, 770–781. https://doi.org/10.1145/2786805.2786823

[3] Jeanderson Candido, Luis Melo, and Marcelo d’Amorim. 2017. Test Suite Par-

allelization in Open-source Projects: A Study on Its Usage and Impact. In Pro-
ceedings of the 32Nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2017). IEEE Press, 838–848. http://dl.acm.org/citation.cfm?id=

3155562.3155667

[4] Al Danial. 2018. cloc. https://github.com/AlDanial/cloc

[5] Alexandre Duarte, Walfredo Cirne, Francisco Brasileiro, and Patricia Machado.

2006. GridUnit: Software Testing on the Grid. In Proceedings of the 28th Inter-
national Conference on Software Engineering (ICSE ’06). ACM, 779–782. https:

//doi.org/10.1145/1134285.1134410

[6] A. Gambi, J. Bell, and A. Zeller. 2018. Practical Test Dependency Detection.

In 2018 IEEE 11th International Conference on Software Testing, Verification and
Validation (ICST). 1–11. https://doi.org/10.1109/ICST.2018.00011

[7] A. Gambi, A. Gorla, and A. Zeller. 2017. O!Snap: Cost-Efficient Testing in the

Cloud. In 2017 IEEE International Conference on Software Testing, Verification and
Validation (ICST). 454–459. https://doi.org/10.1109/ICST.2017.51

[8] Alessio Gambi, Sebastian Kappler, Johannes Lampel, and Andreas Zeller. 2017.

CUT: Automatic Unit Testing in the Cloud. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2017).
ACM, 364–367. https://doi.org/10.1145/3092703.3098222

[9] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. 2017. An Empirical

Study of Activity, Popularity, Size, Testing, and Stability in Continuous Inte-

gration. In Proceedings of the 14th International Conference on Mining Software
Repositories (MSR ’17). IEEE Press, 495–498. https://doi.org/10.1109/MSR.2017.38

[10] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable Testing:

Detecting State-polluting Tests to Prevent Test Dependency. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis (ISSTA 2015).
ACM, 223–233. https://doi.org/10.1145/2771783.2771793

[11] INRIA. 2018. Coccinelle Website. coccinelle.lip6.fr

[12] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang. 2013. An Empirical Study of

Adoption of Software Testing in Open Source Projects. In 2013 13th International

Conference on Quality Software. 103–112. https://doi.org/10.1109/QSIC.2013.57

[13] Wing Lam, Sai Zhang, and Michael D. Ernst. 2015. When Tests Collide: Evaluating
and Coping with the Impact of Test Dependence. Technical Report. University of

Washington Department of Computer Science and Engineering.

[14] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization (CGO ’04). IEEE Computer Society, 75–87. http:

//dl.acm.org/citation.cfm?id=977395.977673

[15] Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sarfraz Khurshid, and

Darko Marinov. 2007. Parallel Test Generation and Execution with Korat. In

Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC-FSE ’07). ACM, 135–144. https://doi.org/10.1145/1287624.

1287645

[16] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. 2011. Finding Bugs by Isolating

Unit Tests. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering (ESEC/FSE ’11). ACM,

496–499. https://doi.org/10.1145/2025113.2025202

[17] M. Oriol and F. Ullah. 2010. YETI on the Cloud. In 2010 Third International
Conference on Software Testing, Verification, and Validation Workshops. 434–437.
https://doi.org/10.1109/ICSTW.2010.68

[18] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. 2008.

Documenting and Automating Collateral Evolutions in Linux Device Drivers. In

Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008 (Eurosys ’08). ACM, 247–260. https://doi.org/10.1145/1352592.

1352618

[19] T. Parveen, S. Tilley, N. Daley, and P. Morales. 2009. Towards a Distributed

Execution Framework for JUnit Test Cases. In 2009 IEEE International Conference
on Software Maintenance. 425–428. https://doi.org/10.1109/ICSM.2009.5306292

[20] Debian Software Repository. 2017. Debian Buster Source Package Index [retrieved

2017-07-18]. http://ftp.debian.org/debian/dists/buster/main/source/Sources.gz

[21] Debian Wiki Team. 2018. Debian Derivatives Census. https://wiki.debian.org/

Derivatives/Census

[22] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.

Ernst, and David Notkin. 2014. Empirically Revisiting the Test Independence

Assumption. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis (ISSTA 2014). ACM Press, 385–396. https://doi.org/10.1145/

2610384.2610404

https://doi.org/10.1145/2568225.2568248
https://doi.org/10.1145/2786805.2786823
http://dl.acm.org/citation.cfm?id=3155562.3155667
http://dl.acm.org/citation.cfm?id=3155562.3155667
https://github.com/AlDanial/cloc
https://doi.org/10.1145/1134285.1134410
https://doi.org/10.1145/1134285.1134410
https://doi.org/10.1109/ICST.2018.00011
https://doi.org/10.1109/ICST.2017.51
https://doi.org/10.1145/3092703.3098222
https://doi.org/10.1109/MSR.2017.38
https://doi.org/10.1145/2771783.2771793
coccinelle.lip6.fr
https://doi.org/10.1109/QSIC.2013.57
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/1287624.1287645
https://doi.org/10.1145/1287624.1287645
https://doi.org/10.1145/2025113.2025202
https://doi.org/10.1109/ICSTW.2010.68
https://doi.org/10.1145/1352592.1352618
https://doi.org/10.1145/1352592.1352618
https://doi.org/10.1109/ICSM.2009.5306292
http://ftp.debian.org/debian/dists/buster/main/source/ Sources.gz
https://wiki.debian.org/Derivatives/Census
https://wiki.debian.org/Derivatives/Census
https://doi.org/10.1145/2610384.2610404
https://doi.org/10.1145/2610384.2610404

	Abstract
	1 Introduction
	2 Related Work
	3 Empirical Study: C Software in Debian Buster
	3.1 Programming Languages in Debian
	3.2 Test Frameworks
	3.3 Test Parallelization
	3.4 Threats to Validity

	4 Safe Concurrent Testing for C
	4.1 Preparation
	4.2 Detecting Potential Test Interference
	4.3 Concurrent Test Execution
	4.4 Scheduling Concurrent Test Execution

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Transmutation of Legacy Tests
	5.3 RQ2: Dependencies
	5.4 RQ3: Achieved Speed-Ups
	5.5 RQ4: Analysis Runtime Overhead and Amortization
	5.6 Threats To Validity

	6 Discussion & Lessons Learned
	7 Conclusion
	Acknowledgments
	References

