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Abstract—Software Fault Injection (SFI) is a widely used tech-
nique to experimentally assess the dependability of software
systems. To provide a comprehensive view on the dependability
of a software under test, SFI typically requires large numbers
of experiments, which leads to long test latencies. In order to
reduce the overall test duration for SFI, we propose FASTFI,
which (1) avoids redundant executions of common path pre-
fixes for faults in the same injection location, (2) avoids test
executions for faults that do not get activated, and (3) utilizes
parallel processors by executing SFI tests concurrently. FASTFI
takes patch files that specify source code mutations as an input,
conducts an automated source code analysis to identify the
function they target, and then automatically parallelizes the
execution of all mutants that target the same function. Our
evaluation of FASTFI on four PARSEC benchmarks shows a
SFI test latency reduction of up to a factor of 26.

Index Terms—Software fault injection; Parallelization; Soft-
ware testing; Efficiency; Dependability assessment

1. Introduction

Modern software stacks are increasingly complex, due
to the increasingly sophisticated application scenarios they
are used in. To cope with this increase in complexity,
many software projects re-use existing so-called “off-the-
shelf” software components. While software re-use is cost-
effective, it can pose a risk for system reliability, as even
correct software can malfunction if it is used in a different
operational environment than originally anticipated!. To test
whether software faults in some part of the software stack
are critical to its overall reliability, software fault injection
(SFI) [2]-[4] is a widely used method.

SFI creates a number of faulty software versions, executes
them, and monitors their effects on the execution environment.
How SFI generates faults is commonly specified in terms
of code patterns that are referred to as fault models (e.g.,
[5]-[8]) or mutation operators (mostly in the mutation testing
community, e.g., [9]-[11]). As these patterns can be applied
more often for larger code bases, more complex software

1. For instance, the inertial reference system that was safe for the Ariane 4
launcher turned out to be unsafe for Ariane 5, which exhibited a higher
horizontal acceleration during the first 40 seconds after lift-off [1].

yields higher numbers of faulty versions and higher numbers
of faulty versions result in longer SFI test latencies.

The most common approach to deal with the increasing
test complexity is downsampling, i.e., a reduction of the tests
to execute based on some heuristic or random sampling. Such
a reduction is obviously unsound, as it may miss relevant (i.e.,
failing) tests. We propose FASTFI as an alternative solution
that preserves soundness and reduces SFI test latencies by

1) avoiding redundant re-executions of code paths shared
between different tests,

2) reducing the number of tests with non-activated faults,
and

3) exploiting the performance speed-up potential of modern
parallel processors.

FASTFI achieves this by analyzing the faults that are created
by an existing fault injection tool, grouping them per injection
location, and generating a library of all faulty versions
that allows to integrate all faulty versions into one single
executable. The parallel execution of the different faulty
versions is managed on demand at run time by control
logic that is additionally inserted. Applying FASTFI to four
benchmarks from the PARSEC suite [12], we achieve an
SFI execution time reduction of up to a factor of 26, which
corresponds to an execution time reduction of over 6 hours
for the respective benchmark. In addition to the speed-up in
test execution, FASTFI also reduces the required build time
to generate all faulty versions by a factor up to about 14.

The remainder of the paper is structured as follows:
We discuss related work in Section 2. Section 3 introduces
FASTFI and we present our evaluation of the approach in
Section 4. Section 5 concludes the paper.

2. Related Work

FASTFI achieves higher FI test throughput (1) by test
parallelization, (2) by avoiding redundant code execution.

2.1. Work on FI Test Throughput

A number of studies have advocated the potential bene-
fits of parallelizing FI experiments [13]-[16] using virtual
machines [13], [14] or OS processes [16] to isolate the
experiments. Although virtual machines provide execution



environments with stronger isolation, the run time overheads
that virtual machines incur can cause performance interfer-
ences, which can equally distort the results of fault injection
experiments [17]. As a consequence, we chose to restrict
FASTFTI’s isolation for concurrently executing experiments
to lightweight processes.

2.2. Work on Test Parallelization

Until recently, many approaches parallelized test execu-
tions under the assumption that these tests are independent
and do not influence each other [18]-[21]. This assumption
has proven incorrect for a number of test suites [22],
[23]. Newer approaches take possible test dependencies
into consideration and use this information to determine
which tests need to execute in sequence to prevent spurious
results [24]-[26]. In FASTFI, concurrently executing program
versions do not interfere as external resources are carefully
handled by the runtime. As soon as a faulty version is selected
for execution, a new process is forked to guarantee memory
protection via address space isolation. Possible interference
on shared persistent file storage are prevented by means of
I/O redirection. Thus, the isolation across parallel SFI tests
is stronger than what is commonly assumed for parallel
correctness tests, but weaker than the state-of-the-art in
parallel fault injections to reduce the risk of performance
interference documented in [17].

2.3. Work on Avoiding Redundant Code Execution

FASTFI saves execution time by avoiding redundant
and unnecessary code executions, as we will detail in
Section 3.2.2. We are only aware of one work that makes a
similar attempt to reduce test suite execution latency. VMVM
[27] analyzes which data is modified by each individual
test case in a test suite and makes sure that the test suite
executor only resets that part of the system state between
tests, so that heavier isolation mechanisms can be avoided.
The authors report an average execution time reduction of
62 %. In contrast to VMVM, FASTFI avoids (a) the execution
of code paths that are redundant for many tests and (b) the
execution of faulty program versions, for which the fault
would not get activated. These redundancies are peculiarities
of FI tests and usually do not apply for other types of tests,
such as unit tests targeted by VMVM. FASTFI also does
not attempt to reduce isolation between tests, but utilizes
this isolation to safely execute tests concurrently to gain
additional speed-up from parallel hardware.

3. FASTFI

FASTFI reduces the execution latencies for large SFI
test suites that are commonly required for the robustness
assessment of complex software. FASTFI achieves the re-
duced execution latencies by (1) not re-executing redundant
code paths, (2) reducing the number of tests without fault
activation, and (3) parallel execution of tests.

Section 3.1 gives an overview of FASTFI and its workflow
while the following Section 3.2 details the FASTFI execution
model. Section 3.3 provides a detailed discussion of the
employed parallelization strategy and the required control
logic. Sections 3.4 and 3.5 discuss the required static
analysis and technical limitations of the approach. Section 3.6
provides a brief overview of our prototype implementation.

3.1. Overview

For SFI tests, faulty versions of a given software are gen-
erated, which are then executed separately and the outcome of
their execution is monitored. These test executions typically
require external experiment logic for controlling which faulty
versions get executed and for monitoring test outcomes.
Typical test outcomes include successful execution, execution
with error indication, and aborted (crashed) execution. Note
that each faulty version typically contains only one single
fault to allow for the isolated observation of the fault’s effects.

With FASTFI, the generated faulty versions of the
software are not built and executed separately, but they
are integrated into one test executable. For that purpose,
FASTFI groups the faulty program versions by the functions
in which the faults are injected. Each fault is then included
in the program as a faulty version of the function that it
modifies, rather than creating faulty versions of the complete
program as in existing SFI tools. Although the fault grouping
granularity could be changed from the function level to, e.g.,
basic block or even statement level, function-based grouping
appears to be the natural choice for procedural languages
and proves effective in our evaluation (see Section 4). The
FASTFI runtime controls on demand which of the integrated
faulty versions are executed once the test execution reaches
a point where a faulty function version can be selected for
execution. The executions of the different faulty versions are
isolated from each other by forking a new process for each
faulty version. The FASTFI runtime includes all control
and monitor logic needed to conduct SFI tests, i.e., no
external logic is required to conduct a full set of tests with
all generated faulty software versions.

Figure 1 provides an overview of the FASTFI tool chain
that generates a FASTFI-enabled test executable for a given
software. The FASTFI tool chain takes the original source
code and the code mutation patches from an SFI tool as
input. We use SAFE [8] as SFI tool in our evaluation, but
FASTFI is independent of the actual SFI tool used. The only
constraints are that the code patches generated by the SFI
tool modify only one source code function at a time, as
FASTFI groups faults on a per-function level, and that the
patch files adhere to the commonly used (unified) diff format
as understood by the GNU patch? tool. The FASTFI tool
then performs the following steps on the provided inputs:

1) Static source code analysis for function extraction and
fault grouping

2) Generation of a code library with all faulty function
versions

2. http://savannah.gnu.org/projects/patch
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Figure 1. Overview of the FASTFI workflow. The input is the original source code and SFI mutation patches. The final output is a FASTFI-enabled

integrated executable.
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Figure 2. Traditional Execution Model. F; denote functions and F] denote
faulty versions of a function.

Common
Prefix

3) Insertion of the FASTFI fork server control logic into
the original functions

The output is a modified version of the original source code
with the FASTFI fork server control logic inserted and a
library of all faulty function versions as well as copies of
the original, unmodified functions. The final output after the
usual software build process is the integrated FASTFI-enabled
test executable.

3.2. FASTFI Execution Model

FASTFI introduces a novel, more efficient execution
model for SFI tests that is enabled by the integration of all
faulty software versions into one integrated executable. Both
the traditional and the novel FASTFI model are discussed
and contrasted in the following.

3.2.1. Traditional Execution. In the traditional execution
model for SFI tests, each faulty software version is an
executable of its own that has to be compiled and executed
separately. Figure 2 illustrates an example for the execution of
5 tests in the form of function-level execution traces. The F;
are the functions executed. Faulty versions are marked with
prime symbols, e.g., F; denotes a faulty version of function

4 and F}’ denotes another faulty version of the same function.
Trace (a) represents the execution of the original, fault-free
software whereas traces (b) and (c) represent executions
with faulty versions of F} and traces (d) and (e) with faulty
versions of F5. Each execution trace can contain only one
faulty version of any function. However, the same faulty
version of a function can obviously be invoked more than
once during an execution. All the different traces share a
common execution prefix up to the point where a faulty
function is invoked for the first time. In the illustrated
example, F} to Fj is the common execution prefix for all 5
traces. For traces (a), (d), and (e), the common prefix is F}j
to F as the first invocation of a faulty function happens later
in the execution. After the invocation of a faulty function,
the different executions may deviate drastically depending on
the injected fault type and on whether it is activated during
execution of the faulty function, as faults may arbitrarily
change the program state. For instance in trace (c), Fg is
invoked after the fault in F)’ was activated instead of Fj
as in the fault-free execution (a) or after execution of the
faulty function F; in (b). Hence, although there is a common
execution prefix between tests, there is generally no common
postfix once a fault has been activated. However, re-executing
the common prefix for each individual test is time-consuming
redundant work that can be avoided using FASTFI as detailed
in the following section.

3.2.2. FASTFI Execution. The essential difference to the
traditional execution model is that FASTFI does not re-
execute the common execution prefixes for all faulty versions
and selects the faulty versions to be executed on demand
during runtime. The FASTFI execution model is enabled
by the integration of all faulty versions into one executable.
Figure 3 illustrates an example for the execution of 7 tests as
function-level execution traces similar to the illustration for
the traditional model in Figure 2. The common prefix F} to
F3 is only executed once in this model by the master process,
which is represented by the leftmost execution trace. The
master process controls the execution of the faulty versions
but never executes a faulty version of any function itself.
Instead the master process creates, i.e., forks, (illustrated by
dashed arrows) new child processes that execute the faulty
versions on its behalf. Each faulty version is executed in
its own process. In the example, once the master execution
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Figure 3. FASTFI Execution Model. F; denote functions and F/ denote
faulty versions of a function. Dashed arrows represent process forks.

reaches F}, for which three faulty versions exist, the FASTFI
runtime forks a new process before the faulty version Fy is
invoked. Since the fork system call creates an exact copy
of the calling process, the new process starts its execution
right were the master process called fork and invokes
Fj. Because F; now executes in its own process, it cannot
interfere with the execution of the master process. Both
processes are isolated from each other by means of operating
system process isolation, which, for instance, guarantees
memory isolation such that the fault executing child process
cannot write to the master process’ memory. However, there
is still the possibility of interference via external resources
that are not covered by OS process isolation such as the
shared file system. Therefore, the FASTFI runtime does not
only perform a fork but also takes actions to minimize
the chance for interferences via open files by file descriptor
manipulation and I/O redirection upon forking.

Once the child process that executes the faulty version
has finished, the master process either continues with the
execution of the next faulty version, if available, or proceeds
with its own fault-free execution. In the example, the master
continues with the execution of F}' and afterwards F}” in
their own processes and then proceeds in its own execution by
invoking the original F;. When the master process eventually
finishes, the master’s execution corresponds to the execution
of a fault-free software version and all faulty versions that
were reachable have been executed. Since software functions
that are not reachable during execution, for instance, if the
provided program input does not trigger all of them, are
never executed by the master process, they do not impose
additional test latencies. This is an improvement over the
traditional execution model, because it is generally not known

a priori which faulty versions are reachable during execution.

Hence, FASTFI automatically reduces the amount of faulty

F

4

fork_monitor_faulty
- T = Q
// ! \\
v~ N ~

F Vi F V2 F V3
bl
. .\. . ‘ . ./. .
\\ | //
~ \>‘\,</ -

join_master

4

fork_monitor_faulty
P RN
// ! \\
v N ~

F'¢ FY5 FY° Parallel Group 2
-

Parallel Group 1
(par_group)

{ (par_group)

/

\
\ | ’
AU
\>V</

join_master

he
!

FORIG

Figure 4. FASTFI Parallel Execution. The example illustrates the execution
of all versions of function F' using parallelism degree P, = 3 from the
perspective of the master process.

software versions to execute to the amount that is reachable
and, thereby, avoids the execution of superfluous tests.

In addition to the test latency reduction due to the efficient
execution of common prefixes and the automatic reduction
of the number of faulty versions that need to be executed,
FASTFI reduces latencies further by allowing for the parallel
execution of faulty versions of the same function. In the
example in Figure 3, all faulty versions of F; can be executed
in parallel. The same is true for F;. As faulty versions need
to be executed in their own processes in any case, there is
no additional cost associated in executing them in parallel.
The following section details the parallelization strategy
employed as well as the control logic required to implement
the FASTFI execution model and the monitoring of the child
processes executing faulty versions.

3.3. FASTFI Fork Server: Control & Monitoring
of Faulty Versions

We denote the control logic that is responsible for imple-
menting the FASTFI execution model, which we described
in the previous section, as the FASTFI fork server. The fork
server replaces the function body of all functions for which
faulty versions exist. For each such function, distinctive fork
server code is generated that controls which version gets
executed and which degree of parallelism is employed.

3.3.1. Parallelization Strategy. FASTFI parallelizes the
execution of faulty versions by grouping all versions of



each function into groups of size P, where P, denotes
the degree of parallelism used, i.e., the number of faulty
versions that may execute in parallel. P, is a runtime
parameter that can be chosen by the user for each run of the
integrated FASTFI executable. Each of the parallel groups
is executed concurrently by forking all P, versions at once.
Before executing the next group, the previous group has to
finish. Figure 4 illustrates an example for the execution of
some function F', which is executed with parallelism degree
P,, = 3. Once function F' is invoked by the master process for
the first time, all its versions need to be executed before the
master process can eventually execute the fault-free version
FORIG Hence, the master executes all parallel groups for
F sequentially until all groups have been executed. However,
the members of each group are executed in parallel.

The faulty version groups are generated by dividing the
list of all versions into consecutive non-overlapping chunks
of size P,. The last group generated may be smaller than
P, if the number of versions is not evenly divisible by
P,. The total execution time of all faulty versions of a
function is determined by the longest execution times among
the versions executed within each parallel group. The total
execution time is minimized if all members of a group have
similar execution times. Therefore, the list of all versions
should ideally be ordered according to expected execution
times before chunking. Since this information is generally
not know ahead of time, i.e., before actual execution, we
order the version list according to the mutation operators
that were applied to generate the faulty versions. In our
experience, faulty versions that have been generated by the
same mutation operators often show a tendency to result in
similar execution times.

3.3.2. Control Logic. The FASTFI fork server control logic
replaces the function body of each function for which faulty
versions exist. The original function versions are saved in the
version library for each function and can still be invoked by

both the master process as well as fault executing processes.

The listing in Figure 5 provides a simplified description
of the FASTFI fork server logic for some function foo
in the form of C-like pseudo code. The fork server logic
starts in lines 2 to 5 by verifying if the FASTFI execution
model should be used or if the user requested a traditional
execution in which only one version, which is chosen by
the user, gets executed. Both the execution mode and the
requested version to execute are runtime parameters that
can be configured by the user upon each execution of the
integrated FASTFI executable. This feature allows testers to
investigate the behavior of individual faulty versions in detail
without the overhead of re-compilation. In the traditional
execution mode (discussed in Section 3.2.1), there is no
distinction between a master and a fault executing process
and no integrated monitoring is in place. In order to actually
invoke a requested function version, the version is looked
up in the version library and called dynamically as shown
in lines 3 and 4.

The FASTFI execution model is implemented by the
logic in lines 6 to 22. The logic has to distinguish between

| ret_type foo(args) {

2 if (in_single_version_mode) {

3 return call_version(

4 foo, args, requested_version);

5}

6 if (forked) { // in faulty execution (1)

7 if (is_active (foo))

8 return call_version (foo, args, CUR_ACT);
9

else
10 return call_version (foo, args, ORIG);
11 } else if (!forked && already_done(foo)) {
12 // master: all versions done (2)
13 return call_version(foo, args, ORIG);
14 } else {
15 // master: exec faulty versions (3)
16 for (par_group in parallel_groups (foo)) {
17 fork_monitor_faulty (par_group);
18 join_master (par_group) ;
19 }
20 set_already_done (foo) ;
21 return call_version(foo, args, ORIG);
22 }
23 }
24

25 ret_type fork_monitor_faulty (par_group) {
26 for (cur_version in par_group) {

27 if (fork() == MONITOR) {

28 if (fork () == MUTANT) {

29 // run faulty version

30 forked = true;

31 CUR_ACT = cur_version;

32 setup_env () ;

33 return call_version(

34 foo, args, CUR_ACT);

35 } else {

36 // monitor faulty version
37 results = observe_wait (cur_version);
38 log (results);

39 exit_monitor();

40 }

41 }

42 }

43 '}

Figure 5. Pseudo Code of the FASTFI Fork Server Control and Monitor
Logic

three execution states as the master and all forked processes
share the same code:

(1) in fault executing process (lines 6 to 10),

(2) in master process after all faulty function versions have
been executed (lines 11 to 13), and

(3) in master process upon the first function invocation
(lines 14 to 22).

In state 1, the invocation of the correct version within a fault
executing process is implemented; in state 2, the invocation
of only the original, fault-free versions is guaranteed for the
master process; in state 3, the actual selection and forking
of faulty versions takes place.

In state 1, the logic has to distinguish whether a faulty
version of the function (foo in the example) is active in the
current process (line 7). If so, the correct faulty version from
the library is invoked; if not, the original version is called.
This guarantees that each fault executing process executes
only one faulty version of any function.



State 3 corresponds to the situation exemplified in Fig-
ure 4 and discussed in Section 3.3.1, i.e., the actual forking of
the parallel version groups happens here. The master process
iterates over all version groups par_group (lines 16 to 19)
and invokes the helper function fork_monitor_faulty
for each of them, resulting in the execution of the faulty
versions. Each loop iteration waits at the end until the
execution of the current group finishes before starting the
next iteration. After all faulty versions have been executed,
the master process marks the function as done (line 20) to
prevent redundant re-executions. As last step, the original
function version is invoked (line 21) which finishes the fork
server execution and advances the fault-free execution of the
master process.

The actual forking logic is implemented in
fork_monitor_faulty (lines 25 to 43). The function
iterates over all P, members cur_version of the
current version group par_group. For each version
cur_version, two processes, MONITOR and MUTANT,
are created via fork calls. The MONITOR process, which
has not been discussed so far, is required to perform reliable
monitoring of the fault executing process. This monitoring
needs to occur in a separate process since the fault executing
process itself may behave erratically and, for instance, crash
or hang indefinitely. The MONITOR process is created first
(line 27) such that the MUTANT process becomes its child
(line 28). Therefore, MONITOR can exercise process control
over MUTANT. For instance, it can terminate MUTANT and
it can observe crashes and exits of MUTANT. The MONITOR
logic is shown in lines 36 to 39. MONITOR waits until the
MUTANT process, which executes cur_version, finishes
execution, or terminates it if execution takes longer than a
user-specified timeout to ensure progress, fetches observed
results and logs them for later analysis.

The MUTANT control logic is shown in lines 29 to 34.
First, MUTANT marks itself as fault executing process
(line 30) and remembers which version it is supposed to
execute (line 31). Next, it performs additional environment
setup steps (line 32) such as I/O redirection. As last step,
MUTANT finally invokes the faulty function version for the
first time (line 33). At this point, MUTANT continues with the
independent execution using the faulty version CUR_ACT
upon each function invocation (foo in this example).

3.4. Static Analysis & Version Library Generation

FASTFI requires knowledge about the static structure
of both the input source code as well as the SFI mutation
patches in order to be able to correctly replace function
bodies, generate the FASTFI fork server code, and to generate
the library of faulty versions. To that end, FASTFI relies on
an existing static analysis framework to extract the necessary
information about all functions present in the input source
code. FASTFI requires information about where functions
reside in the source code, their function signature, and
function parameter names. In a static analysis step, FASTFI
builds an analysis database with the required information for
later use in the workflow as described in Section 3.1.

The mutation patches are parsed and information about
modified source code lines are extracted. This information is
then used to search the analysis database to match mutation
patches to the functions that they mutate, i.e., the faults are
grouped according to the source code function where they
will reside. Once the grouping is complete, FASTFI generates
the library of faulty source code functions. For that purpose,
each mutation patch is applied to the source code and the
resulting faulty function is extracted, given a unique name,
and added to the library. After each patch application, the
original source version is restored to produce faulty versions
that contain exactly one fault. As a final step, an unmodified
version of each function is added to the library as well.

3.5. Limitations

We discuss technical limitations that may impede the
application of FASTFI in the following. Since FASTFI relies
on the fork system call as specified by POSIX, FASTFI can
be used only in environments where fork or a compatible
system call is available. Moreover, an invocation of fork
must leave both the calling and the created child process
in a well defined state from which independent executions
of parent and child processes are possible. This is not the
case for multi-threaded processes as only the calling thread
survives a fork invocation and the created process has only
limited abilities to invoke further system services.

Software may behave differently under the FASTFI exe-
cution model under certain circumstances. If the software’s
behavior depends on explicit process attributes, such as the
process identifier (PID), its behavior may change as FASTFI
creates new processes with possibly changed attributes
(e.g., different PIDs). Software that relies on explicit time
information, e.g, by using timers or explicit time duration,
may behave differently as FASTFI effectively pauses the
execution of the master process while faulty versions are
executed. Moreover, software that contains severe defects
such as invalid memory accesses in the original program
may have different effects in FASTFI as the memory layout
between the generated executables differs.

FASTFI isolates the execution of faulty software versions
by means of OS process isolation. This leaves external
resources that are not covered by process isolation as possible
sources of interferences. While FASTFI handles open files,
additional measures need to be taken to also handle hardware
devices or network connections.

3.6. Implementation

We developed a prototype of FASTFI for software that
is written in the C language and executes in a POSIX
compliant environment. Our prototype relies on Coccinelle®
as static analysis framework for C source code. It is mainly
developed in Python and can, as the evaluation in Section 4
demonstrates, efficiently handle real world software despite
the fact that it is not yet optimized for performance.

3. http://coccinelle.lip6.fr



Table 1. OVERVIEW OF THE PARSEC APPLICATIONS USED IN THE

EVALUATION.
Application Description Mutants
blackscholes  Numerical financial computations 416
dedup Data stream compression 662
ferret Content-based image similarity search 6157
X264 Video stream encoding and compres- 13368

sion

Please note that, although our prototype currently only
supports software written in C, FASTFI itself is not limited
to C software. Software written in other languages, such as
C++ or Rust, can also benefit from FASTFI.

4. Evaluation

In order to evaluate the applicability and performance of
FASTFI for real world software, we investigate the following
research questions using our prototype implementation for
C software.

RQ 1 How much can FASTFI reduce overall test execution
latencies for sequential SFI tests?

RQ 2 How does the execution speedup achieved by FASTFI
develop with increasing degree of parallelism?

RQ 3 Do SFI test results remain stable across runs with
increasing degree of parallelism when using FASTFI?

RQ 4 How large is the build time overhead of integrated
FASTFI builds compared to traditional separate
builds?

4.1. Experimental Setup

Execution Environment. We conduct our experiments on a
machine with up to date Debian Buster (Linux 4.16, x86_64)
as operating system. The machine is equipped with an AMD
Ryzen 7 CPU with 8 physical and 16 logical cores running
at 3.40 GHz, 32 GiB of main memory, and a 1TiB SSD.

Evaluation Targets. We apply FASTFI to four applica-
tions from the widely used PARSEC benchmark suite 3.0*
provided by Princeton University [12]. Table 1 gives a
brief overview of the selected applications. We selected
these four applications since they are representative for
different application domains and they are written in C,
which our current prototype implementation targets. We
use the “simmedium” workloads that ship with PARSEC to
exercise the applications. These workloads are of a moderate
size, which allows us to execute our experiments within a
reasonable time frame (within days).

Execution Steps. To investigate our research questions, we
take the following steps for all selected evaluation targets.

We first apply the SAFE software fault injection tool [8]
to generate mutation patches. SAFE applies 13 different

4. http://parsec.cs.princeton.edu/parsec3-doc.htm
5. http://wpage.unina.it/roberto.natella/tools.html

mutation operators to generate representative software faults.
An overview of the generated mutants is given in Table 1.
Each mutant creates a faulty software version that needs to
be executed for SFI tests.

Next, we perform the static analysis of the input source
code using Coccinelle to generate the analysis database as
described in Section 3.4. We then analyze the generated mu-
tation patches and perform the function level fault grouping.
Afterwards, we generate the library of faulty versions by
applying the mutation patches and extracting the resulting
modified functions as well as saving the original, unmodified
function version. Then, the original function bodies are
replaced with the generated FASTFI fork server code as
described in Section 3.3. As final step, we build the integrated
executable with the PARSEC default build configuration
“gcc-serial” that results in non-multithreaded executables.

We perform our experiments using the generated inte-
grated executables in our execution environment. We repeat
each experiment 3 times and report averages.

4.2. RQ1: Sequential Speedup

To determine the impact of FASTFI on sequential SFI
execution latency, we compare the performance of FASTFI
without any parallelization (P, = 1) to the performance
achieved by separately executing each faulty version. For
the separate executions baseline, we make use of our single
version mode as described in Section 3.3.2, i.e., we still use
the integrated executables generated by FASTFI. However,
the faulty version to execute is picked prior to execution, and
only one faulty version is chosen for each program execution.
Consequently, executions in this mode do not benefit from
the ability of FASTFI to avoid redundant code execution and
the execution flow corresponds to a traditional SFI execution
model as described in Section 3.2.1.

As shown in the leftmost column of Figure 6, FASTFI
can achieve speedup factors from 1.3 to 3.6, depending
on the benchmark. In the absence of parallelization, these
speedups are the result of avoiding redundant code exe-
cution. FASTFI avoids redundant code execution in two
ways: (1) By efficiently executing common prefixes and
(2) by automatically reducing the number of faulty versions
that need to be executed. The reduction in the number of
faulty versions is shown in Figure 7. For three out of four
benchmarks, FASTFI automatically executes fewer faulty
versions than the traditional execution model as unreachable
faulty versions are not executed. The maximum reduction
can be observed for ferret where FASTFI reduces the
number of faulty versions down to 47.9 %. This substantial
reduction is also reflected in ferret’s speedup factor
of 3.6. Moreover, despite executing the same number of
faulty versions, FASTFI achieves a speedup of 1.3 over
the traditional execution model for the blackscholes
benchmark. This reduction is the effect of FASTFI’s efficient
common prefix execution.
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Figure 7. Percentage of faulty versions executed during (sequential) FASTFI
execution. The reduction is due to FASTFI’s ability to avoid execution of
unreachable versions.

4.3. RQ 2: Parallel Speedup

To investigate how the speedup achieved by FASTFI
develops with increasing degrees of execution parallelism, we
configure FASTFI to run up to 32 faulty versions in parallel.
Note that changing the degree of parallelism is handled by the
FASTFI runtime code and does not require recompilation (see
Section 3.3.2). The speedups relative to traditional execution
for the different degrees of execution parallelism are shown
in Figure 6. FASTFI achieves increasing speedups with an
increasing degree of parallelism. When executing 16 faulty
versions in parallel, which corresponds to the number of log-
ical cores on the machine we use for our evaluation, FASTFI
achieves a speedup of 7.6 to 20.1 compared to the traditional
execution model. Relative to FASTFI execution without
parallelism, the speedups range from 5.0 to 8.4. When going
beyond the number of available cores by executing 32 faulty
versions in parallel, FASTFI achieves speedups ranging
from 9.8 to 26.0 relative to the traditional execution model,
or 6.5 to 8.8 over FASTFI execution without parallelism.
These results show that parallel FASTFI execution enables
significant speedups over traditional SFI execution as well as
over FASTFI execution without parallelization. By optimizing
the FASTFI fork server architecture to allow for dynamic

parallel groups (see Section 3.3), we believe that even higher
speedups can be achieved.

4.4. RQ 3: SFI Result Stability

To determine whether increasing degrees of parallelism
affect SFI result stability, we configure FASTFI to run up to
32 faulty versions in parallel and compare SFI test outcomes.
We consider the common four classes of SFI test outcomes:
“Crash”: application crash, “Error”: termination with error
indication, “Success”: termination without error indication,
and “Timeout”: application did not finish in time. From an
application perspective, these failure modes match the crash
and hang oracles that are most commonly applied for SFI and
robustness tests [28]. We set the timeout values to 3 times
the duration of a fault-free execution for each benchmark
to account for increased individual execution latencies in
parallel testing [17].

Figure 8 shows the SFI test outcomes for different degrees
of parallelism. The rightmost columns labeled with “s” show
results from the sequential single version execution mode that
corresponds to a traditional execution. The higher count of
successful tests for this mode is due to the fact that all faulty
versions are executed independent of whether the faults are
reachable. Such “dead” versions always result in success as
their execution always corresponds to a fault-free execution.
Since FASTFI avoids the execution of such “dead” versions,
the success count for FASTFI runs is lower.

For all benchmarks, the results are stable for up to
16 parallel executions. When executing 32 faulty versions
in parallel, results remain stable for the blackscholes
benchmark. For the other three benchmarks, the number of
crashes and errors remain stable but the number of successful
tests drops and the number of timeouts increases compared
to lower degrees of parallelism. Moreover, for the x264
benchmark, the number of successful executions and timeouts
varies between test runs at this degree of parallelism. As this
effect only occurs when running at a degree of parallelism
well in excess of the available computational resources on the
machine we use for our experiments, we expect that spurious
timeouts at this degree of parallelism can be avoided by
choosing a higher timeout threshold, at the cost of increased
SFI test latency (cf. [17]).

4.5. RQ4: Build Time Overhead

To investigate how large the overhead for creating
integrated FASTFI executables is, we build the same set
of faulty versions twice: once with FASTFI and once by
building separate executables for each faulty version. In the
latter case, we utilize incremental compilation. Therefore, for
each faulty version, one compilation unit is recompiled and
the final executable is linked. This is a typical approach for
building faulty program versions for SFI tests. User times
for building with FASTFI relative to the traditional model
are shown in Figure 9. Note that the recorded times include
the application of the mutation patches and, for FASTFI,
code generation. FASTFI offers substantially lower build
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Figure 9. FASTFI user build times relative to user build times for separate
executables.

times compared to the traditional approach: FASTFI builds
take between 7.2 % and 20.8 % of the user time required
for building separate executables for each faulty version.
This corresponds to a speedup between 4.8 and 13.9. For
x264, this speedup reduces the build time from almost 6 h
to 35min. The reason for this advantage is that FASTFI
avoids redundant recompilation: The traditional approach
incurs substantial overhead due to always recompiling entire
compilation units, even though only a single function differs
from the fault-free version. Since FASTFI works at function
granularity, it avoids this overhead by design.

4.6. Discussion

Our investigation of FASTFI with regard to our four
research questions shows that FASTFI can be applied to real
world software and it is effective at avoiding redundant code
re-execution, enabling sequential speedups of up to 3.6 over
a traditional execution model. Our results also show that
FASTFI enables further speedups through parallelization,
which can be even further improved by using different
parallelization strategies than the one implemented in our
prototype. FASTFI therefore enables the effective utilization

of modern parallel computing hardware for SFI tests. We
find that neither sequential nor parallel FASTFI execution
adversely affects SFI test result stability unless the degree
of parallelism exceeds the available computational resources,
in which case spurious timeouts commonly arise [17]. Such
issues can be addressed by adjusting timeout thresholds at
the cost of potentially higher execution latencies. Finally, our
investigation shows that FASTFI enables faster compilation
of faulty versions due to the finer, function-level granularity
our approach offers. Overall FASTFI reduces latencies for
both the compilation of faulty software versions and their
execution.

5. Conclusion and Future Work

In this paper, we introduced FASTFI, a novel approach
for accelerating SFI testing by (1) avoiding redundant
code execution, (2) avoiding the execution of “dead” faulty
versions, (3) parallelization of test execution, and (4) reducing
build times for faulty versions. Based on an evaluation of
FASTFI on four widely used benchmark programs from
the PARSEC suite, we conclude that FASTFI is applicable
to real world software from various application domains,
enables both sequential execution speedup as well as effective
parallelization, and substantially reduces build times.

FASTFI achieves speedups of up to 3.6 in sequential
execution and up to 26 in parallel execution. The number of
executed faulty versions is reduced by up to 52.1 %. FASTFI
can reduce build times to as little as 7.2 % of conventional
SFI approaches. FASTFI achieves these improvements while
maintaining result stability and is therefore a viable approach
for reducing SFI test latencies in real world settings.

In the future, we plan to extend this work in several
directions. Different parallelization strategies, such as re-
placing the fixed chunks currently used by FASTFI with
work stealing, may result in improved CPU utilization and a
further reduction in SFI test latencies. Our current prototype
is limited to programs written in C and we are planning to



support C++ as well. Finally, the FASTFI execution model
can be applied to other fault injection techniques beyond
code mutations, such as interface error injections.
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