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How to Fillet a Penguin:
Runtime Data Driven Partitioning of Linux Code

Oliver Schwahn, Stefan Winter, Nicolas Coppik, and Neeraj Suri

Abstract—In many modern operating systems (OSs), there exists no isolation between different kernel components, i.e., the failure of
one component can affect the whole kernel. While microkernel OSs introduce address space separation for large parts of the OS, their
improved fault isolation comes at the cost of performance. Despite significant improvements in modern microkernels, monolithic OSs like
Linux are still prevalent in many systems. To achieve fault isolation in addition to high performance and code reuse in these systems,
approaches to move only fractions of kernel code into user mode have been proposed. These approaches solely rely on static code
analyses for deciding which code to isolate, neglecting dynamic properties like invocation frequencies.
We propose to augment static code analyses with runtime data to achieve better estimates of dynamic properties for common case
operation. We assess the impact of runtime data on the decision what code to isolate and the impact of that decision on the performance
of such “microkernelized” systems. We extend an existing tool chain to implement automated code partitioning for existing monolithic
kernel code and validate our approach in a case study of two widely used Linux device drivers and a file system.

Index Terms—Operating Systems, Device Driver Isolation, Software Partitioning, Dynamic Program Analysis
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1 INTRODUCTION

MODERN operating system (OS) implementations either
follow a monolithic or a microkernel architecture.

Microkernel OSs strive to execute a bare minimum of their
overall code base in privileged kernel mode [1]. Code that
handles resource management, for instance, is separated
in code that implements the actual resource (de-)allocation
mechanism and code that implements the resource (de-)allo-
cation policy. In microkernel OSs, only the former executes in
kernel mode, which is sufficient to maintain non-interference
of processes across shared resources. Monolithic OSs, on the
contrary, execute a much larger fraction of their code base in
kernel mode.

Traditionally, microkernel OSs were used for applications
with high reliability requirements for two reasons. First, a
small kernel code base is easier to understand and analyze, as
the formal verification of the seL4 microkernel system demon-
strates [2], [3]. Second, the effects of individual component
failures at run time are limited to the respective components
due to the fine-grained isolation among system components,
which facilitates the implementation of sophisticated failover
mechanisms (e.g., [4], [5], [6]).

Despite their reliability advantages over monolithic OSs,
microkernels are seldom found in mobile, desktop, or server
systems, even though reliability is a key concern for the latter.
The reason for the dominance of monolithic systems in these
areas lies in the poor IPC performance of early microkernel
implementations, which led to significant overheads in
operation. Although modern microkernels, such as the L4
family, feature highly optimized IPC implementations that
reduce such overheads to a negligible fraction, their adoption
is still mostly limited to embedded systems.
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Ironically, the reason behind the predominance of mono-
lithic OSs in commodity systems seems to be what is
generally perceived as their major drawback. They execute
large and complex code bases in privileged kernel mode
within a single address space. For instance, Linux 4.7
comprised almost 22 million lines of code in July 2016 [7].
Reliable figures are difficult to obtain for proprietary OSs,
but estimates for the Windows OS family are significantly
higher [8].

On the one hand, this massive complexity entails severe
threats to the reliability of OSs. As complex kernel code
is difficult to develop and maintain, it is likely to contain
software defects. Moreover, defects are likely to escape
testing and other quality assurance measures since existing
testing and verification techniques do not scale well to
complex software. Such residual defects in kernel code have a
high impact on system reliability if they get triggered during
execution in privileged mode because there is no limit to
the degree by which they can affect processes and system
services. The risks of high software complexity have resulted
in the proposal of small trusted/reliable computing base
architectures (e.g., [2], [9], [10], [11]) for systems with high
security or dependability requirements.

On the other hand, a large existing code base (and
developer community that maintains it) also implies that
the large amount of functionality it implements can be
reused at low effort. Therefore, convenience has outweighed
performance as a criterion for adopting a popular monolithic
commodity OS over a microkernel OS. Early approaches
like SawMill Linux [12] proposed to address this problem
by manually integrating parts of Linux into the Exokernel
and L4 OSs. Unfortunately, porting components across
OSs is not a one-time effort and requires repeated manual
adjustment as the forked code branches evolve. Ganapathy
et al. developed an approach that addresses this problem
by automatically splitting the kernel code of Linux at a per
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function granularity into user and kernel mode portions [13].
The splitting is guided by a static set of rules that determine
which code to allocate to which execution mode. While
such automated splitting approaches cannot be expected
to achieve all advantages of real microkernel OSs to the
same degree, they still provide better isolation compared
to a fully monolithic kernel without constraining code
reuse. Unfortunately, the automated synchronization of data
structures, locks, etc. between the user and kernel mode
portions can entail performance overheads that exceed IPC
induced overheads of microkernels by far.

Intuitively, these overheads highly depend on the kernel
code partitioning, i.e., the decision which OS functions to
execute in which mode. Moreover, the overheads depend
on the system’s application context. Function invocations
across domains (from kernel to user mode or vice versa)
entail performance overheads per invocation, making the
performance of a partitioning dependent on dynamic system
properties induced by the system’s workload. The more
frequent cross-domain invocations caused by a workload,
the higher the overheads. Our paper addresses the central
question how to achieve a favorable partitioning that minimizes
both performance overheads and the amount of code executing in
kernel mode at the same time.

Fig. 1 gives an overview of our proposed approach. We
start from the source code of some kernel component (e.g., a
driver) as input and produce a split mode version as output
that is tailored to the user’s application scenario. First, we
extract static code properties, such as the static call graph, in
a static analysis phase. We then generate an instrumented
component version which is used to collect the dynamic
usage profile under a typical workload. We then combine the
statically and dynamically obtained data to formulate and
solve the kernel component partitioning as 0-1 integer linear
programming (ILP) problem. Our ILP formulation allows
to fine-tune the trade-off between imposed overhead and
amount of code that remains in the kernel. As final step, we
synthesize a split mode version of the original component.
The generated code for the split version is not intended
for manual inspection or modification. Code maintenance,
debugging, and evolution should still happen on the original
code. Re-partitioning of evolved code is a simple mechanical
task with our automated partitioning tool chain.

Our paper makes the following contributions:
• We propose to combine static and dynamic analyses

to accurately assess the performance costs that moving
kernel code to user mode would cause. Our assessment
is automated and works on current Linux code.

• Using the dynamically recorded cost data, we model
user/kernel mode partitioning of existing kernel code as
0-1 ILP problem and use the GNU Linear Programming
Kit (GLPK) [14] to obtain a solution that achieves the
desired trade-off between performance overhead and
the size of the kernel mode code portion for improved
isolation.

• We validate the utility of our approach by profiling
and partitioning two device drivers and a file system
in a case study and demonstrate the adaptability of the
obtained partitioning to user requirements.

After a discussion of related work in Section 2, we
introduce our system model in Section 3 and detail our

Fig. 1. Overview of the partitioning process, exemplified for a device
driver. The input is the original driver source code and the output is a split
mode version of the driver that implements the isolation/performance
trade-off suitable for the user’s application scenario.

profiling-based partitioning approach in Section 4. In Sec-
tion 5, we demonstrate its utility by applying it to Linux
kernel modules and compare the obtained partitionings
and their performance characteristics. Section 6 summarizes
insights gained from the results of our study and the required
implementation work. Section 7 concludes the paper.

2 RELATED WORK

Software partitioning, also compartmentalization or disaggre-
gation, is an important task in iterative software development
and maintenance. Surprisingly, most research in this field
has focused on the design of isolation mechanisms (i.e., how
to isolate), whereas little work covers the actual partitioning
process (i.e., what to isolate). Software partitioning has been
proposed for a number of different isolation problems.

2.1 Privilege Separation

Privilege separation is a mechanism to prevent privilege
escalation [15], i.e., the unauthorized acquisition of privileges
through vulnerable programs. Privilege escalation vulner-
abilities result from security-insensitive design that does
not respect the principle of least privilege [16]. In execution
environments that traditionally only support(ed) coarse
grained execution privileges and access control, such as
Unix and derivatives, implementing programs according to
this principle has been challenging. As a consequence, a
large body of legacy software does not employ newer, more
fine-grained privilege separation mechanisms (e.g., [17]).

Privilege separation partitions programs into a monitor
component, which executes privileged operations, and an
unprivileged slave component such that vulnerabilities in the
slave partition cannot lead to unauthorized execution of priv-
ileged operations. Although a large variety of mechanisms
to isolate the slave from the monitor have been proposed in
the literature [17], [18], [19], [20], [21], [22], the partitioning
into suitable compartments is usually performed manually
for few selected applications.

Privtrans [23] automates privilege separation for C pro-
grams based on user-supplied source code annotations that
mark sensitive data and functions to be encapsulated by
the monitor component. An automated data-flow analysis
determines the monitor and slave partitions by propagating
the annotations to all data and functions operating on or
derived from annotated elements.
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Wedge [24] extends the Linux kernel by several isolation
primitives to implement privilege separation. To assist
application partitioning into isolated compartments, the
authors conduct dynamic binary instrumentation to derive
interdependencies on shared memory between code blocks
and their respective access modes from execution traces.

Jain et al. observe that capabilities in Linux are too
coarse-grained to enforce the principle of least privilege for
unprivileged users [25]. As a result, policies are commonly
implemented in setuid-root binaries, a potential source of
vulnerabilities. The authors present an extension of AppAr-
mor which facilitates moving such policies to the kernel with
minimal overhead.

Liu et al. employ combined static and dynamic analysis
to automatically decompose an application into distinct
compartments to protect user-defined sensitive data, such as
private keys, from memory disclosure vulnerabilities [26].

2.2 Refactoring
Refactoring denotes the restructuring of software to improve
non-functional properties without altering its functionality
[27]. It comprises the decomposition of monolithic software
systems as well as changes in an existing modular structure.
Call graphs, module dependency graphs, or data dependency
graphs are commonly used to represent software structures
for refactoring (e.g., [28], [29], [30], [31]). Whether nodes in
such graphs should be merged, split, or remain separate
is usually decided by cohesion and coupling metrics [32]
associated with the represented software structures, either by
graph partitioning [28], [31], [33], cluster analysis [34], [35],
[36], [37], or search based techniques [38], [39], [40].

2.3 Mobile/Cloud Partitioning
In order to enable sophisticated, computationally demanding
applications to run on resource and energy constrained
mobile devices, the partitioning of such applications into
more and less demanding compartments has been proposed
in the literature [41], [42], [43]. The former is then executed
on the mobile device itself whereas the latter is executed
remotely on a server infrastructure without draining the
battery. Due to the dynamically changing operational condi-
tions of mobile devices (battery strength, bandwidth, etc.),
most approaches combine static and dynamic measures for
partitioning, similar to the approach presented in this paper.

2.4 Fault Tolerance
A large number of approaches have been proposed to
isolate critical kernel code from less critical kernel extensions,
as existing extension mechanisms were found to threaten
system stability in case of misbehaving extensions [44], [45],
[46], [47], [48], [49]. Similar to privilege separation, most
work in this field has focused on how to establish isolation
between the kernel and its extensions [50], [51], [52], [53],
[54], [55], [56], [57], [58], [59], [60], [61], but only little work
considers the problem of identifying what to isolate for
achieving improved fault tolerance at an acceptable degree
of performance degradation.

Ganapathy et al. target this question in the Microdrivers
approach [13] that proposes a split-mode driver architecture,

which supports the automated splitting of existing Linux
device drivers into user and kernel compartments. The
splitting is based on static analyses of the driver code
and a set of static rules for classifying functions as either
performance critical or uncritical. The approach has been
implemented in a tool called “Driverslicer”, a plugin for the
CIL source code transformation and analysis tool chain [62],
[63]. Renzelmann et al. extend Microdrivers to support Java
for reimplementing the user part of split device drivers [64].
Butt et al. extend the Microdrivers architecture by security
aspects using dynamically inferred likely data structure
invariants to ensure kernel data structure integrity when
data is transferred from the user part to the kernel part [65].

In our paper, we demonstrate that the addition of runtime
information on performance measures significantly improves
the partitioning by avoiding static worst-case approxima-
tions. We use this information to state partitioning as a 0-1
ILP problem, for which we obtain an optimal solution with
respect to a given isolation/performance trade-off.

3 SYSTEM MODEL

We consider the problem of bi-partitioning a kernel software
component S (e.g., kernel modules) into a user mode fraction
Sυ and a kernel mode fraction Sκ for split-mode operation
to reduce kernel code size, where mode transitions occasion
a cost c. We detail our software component model, cost
model, and code size notion in the following subsections.
This provides the foundations for stating kernel/user mode
partitioning as 0-1 ILP problem in Section 4.

3.1 Software Component Model
As we target kernel code for partitioning, we assume S to
be written in a procedural language like C. In procedural
languages, a software component S comprises a finite set
of functions F (S) = {fi | i ∈ �}1. Any function fj
can be referenced by any other function fi of the same
component and we denote such references by fi  fj . Our
reference notion comprises direct (function calls) and indirect
(passing function pointers as arguments) references [66].
Using the reference relation on functions, we obtain the
call graph (F (S), R(S)), where F (S) represent vertices and
R(S) = {(a, b) ∈ F (S)× F (S) | a b} edges of the graph.

3.1.1 Kernel Interactions
As allocating functions in S that heavily interact with kernel
functions external to S to the user mode partition would
significantly affect performance, we extend our software
component model to describe such interactions. We have to
consider two cases: (1) functions in S are invoked from other
parts of the kernel not in S and (2) functions in S invoke
kernel functions external to S. Hence, we add a kernel node K
and corresponding edges for references from and to such
functions not in S to the call graph. We define the extended
call graph as

(F ′(S), R′(S)) = (F (S) ∪ {K},
R(S) ∪ {(K, f) | f ∈ Fentry(S)}

∪ {(e,K) | e ∈ Fext(S)}),

1. We do not include 0 in �. In cases that include 0, we use �0.
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where Fext(S) ⊆ F (S) is the set of functions that reference
any function declared as extern in the program code of S,
and Fentry(S) ⊆ F (S) is the set of all functions on which
the address-of operator (& in the C language) is used, i.e.,
functions potentially invoked by component-external code.
Note that K represents any function that resides within the
kernel but is external to S, including core kernel functions as
well as other in-kernel software components.

3.1.2 Data References
When loaded into memory, S resides in a memory address
space A(S) = [⊥S ,>S ] with lower and upper bound ad-
dresses⊥S ,>S ∈ �0. S’s data is contained in a finite amount
of memory allocations M(S) = {(a, l) | a ∈ A(S) ∧ l ∈ �}
of that address space, where a denotes the starting address of
an allocation and l the length of the allocated slot in bytes. No
memory allocation can exceed the address space boundaries:

∀(a, l) ∈M(S), a+ l ≤ >S
and memory allocations within an address space are disjoint:

∀(a, l), (a′, l′) ∈M(S), a < a′ ⇒ a+ l < a′.

We denote the reference (read/write access) of a function
f ∈ F ′(S) to allocated memory m ∈M(S) by f � m.

Note that interactions on shared memory are implicitly
covered by our data model, as we do not require component
address spaces to be disjoint. We assume that shared memory
across differing address spaces is mapped to the same
addresses in all address spaces and that memory allocation
lengths are also the same for shared memory.

3.1.3 Partitioning
By bi-partitioning S’s extended call graph (F ′(S), R′(S)), we
obtain two disjoint sets F (Sυ) and F (Sκ) of functions, where
functions f ∈ F (Sυ) reside in the user and functions f ∈
F (Sκ) in the kernel mode partition. Note that the kernel node
K is, per definitions, always assigned to F (Sκ). Moreover,
we obtain three disjoint sets of edges:

R(Sυ) = {(a, b) | a, b ∈ F (Sυ)} and
R(Sκ) = {(a, b) | a, b ∈ F (Sκ)}

are the sets of edges internal to the user and the kernel mode
partitions, whereas

Rcut(S
υ, Sκ) = {(a, b) ∈ R′(S) |

(a ∈ F (Sυ) ∧ b ∈ F (Sκ))
∨(a ∈ F (Sκ) ∧ b ∈ F (Sυ))}

is the set of edges cut by the partitioning, i.e., edges that
represent inter-domain function invocations. Neither nodes
nor edges are lost during partitioning. So, we define the set
of all possible partitionings of a software component S as

PS ={(F (Sυ), F (Sκ)) |
F (Sυ) ∩ F (Sκ) = ∅
∧ F (Sυ) ∪ F (Sκ) = F ′(S)

∧R(Sυ) ∪R(Sκ) ∪Rcut(Sυ, Sκ) = R′(S)}.

(1)

The cost of the cut, and thereby the performance overhead of
the partitioning, is then given by the sum of the weights of
all edges in Rcut(Sυ, Sκ) and the isolation degree of a cut is
expressed in terms of size of the Sκ partition; the smaller the

kernel components the better the isolation. We detail both
edge weights and size measures in the following.

3.2 Cost Model
To model the cost c associated with a partitioning p ∈ PS
of a component S, we first define a weight function
w : R′(S)→ � that assigns a weight to each edge of the
extended call graph. The weight represents the expected
overhead for invoking the corresponding reference as inter-
domain function call. The associated overhead results from
(a) mode switching overheads for changing the execution
mode, (b) copying function parameters and return values
between modes, and (c) synchronizing that part of the split
component’s state that is relevant to both partitions, i.e.,
memory locations m that are accessed from both partitions:

{m ∈M(S) | ∃fυ ∈ F (Sυ), fκ ∈ F (Sκ) :
fυ � m ∧ fκ � m}.

Points (b) and (c) both require copying data between
the disjoint memory allocations M(Sκ) and M(Sυ) which
imposes an overhead that depends on the amount of data to
copy. The overall weight for each edge is therefore computed
according to Eq. (2), where t ∈ �0 denotes the number of
expected invocations of reference r ∈ R′(S), b : R′(S)→ �
denotes the average number of bytes transmitted upon a
single invocation of a reference, and csys : �→ � denotes the
estimated time that mode switching and copying a number
of bytes across partition boundaries takes on system sys.
We detail the assessment of accurate edge weights using
collected runtime data in Section 4.2.

w(r) = t · csys(b(r)) (2)

The cost for a partitioning p ∈ PS is given by c : PS → �
as stated in Eq. (3), i.e., the sum of edge weights of all
cut edges. By minimizing c(p), we can find a partitioning
with minimal cut weight, i.e., a partitioning with minimal
overhead for inter-domain function calls.

c(p) =
∑

ri∈Rcut(Sυ,Sκ)

w(ri) (3)

3.3 Isolation Degree
All software components S that execute in kernel mode do
not only operate with the highest system privileges they also
share the same address space, i.e., ∀Si, Sj , A(Si) = A(Sj).
Hence, defective or malicious code within such components
could arbitrarily alter any code or data in any other kernel
components and, ultimately, in the entire system. Isolation
prevents the unintended alteration of a software component’s
data or code by another software component by enforcing
domain boundaries between components that, if at all, can
only be crossed via well defined interfaces. Intuitively, the
degree of isolation in a system is higher the more code
is executing in unprivileged user mode within a separate
address space, as this code cannot directly access data or
functionality in the kernel. We, therefore, measure the degree
of isolation by the amount of kernel code executing in user
mode, i.e., the user partition size.

To account for partition sizes, we assign all functions in
the extended call graph their source lines of code (SLOC)
count as node weight with n : F ′(S) → �0. The size of a
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partition is then given by the sum of its node weights. As
the kernel node K represents the entirety of kernel functions
external to S which, by definition, cannot be moved to the
user mode partition, we define n(K) = 0 in order to include
only component S in our size notion. Although the user
partition size is a more intuitive measure for the isolation
degree, we use the kernel partition size as a measure for
lack of isolation in the following. The formulation of both
optimization objectives, cut weight and partition size, as
values to minimize facilitates their combination in a single cost
function for optimization as we show later in Section 4.3. Due
to the constraints on the node sets of user and kernel partition
in Eq. (1), both size measures for isolation are equivalent.

We define s : PS → �0 accordingly in Eq. (4) for assign-
ing a partitioning p its lack of isolation degree. A partitioning p
with minimal s(p) has the smallest possible amount of code
residing in the kernel mode partition and, thus, the largest
possible user mode partition, i.e., the highest isolation.

s(p) =
∑

fi∈F (Sκ)

n(fi) (4)

4 RUNTIME DATA DRIVEN PARTITIONING

In order to obtain an ideal partitioning of a software compo-
nent with respect to a desired isolation/performance trade-
off according to our system model, we need to (1) perform
a static code analysis to extract the component’s call graph,
the node weights (SLOCs), and the sets of possible data
references from its program code, (2) perform a dynamic
analysis of the component to assign edge weights (expected
cross-mode invocation costs) to model the impact of parti-
tioning on our objectives, and (3) formulate our optimization
objectives and constraints as ILP problem.

To implement the approach outlined in Fig. 1, we reuse
and extend the Microdrivers framework by Ganapathy,
Renzelmann et al. [13], [64]. Originally, the framework only
supported 32 bit (x86) Linux (v2.6.18), but we updated it
to support contemporary 64 bit (x86_64) Linux versions
(v3.14+). Our approach does not require modification of
the Linux kernel beyond the component to be partitioned
and, hence, is applicable to off-the-shelf kernels. Only the
Microdrivers runtime and some parts of the tool chain may
require updates for porting the approach to other kernel
versions. We detail the individual processing steps in the
following.

4.1 Static Analyses: Call Graph and Node Weights
We largely rely on the code analysis and transformation
framework CIL [62], [63], which uses a simplified abstract
representation of C code that can be analyzed by custom
plugins written in OCaml. First, we use CIL to extract the
static call graph from the input software component by
identifying all defined functions and all function call sites.
Second, we modify the obtained call graph according to our
model and introduce the kernel node K and corresponding
edges. We handle indirect function invocations (via pointer)
by adding edges to all functions whose signatures are
compatible with the invoked function pointer type. This
over-approximation introduces a number of false positives,
i.e., edges that do not represent possible function calls

Fig. 2. Example call graph of a kernel software component S as used for
partitioning. Nodes A to F represent functions with statically determined
weights ni; edges represent possible function calls with dynamically
determined weights ei. “Kernel Node” (K in Section 3.1.1) represents all
kernel functions outside component S.

during runtime. However, we compensate for these using
the recorded runtime data from our dynamic analysis (cf.
Section 4.2). Fig. 2 illustrates a resulting call graph, including
node and edge weights.

For obtaining the node weights (ni in Fig. 2), we analyze
the software component’s preprocessed C code and count the
“physical” source lines of code (SLOC) for each function. We
adopt the common SLOC notion and only include non-blank,
non-comment lines. We implemented a Clang/LLVM based
tool for extracting accurate SLOC counts on a per function
level. We chose not to rely on CIL for this task in order not to
distort the SLOC counts through CIL’s code transformations,
which generally increase the SLOC count disproportionately.

To extract the set of possible data references for each
function, we reuse the marshaling (points-to) analysis of the
Microdrivers framework, which is implemented as part of
a CIL plugin called “Driverslicer”. This is the same analysis
that the Microdrivers framework employs for generating the
marshaling code needed for synchronizing state between the
user and kernel mode domains (see Section 3.2). The analysis
yields an over-approximation of possible data references
for each function, i.e., which data may be reachable from
which functions. The analysis relies on programmer supplied
code annotations as discussed later in Section 4.2.1. We refer
the reader to the Microdrivers publications [13], [64] for
a detailed discussion of Driverslicer’s marshaling analysis.
We use the results of this analysis in the dynamic analysis
phase for collecting runtime data as detailed in the following
section.

4.2 Dyn. Analyses: Edge Weights & Constrained Nodes
While static analyses are useful to obtain information related
to the code structure, their utility to approximate function
invocation frequencies or sizes of (dynamic) data structures is
limited. For instance, invocation frequencies for function calls
inside a loop that depends on input data can only be sensibly
estimated by a dynamic analysis; the same is true for estimat-
ing the length/size of linked data structures such as lists or
buffers whose size depends on input data. We compensate
for this limitation by augmenting the statically obtained
structure (call graph and node weights) with data from
dynamic profiling. For edge weights, relying on recorded
data from dynamic profiling yields more accurate results
than static over-approximations, as long as the workload
used to conduct the profiling is comparable to the system
load encountered during actual operation.
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Fig. 3. Dynamic analysis and ILP steps in the partitioning process. An
instrumented version of the original kernel module is built and executed
under a given workload. The collected runtime profile is used to determine
the edge weights in our graph model that is used for the ILP-based
partitioning, which assigns all functions to either kernel or user mode.

4.2.1 Edge Instrumentation

For collecting the data needed to compute the edge weights
(wi in Fig. 2) according to our weight function w(r) (cf.
Eq. (2)), we instrument the software component S and
execute it to capture its dynamic behavior under a given
workload. A general overview of the dynamic analysis steps
is given in the left part of Fig. 3.

We utilize the statically obtained call graph to identify
relevant code locations for instrumentation. To collect data
for all call graph edges that start in a node other than the
kernel node K, i.e., edges (fi, fj) ∈ R′(S), fi 6= K, we
instrument all function call sites within S. For entry edges
(fi, fj) ∈ R′(S), fi = K ∧ fj ∈ Fentry(S), the call sites are
external to S. Hence, we instrument the function bodies of
the target functions fj for these edges. For functions that can
be invoked from within S as well as from K, we correct the
collected entry edge data in a postprocessing step to avoid
false accounting for entry edges.

We insert code at the above described code locations to
record per edge: (i) the number of edge activations (function
invocation frequency) (t in Eq. (2)), (ii) the estimated data
amount that would be transmitted between functions in case
of an inter-domain call as arguments and return values (an
addend in the calculation of b in Eq. (2)), (iii) the estimated
data amount for the synchronization of global data accessible
from caller and callee (also contributing to b), and (iv) the
execution context in which the call occurs. Information on the
execution context is used to identify constrained nodes, i.e.,
nodes that cannot be moved to user mode, as discussed later
in Section 4.2.2.

For the instrumentation, we employ aspect-oriented pro-
gramming [67] techniques and generate the instrumentation
code as separate C source code with our code generator tool,
which is implemented as a CIL plugin. We use the AspeCt-
oriented C compiler [68] to insert the instrumentation code
into the component during the build process. Aspect-oriented
programming has the advantage that the instrumentation
code is written in the same language as the code that is being
instrumented, while both can be maintained as separate
modules.

The inserted code implements a dynamic size estima-
tion by walking through data structures reachable from
function parameters, global variables, and return values,
and summing up their sizes. Linked data structures and

heap allocated structures are handled correctly by following
pointers and interpreting pointer targets according to the
pointed-to data type. The required data type information for
this estimation technique is obtained by reusing the points-to
data from the Microdrivers marshaling analysis. The analysis
relies on programmer supplied annotations to fill the gaps
in the data type information inherent in the C language. For
instance, annotations are required to resolve void pointers
to actual types or to specify the length of dynamically
allocated buffers. Effectively, we are refining the static data
type based overestimation of reachable data structures that
the Microdrivers analysis provides using actual data values
observed during runtime. For instance, if we observe a
NULL pointer in a data structure, we do not consider the
pointer target’s data type for size estimation. The described
approach is tailored for use with the Microdrivers framework.
If another framework is selected to implement the split mode
operation, the size estimation has to be adapted to reflect the
data synchronization approach of that framework.

Using the recorded invocation frequencies and data
transmission estimates from the dynamic analysis, we can
derive the expected performance overhead that cutting edges
in R′(S) implies. As such overhead differs on different
hardware platforms (and also with different frameworks
used for splitting), we express the actual cost as a function
csys of the amount of data to be copied. To determine csys, we
implemented a kernel module for conducting measurements
on the target platform, where the split mode component
should ultimately execute. The module measures and records
the overhead that the transfer of different data amounts
causes in inter-domain function invocations. We fit a function
onto the recorded data and use it to estimate the overhead
for the average data sizes recorded during profiling. This
completes the information required for calculating edge
weights according to Eq. (2): t is the number of observed edge
activations, csys(x) is the fitted platform dependent function,
and b(r) is the average number of bytes transmitted.

4.2.2 Constrained nodes
Due to the structure of commodity OSs, and in particular
Linux, there are functions (nodes) that have to remain in
the kernel partition. The auxiliary node K, representing all
functions external to S, must remain in the kernel partition by
definition. Another example are functions that may execute
in interrupt context. This is an inherent limitation of the
Microdrivers framework, which synchronizes between user
and kernel mode via blocking functions and code running in
interrupt context cannot sleep [69]. Consequently, we must
ensure that such non-movable functions remain in the kernel
partition. A number of possibilities exist to circumvent this
restriction, for instance by changing the synchronization
mechanisms in Microdrivers or by employing mechanisms
for user mode interrupt handling, such as in VFIO [70] or
the Real-Time Linux patch set [71]. As these only affect
the achievable partitioning result and not the partitioning
approach, which is the central topic of this paper, we do not
assess the impact of these options.

We denote Fmov(S) ⊆ F ′(S) as the set of movable
functions and Ffix(S) ⊆ F ′(S) as the set of functions
that are fixed in kernel mode. Both sets are disjoint and
Fmov(S)∪Ffix(S) = F ′(S). We determine Ffix(S) using the
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execution context records from profiling. Every function fi
that executed in interrupt context during profiling and
all functions fj that are reachable from fi are in Ffix(S)
(transitive closure). Note that this approach may miss some
unmovable functions if they were not observed in interrupt
context. Such false negatives can be mitigated in the resulting
partitioning, for instance, by providing alternate code paths
that allow the execution of interrupt functions within the
kernel even though they were moved into the user mode
partition. However, we did not encounter any such cases in
our case study.

A number of kernel library functions, e.g., string func-
tions like strlen, have equivalent functions in user mode
libraries. These functions can be ignored for the partitioning
as a version of them exists in both domains. We therefore
remove them from our call graph model prior to partitioning.
This is a performance optimization for the resulting split
mode components.

4.3 Partitioning as 0-1 ILP Problem

We express our partitioning problem as 0-1 ILP problem, as
illustrated in the right half in Fig. 3. In general, stating a 0-
1 ILP problem requires a set of boolean decision variables,
a linear objective function on the variables to minimize
or maximize, and a set of linear inequalities as problem
constraints over the variables. Once stated as ILP problem, a
linear solver can be used to find an optimal partitioning.

4.3.1 Decision Variables

We introduce the following two sets of boolean variables:
xi, yi ∈ {0, 1}. For each node fi in our call graph, a
corresponding variable xi assigns fi to either the user or
kernel mode partition as follows:

∀fi ∈ F ′(S), xi = 0⇔ fi ∈ F (Sυ) ∧ xi = 1⇔ fi ∈ F (Sκ)
Additionally, a variable yi determines for each corresponding
call graph edge ri whether the edge is cut by the partitioning
as follows:

∀ri ∈ R′(S), yi = 0⇔ ri /∈ Rcut ∧ yi = 1⇔ ri ∈ Rcut.

4.3.2 Problem Constraints

Since variables xi and yi are boolean, we can express
their relation using a boolean exclusive-or (XOR) operation
yk = xi ⊕ xj , where yk encodes if edges rk = (fi, fj) are
cut or not and xi, xj represent the partition assignments of
the two adjacent nodes. In order to express this relation as
a linear equation system, we define four constrains for each
edge as given in Eqs. (5) to (8). The constraints encode the
boolean truth table for XOR, one equation per row in the
truth table.

xi + xj − yk ≥ 0 (5)
xi − xj − yk ≤ 0 (6)
xj − xi − yk ≤ 0 (7)
xi + xj + yk ≤ 2 (8)

In addition to the XOR encoding, we need further
constrains to fix non-movable functions as discussed above in
the kernel partition, i.e., ∀fi ∈ Ffix(S), xi = 0. We achieve

this by adding one additional constraint of the form given in
Eq. (9) per non-movable function fi.

xi ≤ 0 (9)

4.3.3 Objective Function
We combine the cost (Eq. (3)) and size (Eq. (4)) functions
from Section 3 to a single objective function with a balance
parameter λ ∈ [0, 1]. We compute the edge weights wi
and node weights ni as described above for all functions
and edges in (F ′(S), R′(S)). We then reformulate our mini-
mization objectives c(p) and s(p) as sums over normalized
edge and node weights including decision variables as
defined in Eqs. (10) and (11). The node and edge weights are
normalized to the interval [0, 1] according to Eq. (12) which
also normalizes both equations. The normalized weights
represent percentages of the overall weight present in the
call graph.

c′(S) =
∑

ri∈R′(S)

||wi|| · yi (10)

s′(S) =
∑

fi∈F ′(S)

||ni|| · xi (11)

||ai|| =
ai∑n
j=1 aj

(12)

Combining Eqs. (10) and (11) into one linear function
with a balance parameter λ yields Eq. (13), which is our final
objective function for the ILP solver.

obj(S) = λ · c′(S) + (1− λ) · s′(S) (13)

λ allows to tune the trade-off between the expected
performance overhead and the amount of code that resides in
the user partition. Setting λ to a value near 1 prioritizes the
minimization of the performance overhead, i.e., cut cost c(p).
In this case, a resulting partitioning can be expected to have a
near zero cut cost, i.e., negligible performance overhead, but
a large kernel partition. Setting λ to a value near 0 prioritizes
the minimization of the kernel partition, i.e., SLOC count
s(p). A partitioning in this case can be expected to have a
kernel partition as small as possible, but a high performance
overhead.

5 EVALUATION

We demonstrate the utility of our approach in a case study of
three Linux kernel modules: two device drivers (psmouse
and 8139too) and one file system (romfs). For the dynamic
analyses, we expose the instrumented kernel modules to
throughput benchmarks and collect their runtime profiles.
We derive the platform overhead functions csys for our
target systems from additional measurements and use them
with the obtained profiles for generating and comparing
partitionings with different isolation/performance trade-offs.
We highlight general insights from this process that are not
limited to the scope of our case study.

5.1 Experimental Setup
We use two test machine setups for our evaluation: (1) a
physical machine setup (PHY) and (2) a virtual machine
setup (VM). Both systems run Debian 8.4 (Jessy) with Linux
3.14.65 (long-term support) in a 64-bit (x86_64) configuration.
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TABLE 1
Overview of the selected test modules. SLOC columns report original
and preprocessed line numbers. Function columns list the number of
overall and entry functions. The remaining columns list the number of

external & library functions and call sites.

SLOC Functions

Module Orig PreProc All Entry Extern Lib Calls

8139too 2087 38 042 123 35 69 19 378
psmouse 1390 20 779 59 26 42 2 214

romfs 927 27 448 42 14 25 4 96

Our physical machine is equipped with a quad-core Intel i7-
4790 CPU @ 3.6GHz, 16GiB of RAM, a 500GB SSD, and a
200GB HDD. Our virtual system emulates a dual-core CPU
and 1GiB of RAM. As virtualization platform, we employ
QEMU/KVM 2.1.2 using the just described physical machine
as host. Note that we use the VM setup only for psmouse
experiments as we rely on QEMU’s ability to emulate mouse
events. The HDD is used for romfs experiments.

5.1.1 Test Module Selection

To demonstrate the applicability of our approach to general
in-kernel components, we select kernel modules that uti-
lize distinct kernel interfaces and exhibit different runtime
characteristics for our evaluation. Table 1 lists the kernel
modules we selected for that purpose. 8139too is the driver
for RealTek RTL-8139 Fast Ethernet NICs, which executes
mostly in interrupt context and interacts with the kernel’s
networking subsystem. psmouse is the driver for most
serial pointing devices (mouse, trackpads), which executes
largely in interrupt context, has complex device detection
and configuration logic, and interacts with the kernel’s serial
I/O and input subsystems. romfs is a read-only file system
used for embedded systems; it does not execute in interrupt
context and interacts with the kernel’s virtual file system and
block I/O infrastructure.

Table 1 shows static size metrics for the selected test
modules. The SLOC columns list the physical source lines
of code2 before and after code preprocessing (as part of the
build process). The Functions columns list the number |F (S)|
of functions implemented in the module (All) and the number
|Fentry(S)| of entry point functions (Entry). Column Extern
lists the number of external functions referenced, Lib lists the
number of library functions that exist in both kernel and user
mode, and Calls lists the number |R′(S)| of calls (references).
Judging by the presented numbers, 8139too is the most
complex of the modules with more code, more functions,
and a larger interface with the kernel, which results in a
higher coupling with other kernel subsystems than the other
modules. The relatively high number of entry functions for
psmouse is due the driver’s heavy usage of function pointers
rather than a large exported interface (see Section 3.1.1).

5.1.2 Workload Selection

As workloads, we apply throughput benchmarks with a
duration of 60 s to all test modules. For 8139too, we use
netperf 2.6 in TCP_STREAM mode measuring the network
throughput. For psmouse, we use QEMU’s monitor and

2. generated using David A. Wheeler’s SLOCCount

TABLE 2
Runtime profile overview. The first four columns list the number of

activated function nodes and call edges (absolute and relative); the last
column reports the relative amount of movable functions.

Activations Rel. Coverage

S F (S) R′(S) F (S) R′(S) Fmov(S)/F (S)

8139too 82 201 66.7% 53.2% 65.9%
psmouse 36 81 61.0% 37.9% 83.1%

romfs 36 84 85.7% 87.5% 83.3%

control interface (QMP) to generate mouse move events mea-
suring the event throughput. For romfs, we use fio 2.2.9 to
perform file read tests measuring read throughput. All work-
loads contain the module loading/unloading steps and all
initialization/cleanup operations, such as mount/umount
for romfs and ifup/ifdown for 8139too.

5.2 Instrumentation & Profiling
We instrument all modules with our aspect-oriented instru-
mentation tool and execute them in our test systems using
the aforementioned workloads. The instrumented modules
are only used to collect profiling data; they are removed from
the system once profiling is complete. We repeat the profiling
runs 50 times for each module, rebooting the systems before
each run to avoid interferences between runs. In addition
to profiling runs, we also perform 50 runs with the non-
instrumented module as a baseline to determine the runtime
overhead incurred by the instrumentation and the split mode
operation.

5.2.1 Instrumentation Overhead
In terms of binary module size, the instrumented module
versions are about 12 to 42 times larger than the original ones.
This is due to the aspect-oriented instrumentation approach,
which produces additional C code for each function call site.
We report performance measurements for the instrumented
and the original module versions in Table 3 together with
our overall results. As apparent from columns Throughput
and Init/Clean Ops, the instrumentation does not impact
throughputs or init/cleanup times. Module load/unload
times increase slightly for some modules, with a maximum
increase of factor 3.6 for loading 8139too. We therefore
conclude:

Aspect-orientation provides a modular way to implement source
code instrumentation on the abstraction level of the targeted
programming language with overheads small enough to allow
production usage.

5.2.2 Runtime Profiles
Table 2 gives an overview of the observed runtime profiles.
The Activations columns list the number of functions and
references that our workload activated, whereas the Rel.
Coverage columns report the relative amount of activations.
The last column reports the percentage of functions that our
partitioner may move to the user mode partition, i.e., the
number |Fmov(S)| of nodes for which no constraints apply
(cf. Section 4.2.1). Our romfs workload achieves the highest
coverage as this module only contains the essentials for
reading from the file system. The percentage of constrained
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Fig. 4. Platform overhead csys for data sizes from 0 to 60KiB measured
for our physical machine setup.

nodes is lowest here as romfs does not execute in interrupt
context and only needs a few functions fixed in the kernel
to ensure correct operation in split mode. The relatively
low percentage of activated calls in psmouse is due to the
usage of function pointers as well as the high amount of
device specific detection and configuration logic, most of
which is not needed for our emulated QEMU mouse device.
The few unmovable functions in this module execute in
interrupt context. 8139too has the lowest fraction of mov-
able functions as this driver primarily executes in interrupt
context for network package handling. In summary, there is
significant potential for moving functions to user mode for
psmouse and romfs since only a small fraction of functions
needs to be fixed in the kernel. The potential for moving
many functions without severe performance implications is
particularly high for psmouse and 8139too in the given
usage scenario as functions without activations can be moved
to user mode without affecting the performance under the
respective common case usage.

5.3 Estimation of the Platform Overhead

We estimate the platform overhead function csys for both
our setups (PHY & VM) using a split mode test module
(cf. Section 4.2) that measures the time needed for inter-
domain function invocations with data of increasing sizes
up to 60KiB in 128B steps. All data sizes recorded during
profiling fall into this range. For each size step, we measure
1000 inter-domain calls and use their average time as the
result for each step. We repeat the overall measurement
process 10 times and fit a linear function onto the average
measurements as we are interested in getting a mean
overhead estimation.

Fig. 4 illustrates the results for our PHY system. The
horizontal axis shows the size in KiB whereas the vertical
axis shows the measured time in microseconds. We omit the
plot for the VM setup as it is very similar with a slightly larger
vertical offset. The fitted linear function for our PHY setup
can be written as csys(b) = 1205.2 + 0.00084 · b (coefficient
of determination r2 = 0.98), and the function for our VM
setup as csys(b) = 1259.7 + 0.00082 · b (with r2 = 0.97). For
both systems, there is a considerable static overhead of about
1205µs for PHY and about 1260µs for VM associated with
every inter-domain function invocation. The actual data
transfer entails a much smaller overhead of about 0.8µs per
1KiB. In earlier experiments on Linux 3.14.40, we observed
a static overhead of 1214µs for PHY, indicating that csys
results may be reused across different revisions of the same
kernel.
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Fig. 5. Development of partition sizes (left axis) and cut costs (right axis)
for varying λ values (decreasing left to right) for our three test modules.
The kernel partition size decreases with decreasing λ whereas cut costs
increase, i.e., the more code is moved to the user partition, the higher
the performance impact.

5.4 Partitioning Results

We use the GLPK IP/MIP solver v4.55 [14] for partitioning.
We generate 13 partitionings per module using different
λ values to investigate the effect on the resulting partitions.
For 8139too, the solver needs on average about 1.3MiB of
RAM with 362 decision variables (after problem preprocess-
ing). For psmouse, it uses about 0.8MiB with 241 decision
variables; romfs needs 0.4MiB with 128 decision variables.
The solver runtimes are negligible as they are reported with
0.0 s in all runs. These numbers demonstrate that, although 0-
1 ILP problems are generally NP-complete, our optimization-
based partitioning approach is suitable for realistic problem
sizes.
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If stated as 0-1 ILP problem, optimal partitioning of real-world
software components can be achieved with modest computational
overhead.

Figs. 5a to 5c illustrate the sizes (s(p)) and cut costs (c(p))
of the generated partitions. The horizontal axes display the
used λ values (being identical for all modules) whereas the
left vertical axes show the sizes for kernel and user partitions
(in SLOC); the right axes show the cut costs (in time units).
Note that the figures use different scales on the vertical axes,
with Fig. 5c using seconds and the others using milliseconds.

Obviously, the amount of fixed kernel code does not
change with varying λ, i.e., the minimal kernel partition
size is bounded by the amount of non-movable (interrupt)
functions. Nonetheless, the overall kernel partition sizes
decrease with decreasing λ as the minimization of s(p) gains
priority. The cost, however, increases with decreasing kernel
partition size as more and heavier graph edges are cut with
less priority on the minimization of c(p). As λ approaches
0.0, a high cost must be payed even for small decreases in
the kernel partition size.

If interrupt handling in device drivers was revised to allow for
execution in process context, larger portions of their code could
be isolated as user mode processes.

For all modules, the kernel partition is smallest at λ = 0
with highest cut cost. For λ = 1, the opposite is the case.
Decreasing λ from 1.0 to 0.999 allows the solver to find a
partitioning that not only has a low cut cost, but also a larger
user mode partition. This effect occurs as the solver solely
minimizes the cut cost at λ = 1 without taking any node
weights into account, i.e., any partitioning having minimal
cost (in our scenario 0) is optimal for the solver, irrespective
of the SLOC counts left in either partition. This is also the
reason why even with λ = 1, we still have some code
fractions left in the user partition. Putting a little effort into
node weight minimization, however, is enough for the solver
to move all “cheap” nodes. In other words, all nodes that
the solver can move “for free” under a given workload are
actually moved to the user partition. This gives the benefit
of a higher isolation, while a performance overhead must
be paid only in rare occasions that are outside the common
case usage. Therefore, we recommend to not select λ = 1 but
close to 1. A similar effect does not occur when we increase
λ from 0.0 to 0.001 as there is no way to reduce cut costs
without increasing the kernel partition size. Note that not all
generated partitions are distinct as different (neighboring)
λ values may result in the same partitioning. This is due
to the node and edge weights being discrete (a function
can only be moved as a whole). Our partitioner produces
7 distinct partitionings for 8139too, 8 for psmouse, and 5
for romfs. Table 3 reports all distinct partitionings in the
Partition columns.

For a known usage profile, significant portions of kernel software
components can be isolated at near zero performance overhead in
the common case.

Although romfs appears to be the simplest module
from the static metrics presented in Table 1, we expect
especially large overheads as the cut costs illustrated in
Fig. 5c are very high compared to the other two test modules.

This is due to the nature of romfs, which moves large
data chunks with high call frequencies between disk and
memory. Even the partitioning with λ = 0.9 already has a
cut cost of about 2.1 s. This effect is due to the edge weight
normalization (see Eq. (12)), which is applied to formulate
the overall minimization problem for the solver. Workloads
that lead to extreme hot spots in terms of call frequencies
and/or data amount in the runtime profile require finer
grained λ variations around 1.0 if the maximum size user
partition with zero cost should be found, since the hot spots
in the profile dominate the partitioning cost.

Information on a software component’s dynamic usage profile is
essential for an accurate cost estimation.

After automatically generating a spectrum of partition-
ings with different λ values using our approach, a system
administrator can select a partitioning with the perfor-
mance/isolation trade-off that best fits the requirements of
the intended application scenario. Choosing the lowest λ
value that meets required execution latencies, for instance,
yields best effort reliability.

5.5 Split Mode Modules

We synthesize and build split mode modules for all dis-
tinct partitionings that we generated and expose them to
our workloads for timing and throughput measurements.
Table 3 reports the results. We highlight especially interesting
numbers in bold face.

Overall, split modules with a cut cost of zero do not show
different performance compared to the original modules
except for slightly increased loading times caused by the
initialization of the Microdrivers runtime. The measured
throughputs for the two interrupt heavy drivers (8139too
and psmouse) remain stable as interrupt routines are not
touched due to earlier discussed Microdrivers limitations.
As soon as the estimated cut costs increase beyond zero, we
observe a modest impact on operation latencies for 8139too
and romfs. Load times increase for both modules as well
as mount and unload times for romfs and ifup time for
8139too. The observed increases are due to the assignment
of module and device initialization/configuration functions
to user mode.

For psmouse, an increase in times becomes apparent
only in later partitionings: starting with λ = 0.4, the module
load times increase to 1.5 s as all the device detection and
initialization logic gets moved to user mode. Although our
estimated costs also make a jump for this partitioning, it is
far smaller than the measured overhead. We attribute this
anomaly to side effects that our model does not account for.
psmouse initialization logic causes additional interrupts that
interfere with the user mode process executing the mouse
logic, which leads to more context switches and wait times
for the user mode process.

All modules exhibit the largest performance decrease
when the cut cost is highest and the user mode partition
is largest. The measured time and performance impacts
for 8139too and psmouse are not prohibitively high for
use in production. This is consistent with the estimated cut
costs that remain below 100ms. In contrast, romfs suffers
from a significant decrease of two orders of magnitude in
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TABLE 3
Partitioning results and performance measurements for 8139too, psmouse, and romfs. Each row reports average results of 50 experiment runs
(standard deviation in brackets). Partition columns report size and estimated cost of the respective partitioning. The other columns report times for
module loading/unloading and initialization/cleanup operations. The last column lists workload throughput. All times are reported in milliseconds,

except for partitioning costs of romfs, which are in seconds. Interesting data points are highlighted in bold.

Partition Module Op (ms) Init/Clean Ops (ms)

Version Kern User Cost load unload Throughput

8139too ifup ifdown Mbit/s

orig - - - 5.0 (3.0) 45.6 (12.4) 44.5 (1.5) 7.6 (0.1) 94.1 (0.0)
instrumented - - - 17.8 (4.9) 44.2 (12.9) 44.6 (1.6) 7.6 (0.1) 94.1 (0.1)
split, λ = 1.0 1535 49 0.0 9.9 (0.1) 45.8 (13.7) 44.5 (1.4) 7.6 (0.1) 94.1 (0.0)
split, λ = 0.7 1134 450 0.0 14.0 (0.1) 48.4 (13.7) 44.8 (1.5) 7.6 (0.1) 94.2 (0.0)
split, λ = 0.5 647 937 26.6 34.8 (0.3) 47.8 (12.5) 52.2 (1.4) 7.5 (0.1) 94.1 (0.0)
split, λ = 0.4 639 945 27.8 34.8 (0.3) 42.8 (11.6) 52.4 (1.2) 7.6 (0.1) 94.2 (0.0)
split, λ = 0.3 549 1035 43.4 35.0 (0.2) 47.1 (12.2) 59.7 (1.2) 18.8 (0.2) 94.1 (0.0)
split, λ = 0.2 492 1092 63.9 39.2 (0.3) 72.7 (12.0) 59.3 (1.5) 18.7 (0.2) 94.2 (0.0)
split, λ = 0.0 450 1134 82.0 46.8 (1.4) 73.5 (14.2) 64.2 (1.4) 23.3 (0.2) 94.1 (0.2)

psmouse Ev/s

orig - - - 3.5 (1.5) 57.8 (23.1) 1060.3 (13.0)
instrumented - - - 4.4 (1.3) 67.1 (19.4) 1064.2 (16.7)
split, λ = 1.0 1144 4 0.0 5.6 (2.4) 62.6 (21.6) 1059.8 (9.7)
split, λ = 0.8 673 475 0.0 5.7 (1.8) 60.8 (24.4) 1057.7 (11.1)
split, λ = 0.7 613 535 2.5 5.5 (2.4) 63.6 (21.4) 1060.6 (9.4)
split, λ = 0.6 570 578 6.3 5.1 (1.6) 59.5 (23.5) 1056.6 (7.9)
split, λ = 0.5 457 691 20.2 5.4 (1.7) 62.8 (24.9) 1056.1 (10.4)
split, λ = 0.4 300 848 46.6 1545.3 (22.6) 63.8 (22.1) 1057.1 (10.7)
split, λ = 0.3 281 867 51.7 1540.0 (19.3) 65.1 (22.4) 1059.9 (7.8)
split, λ = 0.0 207 941 84.4 1537.8 (17.1) 114.5 (30.4) 1060.1 (8.5)

romfs mount umount MiB/s

orig - - - 2.8 (1.9) 39.6 (10.2) 1.1 (1.4) 101.7 (8.1) 33.76 (0.72)
instrumented - - - 5.7 (3.3) 36.9 (8.3) 1.1 (1.2) 100.3 (9.0) 33.62 (0.59)
split, λ = 1.0 722 9 0.0 5.3 (0.1) 35.7 (11.2) 1.2 (1.6) 99.4 (9.3) 33.60 (0.53)

split, λ = 0.999 513 218 0.024 10.5 (0.2) 44.2 (11.1) 22.4 (1.1) 103.8 (11.8) 33.69 (0.55)
split, λ = 0.3 132 599 2.1 11.4 (0.3) 44.0 (10.2) 37.7 (1.5) 187.1 (11.2) 33.73 (0.62)
split, λ = 0.1 54 677 577.5 11.9 (0.2) 45.2 (9.2) 37.6 (1.2) 126.3 (9.5) 0.288 (0.00)
split, λ = 0.0 27 704 1437.4 11.9 (0.3) 46.3 (12.1) 41.0 (0.8) 119.4 (9.3) 0.065 (0.00)

throughput starting from λ = 0.1 as the function that trans-
fers contents between disk and memory (romfs_readpage)
is moved to user mode. This is expected as the estimated
cut cost becomes exceptionally high for large user mode
partitions with about 24min for λ = 0.0. The decrease in
umount times between splits with λ = 0.3 and λ = 0.1 is a
side effect of the observed throughput decrease. During un-
mounting, romfs cleans up per-file i-node data structures
using a function that is moved to user mode starting at
λ = 0.3. Due to the lower throughput, fewer files are read as
part of our fixed duration workload. Hence, fewer i-nodes
need to be cleaned up and umount needs less time.

5.6 Reliability of Split Mode Modules

To assess the reliability gain of split mode modules, we
conduct both a code analysis and fault injection experiments.
As memory safety bugs constitute an important class of
program bugs in C code, we focus on potentially invalid
memory accesses via pointers. We analyzed the source code
of our test modules to identify all code locations where
pointers are dereferenced. In case of corrupted pointer values,
dereferences can lead to invalid memory accesses, which,
depending on the accessed memory location and whether it
is a read or write access, can crash the kernel. Fig. 6 illustrates
the relative amount of pointer dereferences that are left in
the kernel mode partition with decreasing kernel mode size
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Fig. 6. Relative amount of pointer dereferences in the kernel mode
partition across different λ values. With decreasing λ, the size of the
kernel mode partition decreases (left to right) along with the amount of
potentially dangerous pointer dereferences.

(decreasing λ). The smaller the kernel partition, the fewer
potentially dangerous pointer dereferences are left inside the
kernel.

Overall, we found 507 dereferences in 8139too, 389 in
psmouse, and 223 in romfs. For the smallest kernel mode
partition, the amount of dereferences falls below 31% for
8139too and psmouse and for romfs even below 1%. The
dereferences remaining in the kernel partition reside in non-
movable functions. However, at least 50% of dereferences
can be removed from the kernel partition at moderate cost
(see λ = 0.5) for all three modules.
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To validate that invalid memory accesses are indeed
a problem when they occur inside the kernel but can be
tolerated in the user partition, we conduct fault injection
experiments in which we inject NULL pointer values into the
previously identified pointer dereferences via code mutation,
a fault type that kernel code is particularly prone to [49].
We randomly selected 50 mutants per module, compiled
them and executed them with our workload for all previ-
ously generated partitionings. With a total of 20 distinct
splits across all mutants, this sums up to a total of 1000
experiments. Across all experiments, 46% of injected faults
got activated for romfs, 78% for psmouse, and 70% for
8139too. In all experiments with activated faults, the kernel
reacted with an Oops and required rebooting if the invalid
memory access resided in the kernel partition. However, if
the invalid access resided in the user partition, the user mode
driver process reacted with a segmentation fault, leaving the
rest of the system unaffected. When the kernel partition size
was largest (λ = 1.0), we observed an Oops in 100% of cases.
However, if the kernel partition size was smallest (λ = 0.0),
we observed Oopses only in 44% of cases for psmouse, 6%
for 8139too, and 9% romfs. We conclude that the more
code we move into the user partition the more potential
invalid memory accesses can be isolated in the user mode
driver process, thereby improving system reliability.

6 DISCUSSION

Our evaluation demonstrates that kernel components can
be partitioned into user and kernel compartments based
on data recorded from runtime profiling while allowing
for a user-defined trade-off between isolation and run-
time overhead. For romfs, the cost for a minimal kernel
component is prohibitively high, but other λ values yield
usable partitionings with overheads corresponding to the
amount of kernel functionality isolated. In the following, we
summarize issues, insights, and practical considerations from
our implementation.

A basic assumption of the used Microdrivers framework
is that data accesses are properly synchronized in the original
kernel module using locking primitives, so that shared state in
the split module needs to be synchronized only upon the start
and end of inter-domain function invocations and whenever
a locking operation is performed. In reality, however, locks
are often avoided for performance reasons, especially for
small, frequently updated data fields such as the flags field
in the page struct, which the Linux kernel uses for page
management. Here, atomic access operations are commonly
used. Atomic operations need special handling in split
mode modules as the accessed data must be synchronized
immediately upon access. For this reason, we left all accesses
to certain fields of the page struct in the kernel. For instance,
the romfs_readpage function only started working in user
mode after we ensured that all page status bit accesses
were left in the kernel, which reads/writes these fields
concurrently using CPU-specific atomic memory operations.

State synchronization in the presence of interrupts has also
proven challenging. Especially during device initialization
and configuration, drivers issue device commands that
may result in immediate interrupts, i.e., the driver code
interrupts itself. As these commands are not automatically

identified, the Microdrivers runtime is unaware of the
resulting control flow redirection to the interrupt service
routine. Therefore, no data synchronization is performed
before the interrupt-causing operation is executed and, hence,
the interrupt routine and user mode function may operate on
inconsistent copies of shared data. We encountered this issue
with both 8139too and psmouse. Device configuration
from user mode only worked after we added additional
synchronization points and left certain operations in the
kernel.

While we do not consider security as a partitioning goal,
we note that the presented approach does not harm security:
In a properly configured system, the interface between the
kernel and user components of a split mode driver is not
accessible to unprivileged users. Consequently, the attack
surface remains the same as for the original driver. Moreover,
moving vulnerable code from the kernel to user space can
reduce the severity of vulnerabilities. The user component
can also benefit from hardening and mitigation techniques
that may not be available or feasible in the kernel. A second
consequence of our decision to not open the split mode
driver’s cross-domain interface to other users is that it
cannot be reused, for instance by other drivers or user
mode programs. This restriction is intended, as the generated
interfaces are highly customized for a specific partitioning of
a specific kernel component and any reuse beyond that use
case bears a risk of misuse with fatal consequences.

7 CONCLUSION

Although microkernel OSs provide better isolation than
monolithic OSs and modern implementations no longer
suffer from the poor IPC performance of their ancestors,
monolithic OSs still dominate the commodity desktop,
mobile and server markets because of legacy code reuse and
user familiarity. In order to benefit from both the existing
code bases of monolithic systems and the design advantages
of microkernel architectures, approaches to move kernel
code portions of monolithic OSs into user mode have been
proposed. While these approaches provide the mechanisms
for split mode user/kernel operation of monolithic kernel
code, they do not provide guidance on what code to execute
in which mode. To this end, we propose a partitioning
approach that combines static and dynamic analyses to
assess the impact of kernel code partitioning decisions on
both the degree of isolation and the expected performance
overheads. Using collected data from profiling runs, we
derive solutions that are optimal with respect to a user-defined
isolation/performance prioritization.

We implement the approach for Microdrivers, an auto-
mated code partitioning framework for Linux kernel code,
and demonstrate its utility in a case study of two widely
used device drivers and a file system. Our results show that
augmenting static analyses with data obtained from dynamic
analyses allows to estimate the performance impact and,
therefore, the feasibility of a whole spectrum of possible
partitionings for production usage even before a split mode
version is synthesized.

For future work, we plan to address the shortcomings
of existing code partitioning tools encountered during the
implementation of our profiling-based partitioning and add
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support for atomic access operations and user mode interrupt
handling. Furthermore, we plan to investigate more efficient
alternatives for the complex function wrapping and parame-
ter marshaling of Microdrivers to improve performance and
the amount of movable functions.
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