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SUMMARY Computers are increasingly used for implement-
ing control algorithms in safety-critical embedded applications,
such as engine control, braking control and flight surface con-
trol. Consequently, computer errors can have severe impact on
the safety of such systems. Addressing the coupling of control
performance with computer related errors, this paper develops
a methodology for analyzing the impacts data errors have on
control system dependability. The impact of a data error is mea-
sured as the resulting control error. We use maximum bounds on
this measure as the criterion for control system failure (i.e., if the
control error exceeds a certain threshold, the system has failed).
In this paper we a) develop suitable models of computer faults
for analysis of control level effects and related analysis methods,
and b) apply traditional control theory analysis methods for un-
derstanding the impacts of data errors on system dependability.
An automobile slip-control brake-system is used as an example
showing the viability of our approach.
key words: safety-critical systems, control systems, error mod-
eling, error analysis

1. Introduction

With the increasing use of computers for implement-
ing control algorithms, control systems become more
vulnerable to computer level failures. Thus, this paper
focuses on understanding the impact of computer level
data errors on system dependability (Errors caused by
faults in the computer nodes are often classified as ei-
ther data errors, or timing errors. A data error occurs
when the computer node delivers data that is incorrect,
and a timing error occurs when the computer delivers
data at an incorrect point in time. In this paper, we
focus the analysis to the impact of data errors on sys-
tem dependability. Methods for analyzing the effects of
timing errors on control systems were presented in e.g.,
[5], [10].).
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Data errors and their effects on computer function-
ality is an intensively researched area, e.g., [8]. How-
ever, recent results [1], [9] show that many data errors
will have a limited impact on control performance, i.e.,
control systems often have an inherent resiliency or in-
ertia to data errors. These results were obtained ex-
perimentally using fault-injection, e.g., [8], for system
validation. However, this technique requires a proto-
type of the system (or at least a detailed model), which
generally is not available in the early design phases.
Thus, the specific scope of this paper is to develop a
systematic design stage analytical basis for estimating
the impacts of different data errors on the control appli-
cations. We envision our approach to be used in early
design phases as a design level guide to adapt fault tol-
erance techniques to enhance control system depend-
ability as needed.

Error effect analysis is an extensively developed
area, e.g., [8]. Analysis of effects on system stabil-
ity of data errors caused by EMI bursts was investi-
gated in [6]. However, as catastrophic failures in safety-
critical system may occur before the system reaches in-
stability, we base our definition of system failure on
thresholds of the magnitude and duration of the con-
trol error, i.e., the difference between the reference (de-
sired) value of a controlled physical process property
and the actual value of this property (e.g., in a system
controlling cabin temperature in a car, the control er-
ror would be the difference between the temperature
the driver has requested and the actual temperature
measured by the sensors). The analysis of this paper
is focused on finding errors posing to threat the system,
i.e., data errors that result in large control errors.

As an example of error impacts, Fig. 1 shows the
output signal of a control system. At start, the output
value follows the reference value (desired output), i.e.,
the control error is 0. Then, at time s, a transient
fault occurs affecting the output vale. Depending on
which bit (or bits) that are corrupted, the magnitude
of the error will differ, as indicated by the solid lines.
The maximum acceptable control error, defined by the
system designers, taking into account noise levels and
other effects, is plotted as dotted lines in Fig. 1. The
plot to the left describes a data error in bit(s) with low
significance which never exceeds this level, and thus,
does not need to be handled, whereas in the right plot,
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Fig. 1 Transient fault influence on the control error.

an error has occurred in more significant bit(s) and the
level is exceeded. With the proposed analysis method,
the magnitudes of errors (i.e., which bit errors), that
are inherently tolerated by the control system can be
estimated. Also, it is possible to estimate the time until
the output value has returned to its correct value after
an error has occurred.

The organization of this paper is as follows: First,
we detail the control system model and related assump-
tions in Sect. 2. In Sect. 3, we introduce classes of pos-
sible error models for different types of computer node
faults. In Sect. 4, we describe different analysis meth-
ods for determining how the control performance is
affected by different types of faults and we exemplify
them through a test case in form of a simple automo-
tive slip controller. We summarize the conclusions and
discuss future research directions, Sect. 5.

2. Assumptions and Models

A distributed control system typically consists of sen-
sors, actuators, computer nodes and a communication
network connecting these components. We restrict this
paper to the analysis of the impacts of errors caused by
faults occurring in the computer nodes. We primarily
consider errors caused by hardware (HW) faults and in-
troduce models for simulation of these (based on data
bit manipulation).

The Computer Node Consider the generic com-
puter node shown in Fig. 2. Such a node conceptu-
ally contains two interfaces, a communication interface
and an application interface. The communication inter-
face handles the information exchange with other nodes
(e.g., sensor and/or control signal values). The commu-
nication is conducted according to a protocol, stating
the packaging and encoding of data. Received data
is transferred to the application interface, where it is
utilized together with data received from internal data
sources (e.g., local sensors) in the control algorithms.
The control signals are then transferred to their corre-
sponding actuators.

The actual implementation differs among com-
puter nodes. In some nodes, communication and calcu-
lation of control signals may be managed by the same
main processor, whereas in others, the main processor
only handles calculations and a specific controller man-

Fig. 2 A General architecture of a computer node.

Fig. 3 General depiction of a controller and the corresponding
physical process.

ages network communication. For such nodes, data can
be transferred between the controller and main proces-
sor through an internal bus or a dual-port memory.

Different implementations have different compo-
nent failure probabilities. This paper analyzes the im-
pact of data errors occurring in control signals and/or
internal states (including propagated errors). It is up
to the system designers to estimate the probability of
different errors to occur, taking the specific component
failure intensities into account. For instance, if internal
fault tolerance techniques are used in the various com-
ponents of the system, such as error correcting codes in
memory, the error intensity will be reduced.

The Controller We provide a basic description
of a generic controller structure implementing a control
function at a level detailed enough to communicate the
ideas presented in the paper. The interested reader is
referred to the appendices/references for more details.

Conceptually, a control system is set to control a
certain physical process (see Fig. 3). This is achieved
using a set of actuators (A in Fig. 3) for affecting the
physical process and sensors (S in Fig. 3) for monitoring
the effects of the actuators. The user of the controller
(which may be a human user or an external computer
system) provides the controller with a reference signal
uc(k) via some interface (I in Fig. 3). The controller will
then attempt to change the physical process with con-
trol signal u(k) to the actuators, such that the sensor
value y(k) is as close to the reference value as possi-
ble, using information about the history of the system
(the stored state space z(k). As we consider controllers
implemented on microprocessors, we assume that it ex-
ecutes in discrete steps, i.e., the controller reads ref-
erence values and sensor values and calculates control
signals periodically. This is the case for many dynamic
systems which constitutes an important subset of con-
trol systems upon which data errors can have severe
impacts. In Fig. 3, and subsequently, k indicates the
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kth time-step.
Typically, a control system has non-linear effects (a

non-proportional relationship between the value of the
control signal and the resulting physical value read by
the sensors). However, linear models are often used as
they in many cases are sufficient approximations at the
normal system operating point and reduce the complex-
ity. Thus, we focus the error impact analysis on linear
system models in this paper. The generalized feedback
controller in Fig. 3 is defined as:

u(k) = Cz(k) +Ducuc(k) +Dyy(k)

z(k + 1) = Φz(k) + Γucuc(k) + Γyy(k)
(1)

Equation (1) describes a generic linear controller with
internal states, e.g., a PI-controller (we have a con-
troller with a proportional feedback (P) and an inte-
grated feedback (I)) or a state-feedback controller with
observer states and integral action. The control sig-
nal u(k) is calculated using the reference value uc(k),
the sensor value y(k), and an intermediate value z(k).
This intermediate value is actually a vector constitut-
ing the state space (history) of the controller containing
for instance integrator states, which are used to provide
a certain level of history that guarantee that the cor-
rect output is reached despite constant disturbances,
and observer states, which are used to estimate signals
which influence the control algorithm, but may be im-
possible to measure. In our example in Sect. 4.1 we use
one integrator state and one observer state.

Φ, Γuc , Γy, C, Duc and Dy are matrices contain-
ing control constants, used as weights in the equations.
The control constants are amplifying factors that are
set by the designer to give the desired control perfor-
mance, e.g., making the physical value assume the ref-
erence value as fast as possible (after a change of the
reference value) without exceeding the reference value
(i.e., overshooting).

Using pseudo-code, Eq. (1) is implemented as:
repeat:

uc := read_from_interface();
y := read_from_sensors();
u := compute_control_signal(z,uc,y);
write_to_actuator(u);
z := update_controller_state(z,uc,y);
wait_for_next_sample;

Previous research [5], [6] has investigated the effect
of data errors on system stability. However, a system
may fail before it reaches instability. Thus, the severity
of errors is more related to how much the output of the
system differs from the desired value (i.e., the control
error). Therefore, we alternatively use the following
(application dependent) requirements on the control er-
ror: C1: The control error must not exceed a certain
specified limit. C2: A certain level of the control er-
ror is only acceptable (from a control perspective) for
a limited duration. If any of these two requirements is

violated, we define the system to have failed.
As most systems have a certain inherent inertia,

the control error is dependent on i) the dynamics of
the system, ii) how the reference value changes, and iii)
external disturbances. Thus, the impact of a fault on
the system is not only dependent on the specific fault,
but also the current operational state of the system (the
current operational state is called the operating point).
We assume that the designer has identified the most
sensitive operating point and set the requirements on
the control error for that point.

Having introduced the general structure of the
computer nodes and the controllers, in the next section
we discuss how external disturbances, such as errors,
can be modeled using the same mathematical frame-
work as the controller equations in Eq. (1).

3. Classification and Modeling of Data Errors

Based on the assumptions presented in Sect. 2, we de-
scribe our approach for analyzing the impact of data
errors on the system. However, we first discuss how
data errors can be modeled using the same mathemati-
cal framework as in Eq. (1). Subsequently, in Sect. 4, we
present an example control system and describe analy-
sis methods for understanding the impacts of data er-
rors on the control system.

In Sect. 2, we introduced general recurrence equa-
tions (see Eq. (1)) for calculating control signals (u) and
the state space (z). Data errors can affect the behavior
of the controller either by disrupting the calculated con-
trol signal (u) and/or the state space of the controller
(z). Therefore, we model errors as additive terms as:

u(k) = Cz(k) +Ducuc(k) +Dyy(k) + ηu(k)

z(k + 1) = Φz(k) + Γucuc(k) + Γyy(k) + ηz(k)
(2)

where ηu(k) and ηz(k) are the functions describing
disturbances due to faults in the computer (i.e., errors)
executing the control equations. Henceforth, we define
expressions for ηu(k) and ηz(k) as suited for different
error types.

As illustrated in Fig. 2, the internal components
of a computer node are: communication controllers,
memories, microprocessors, and internal communica-
tion buses. All these components may be affected by
faults and the impacts of these faults will be depen-
dent on the function of the component, which bit(s) the
fault affects (high significance versus low significance)
and how often the fault is activated.

As the communication controller handles the in-
formation exchange with other nodes, quantities mea-
sured by sensors may become erroneous due to faults in
the communication controller. In Eq. (1), the reference
value (uc) and the output value (y) are such quantities.
Thus, a communication controller fault could result in
any of these variables having an incorrect value.
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All data used for the calculation of the controller
equations are stored in memory circuits. The control
constants defining the behavior of the controller (Φ,
Γuc , Γy, C, Duc and Dy in Eq. (1)) are likely to be
stored in non-volatile memory, such as Flash or EEP-
ROM. Variables (uc, z and y in Eq. (1)) are stored in
RAM. Although the impact of faults affecting memory
is very dependent on the implementation of the mem-
ory, the most common fault model is to change the
value of one or more bits in the memory. Thus, this er-
ror will propagate when the memory cell with incorrect
data is accessed when calculating Eq. (1).

The data path of a microprocessor consists of
caches, registers, busses and functional units (i.e., ALU,
multiplier, etc.). If a fault occurs in any of these parts,
it will affect the ongoing calculation if the faulty part
is activated, rendering the result of that calculation to
be incorrect.

The communication across the computer node is
generally via data buses. If a fault occurs on such a
bus, the data (variables and constants) currently being
transferred will be affected and the result may be a data
error in any of the calculated data.

On this background of how error propagation af-
fects the calculations of the controller, we next discuss
the temporal dimension of data errors and discuss how
disturbances/errors of various occurrence frequencies
and persistency levels affect the controller.

3.1 Classifying Occurrence Rates of Data Errors

We divide the possible errors (i.e., ηu and ηz, Eq. (2))
into classes based on their rate of occurrence. In
Sect. 3.2 we define the magnitudes for the errors.

Class A: Persistent Errors This class consists
of errors which will affect almost all calculated samples
(from when the error first occurs and then subsequent
samples). If the errors are caused by faults in the mem-
ory storing the control constants, they can substantially
change the behavior/structure of the system (distur-
bances with this effect are denoted structural in control
theory). This type of persistent errors is not considered
further in this paper (tools for more detailed analysis of
structural disturbances are provided by robust control
theory, see e.g., [11]). However, if the errors are un-
correlated with the control and state signals (e.g., have
similar magnitude at longer time intervals, for instance
caused by faults in memory cells storing the most sig-
nificant bits of variables which change their value infre-
quently), they can be modeled by the step-function†,
θ(k − s).

Class B: Sporadic Errors This class includes
errors that occur so infrequently that the system has
time to return to a correct state before the next er-
ror occurs, i.e. the impacts of errors are not super-

imposed. Thus, these errors can be modeled as tem-
porary impulse disturbances, described with the pulse-
function††, δ(k−s). Such errors are for instance caused
by transient faults, occurring with low intensity, and
intermittent-permanent faults in the functional units
of the microprocessor that are activated occasionally
and propagated with low probabilities.

Class C: Frequent Errors This class consists
of errors not covered by the two previous classes, i.e.,
errors that do not affect every sample, but frequently
enough for their impacts on the system to be super-
imposed. The impacts of these errors can be mod-
eled as stochastic processes, i.e., a function that as-
sumes random values and whose properties are de-
scribed by its mean and variance, which either will
assume 0 (when no error affects the system) or the
magnitude of the error (when an error does affect
the system), m, see Sect. 3.2. Such errors could be
caused by transient faults occurring with high inten-
sity, memory faults in the least significant bits of vari-
ables (which change value relatively often) and func-
tional units intermittent-permanent faults.

3.2 Data Formats and Error Magnitudes

In the previous subsection, we discussed the occurrence
rate of errors caused by different types of faults. In this
subsection we focus on the magnitudes of the errors.

The error magnitude will be dependent on the for-
mats used for representation of data in the calcula-
tions performed by controller. Two commonly used
formats to represent numerical data are floating-point
and fixed-point values. Floating-point values give bet-
ter accuracy than fixed-point values for a given num-
ber of bits, but require either floating-point units (i.e.,
more expensive microprocessors) or additional software
routines (adding to the total execution time of the cal-
culations). We now define the error magnitudes that
can occur for the different formats.

In the IEEE floating-point standard [4], numbers
are represented with a sign bit, s, a fraction part with
value f (23 bits in the single precision format) and an
exponent part with value e (8 bits in the single precision
format). A decimal number a is represented as:

a = (−1)s(1.f)2(e−127) (3)

The range of representable values††† is then for the sin-
gle precision format R = [−(2−2−23) ·2128, (2−2−23) ·
2128], with a resolution (minimum difference between
two non-identical numerical values) of Q = 2−23. With

†θ(k− s) = 0 for k < s and 1 for k ≥ s, where s denotes
the point in discrete time where the error occurs.

††δ(k−s) = 1 for k = s, else 0, where s denotes the point
in discrete time where the error occurs.

†††Often some values are used to represent special entities,
e.g., ∞, reducing the usable range.
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Table 1 Example of error magnitudes for single-bit errors in
different data formats.

Erroneous
bit

Error magnitude, floating-
point, single format (e∗ is
the value of the remaining
exponent bits)

Error magnitude,
fixed-point inte-
ger, N=32, M=23

0 2−23 · 2(e−127) 2−23

16 2−7 · 2(e−127) 2−7

31 (1.f) ·(2(e∗+1)−2(e∗−127)) 28

this format, the magnitude of a bit error is dependent
on the values of the other bits, but if it occurs in the
most significant bits of the exponent, it will result in
very high error magnitudes, see Table 1. Even if the
physical limitations of actuators, sensors, etc., limit the
immediate impacts of such errors, the state update (see
Eq. (1)) can be seriously perturbed. This problem is ad-
dressed in [9] by adding executable assertions that check
that data do not exceed their specified limits.

In the fixed-point format [3], numbers are repre-
sented in two-complement form, with a total of N bits,
of whichM < N bits are used as fractional bits. Hence,
a decimal number a is represented by the bit sequence
aN−1 . . . a0, such that

a = 2−M

(
−aN−12N−1 +

N−2∑
i=0

ai2i
)

(4)

The (N − 1)th bit carries the sign information. The
representable value range is R = [−2N−M−1, 2N−M−1−
2−M ], with the resolution Q = 2−M .

With this representation, the error magnitudes will
be in the same range as the control signals (assuming
that the data has been properly scaled). Thus, a single
bit error in bit n ∈ [0, N − 2] will have the magnitude:

m = (−1)an2n−M (5)

where an is the correct bit value. A bit error in the sign
bit n = N − 1 will have the magnitude:

m = −(−1)aN−12N−M−1 (6)

Some examples of magnitudes for single-bit errors are
given in Table 1. Note that burst errors, affecting mul-
tiple bits, will correspondingly have magnitudes being
the sum of the individual bit error magnitudes. For this
study, we limit the scope to single-bit errors.

Fixed-point values will be used in the continuation
of this paper, but the proposed analysis methods are
valid also for floating-point values.

3.3 Error Impacts on the Generalized Controller

Looking at the errors described in previous subsections,
we now define expressions for modeling their impacts
on the generalized controller of Eq. (1). The expres-
sions are summarized in Table 2, based on the discus-
sions in Sect. 3.1 and Sect. 3.2. The first column de-
fines the error class, the second column is the type of

Table 2 Impacts of errors occurring at time s.

Error class Nature of resulting
disturbance

η: Mathematical
expression for dis-
turbance

A:Persistent Step mA(k)θ(k − s)
B:Sporadic Impulse mB(s)δ(k − s)
C:Frequent Stochastic Process mC(k)θ(k − s)

the disturbance that the error will cause and the third
column shows the mathematical expressions describing
the disturbances, η, for modeling the error in Eq. (2).
Here, mA(k) is an error magnitude uncorrelated with
the magnitude of the control and state signals, mB(s)
the error magnitude at time s, mC(k) a stochastic pro-
cess describing the error magnitude when a frequent er-
ror occurs, θ the step-function, δ the impulse function
and s the point in discrete time when the first error
occurs (i.e., the error occurs in a specific sample).

4. Analytical Methods for Understanding the
Impact of Data Errors on Control Systems

In the previous section we defined disturbance-models
for the impacts of different data errors on the system.
In this section we first give an example of a control sys-
tem. Then we present how different analysis methods
can be used to understand the impact of errors on con-
trol systems, using the disturbance-models (Sect. 3.3)
and the example.

4.1 Example — Brake-Slip Controller

A brake-slip controller is used to control the wheel-slip
λ on a car during braking. This is used to avoid sit-
uations where the car loses its grip of the road and
starts skidding. The sampling time is set to th = 0.01 s.
The brake-slip controller normally operates in the re-
gion 0 < λ < 0.2, where 0 corresponds to no slip, i.e.,
no braking, and 0.2 very hard braking where the wheels
are almost locked. It is essential that the brake force on
the left and right side of the car is balanced, otherwise
there will be a resulting torque on the vehicle, and the
car will turn during braking, which may lead to a haz-
ardous situation. To avoid this, we require that the con-
trol error may not exceed |λdesired − λ| < 0.01 = C1,
if the reference value has not changed during the last
0.4 s (i.e. no change in the braking force is requested).
We do not set any requirement for the duration of the
control error (C2) in this example.

The process can be described as a linear discrete-
time system:

λ(k) =
B(q)
A(q)

u(k) (7)

where the polynomials B and A are of degree 1 and
2, respectively. We used the generalized controller in
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Eq. (1) and instantiated it according to traditional con-
trol design for achieving desired control performance
(for design details, see Appendix B). This resulted in
the following values of the control constants:

Φ =
(
1 0
0 0.2534

)
, Γuc =

(
0.1237
0.01378

)
,

Γy =
( −0.1237
0.7328

)
, C = 63.55 94.64 ,

Duc = 13.01, Dy = −161.4

(8)

The first value in the controller state space (i.e., the top
values of Φ, Γuc and Γy) is an integrator state and the
second value (the bottom values) is an observer state.

To validate that the desired control performance
was reached with this instantiation, a case where the
driver suddenly applies full brakes, was investigated.
At normal driving conditions (dry asphalt road), this
manoeuvre corresponds to a slip change from λ = 0 (no
braking) to λ = 0.1 (full braking). Fig. 4 shows how the
output signal and the control signal, are changed during
the manoeuvre. Please note that different scales are
used between the plots in this and subsequent figures.

As seen in the left plot of Fig. 4, the output value
assumes the reference value within 0.4 s (which was the
requirement) and without any major overshooting (i.e.,
exceeding the reference value). Looking at the control
signal, the right plot of Fig. 4, it first increases quickly
to make the output signal assume the desired value (the
reference value) as fast as possible. Then it decreases
to avoid overshooting and stays constant on the level
required to give the desired slip of λ = 0.1. The actua-
tors were considered to be able to deliver the maximum
required braking force. Thus, all requirements were ful-
filled and the control instantiation accepted.

Fig. 4 can be used for comparison of how the sys-
tem signals are changed due to normal changes of the
reference values (braking) and how they are changed
due to different types of errors caused by computer node
faults (we will detail the impact of errors on control sys-
tem in the following subsections).

To study the impact of bit errors, the data format
needs to be set. Assume that the available word-length
is N = 32bits. Based on the numerical values in Eq. (8)
and the signal magnitudes of Fig. 4, the fixed-point nu-

Fig. 4 Step-input command-signal response of closed-loop sys-
tem. The plots have different scales.

merical implementation is chosen as M = 23, which
gives the numerical range R = [−256.0, 256.0−Q] with
a resolution of Q = 2−23 ≈ 1.19 · 10−7.

In the following subsections, we describe how the
impacts of data errors on control systems can be inves-
tigated using different analysis methods, adopted from
control theory, and exemplify these using the control
system example (i.e., the brake-slip controller) given in
this subsection.

4.2 Sensitivity Analysis

In control theory, the sensitivity function is used to
determine how the system is affected by disturbances
occurring in a particular signal. It is calculated by de-
termining the impulse response function, h(k), for how
changes of that specific signal affect the output value.
This function is then transformed from the time domain
to the frequency domain (to the closed-loop transfer-
function, H(z)) to determine how much disturbances
with different frequencies are amplified (or attenuated).
This makes it possible to determine which occurrence
rates of disturbances the system is most sensitive to.
For more details about the sensitivity functions, see
Appendix A.

As shown in Sect. 3.3, errors can be described as
disturbances in the calculation of the control signal, ηu,
and state space, ηz , (Henceforth, we will denote distur-
bances affecting the integrator state as η1 and distur-
bances affecting the observer state as η2.) see Eq. (2).
Thus, we can determine the impact of different errors
on the system, by calculating the sensitivity functions
for each disturbance.

To exemplify this approach, the sensitivity func-
tions for errors affecting the example given in Sect. 4.1
were calculated. The results are shown in Fig. 5, where
the x-axis shows angular frequency and the y-axis how
much sine shaped disturbances (errors) of each angular
frequency are amplified. As control signals are sampled,
errors will be rectangular shaped, consisting of various
frequencies. However, the main frequency component
will be the occurrence rate of the error, and thus, ana-
lyzing the impact of errors with this frequency will in
most cases give a good assumption.

Fig. 5 Sensitivity functions from ηu (control signal), η1 (inte-
grator), and η2 (observer) to output, y. The plots have different
scales.
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As can be seen, the curve for errors affecting the
integrator state (η1 in the right plot of Fig. 5) assumes
the highest value at almost all frequencies, i.e., the sys-
tem is most sensitive for these errors. The highest value
for the sensitivity function of η1, about 8, is assumed
at 0Hz, which means that the magnitudes of constant
errors affecting multiple consecutive samples, i.e., per-
sistent errors, of the calculation of the integrator state,
will be amplified about 8 times and have the largest im-
pact on the system output. As the sensitivity is greater
than 0, the errors will result in a steady-state influence
on the process output (i.e., the system will never return
to the reference value).

For the control signal (ηu) and the observer state
(η2) in Fig. 5 persistent errors (frequency = 0Hz) are
rejected (asymptotically assume 0, meaning that the
impact of the error will decrease to 0). Instead the max-
imum value for their sensitivity functions are reached
for frequent errors at 23.2 rad/s = 3.7Hz. Thus, for er-
rors affecting the control signal and observer state, the
largest slip impact (the error that is amplified most)
will be for errors occurring with this frequency.

4.3 Impulse Response Analysis

To more accurately estimate the impacts of sporadic
errors, one can study how the output value is affected
by impulse disturbances occurring in the control algo-
rithm (ηu and ηz in Eq. (2)), by calculating the impulse
response functions, h(k) (described in Sect. 4.2 and in
Appendix A). These functions show how the output
value is changed due to impulses (sporadic errors) with
magnitude 1, affecting the calculation of the different
signals of Eq. (2). As we consider linear systems, the
impact on the system will be proportional to the mag-
nitude of the error. Thus, the impact of an error with
magnitude m will be† mh(k).

The impulse response analysis also reveals how fast
the output returns to the correct value, due to the in-
herent robustness of the system (i.e., without adding
any error recovery), after an error has occurred. This
time can be used to determine how often errors can oc-
cur without their impacts being superimposed, i.e., it
can be used for classifying errors into sporadic errors
or frequent errors. It should be noted that due to the
linearity, the time constant is independent of the mag-
nitude of the error. This means that if the response
to a error with a certain magnitude have decreased to
x% of its maximum value after a certain time, errors
with other magnitudes will also have decreased to x%
of their maximum value, after the same time.

To exemplify this analysis method, the output and
control signal responses to impulse data errors for the
example described in Sect. 4.1 were calculated. Fig. 6
shows how the slip is affected (the nominal value is set
to 0) by an impulse (sporadic error) affecting the cal-
culation of the control signal (the left plot) and state

Fig. 6 Output signal responses to impulse data errors in ηu

(control signal), η1 (integrator) and η2 (observer). The plots
have different scales.

Fig. 7 Control signal responses to impulse data errors in ηu

(control signal), η1 (integrator) and η2 (observer). The plots
have different scales.

space (the right plot). Fig. 7 shows how the control sig-
nal is affected for the same impulse affecting the control
signal (the left plot) and state space (the right plot).

It can be seen that sporadic errors have larger im-
pact when affecting the states compared to the con-
trol signal (i.e., the slip diverges more from its nominal
value of 0 in the left plot compared to the right plot of
Fig. 6. This is due to the large scaling of the state vari-
ables when calculating the control signal (matrix C in
Eq. (8)) and that the errors will be stored in the states
of the controller (the old values of the state z in Eq. (2)
are used for calculating the new state and the control
signal), and thus, affect several samples, whereas con-
trol signal errors will only directly affect one sample.

Furthermore, it can be seen that the integrator
state is more sensitive to sporadic errors than the ob-
server state (the magnitude is higher for the solid line
η1(k)in the right plot of Fig. 6 than for the dashed line
η2(k)). However, looking at the right plot of Fig. 7 it
can be seen that errors in the observer state generate
control signals with higher magnitudes (the dashed line
have a higher maximum magnitude than the solid line).

It can also be seen from Fig. 6 that the system
returns to the nominal slip, 0, about 0.4 s (in this case
40 samples, th = 0.01 s) after the error occurred. This
means that if errors do not occur more frequently than
this, the effect of them will not be superimposed.

†For an error that manifests as an impulse with magni-
tude m at time s = 0, i.e., η = mδ(k), the impact on the
process output will be described by y(k) =

P∞
l=0 h(l)mδ(k−

l) = mh(k).
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4.4 Norm Analysis

We base our failure criteria on magnitude and duration
of the control error, see Sect. 2. To get numerically
comparable values, the following norms are useful:

‖h‖1
�
=
∑

k

|h(k)| and ‖h‖∞ �
= sup

k
|h(k)| (9)

where sup denotes the supremum function. The norm
‖h‖∞ is the maximum absolute value of the error re-
sulting from the disturbance. The norm ‖h‖1 is the
sum of the absolute control errors over time. The es-
sential difference is that ‖h‖∞ only gives information
on the largest size of the error. When combined with
‖h‖1, information on the duration of the error is also as-
sumed. The choice of controller state-realization (i.e.,
which values for the control constants of Eq. (1) that
are chosen) will affect the size of both norms (‖h‖). In
particular, ‖h‖ can be made arbitrarily small with a
scaling of the state variables. In the example described
in Sect. 4.1, all state realizations are scaled such that
a step-input command-signal results in state-variables
with unit stationary value, see the plot in Fig. 4 (b).

If the failure criteria are defined using the previ-
ously described norms, the maximum single bit error,
n, which is tolerated can be found through:

n < nlim∞ :=M + log2(C1/‖h‖∞)
n < nlim1 :=M + log2(C2/‖h‖1)

(10)

where C1 and C2 are the failure limits specified by the
designer (e.g., for the brake-slip controller, in Sect. 4.1,
C1 was specified but not C2) for the failure criteria
described in Sect. 2 and M is the number of fractional
bits used in the fixed-point representation. It follows
that multiple errors in bits satisfying n < nlim − 1 do
not lead to failure.

The impulse-response norms for the example de-
scribed in Sect. 4.1 are shown in Table 3. The largest bit
for which a single-bit or multiple-bit error does not re-
sult in failure (i.e. the control error exceeds C1 = 0.01,
see Sect. 4.1), according to Eq. (10), is shown in Table 4.

Table 3 Impulse-response norms calculated from Eq. (9).

Norms hu(k) h1(k) h2(k)
‖h‖1 0.0245 8.28 3.08
‖h‖∞ 0.00248 0.766 0.307

Table 4 Largest bit-number for which a single or multiple bit
impulse-error is tolerated (calculated from Eq. (10) for the failure
criterion C1).

ηu η1 η2

Single bit error 25 16 18
Multiple bit errors 24 15 17

4.5 Step Response Analysis

Persistent errors change the dynamics of the closed-loop
system, and thus, control performance is generally sub-
stantially affected. Therefore, most of these errors need
to be handled, and thus, the analysis method in this pa-
per is focused on how fast errors need to be detected in
order for the system to recover before it fails.

In many cases, errors occurring several samples in
a row with high constant magnitude (i.e., mA(k) = mA

in Table 2), are the most harmful errors, i.e., the er-
rors that in shortest time will result in failures (the
errors with the highest magnitude can be identified
with sensitivity analysis, see Sect. 4.2). Such errors will,
at least for the first samples, have similar impacts as
step disturbances (the step function, θ, is described in
Sect. 3.1). Thus, we can study the system response to
step disturbances to find when (after how many sam-
ples) the failure limits are reached for different error
magnitudes†.

To exemplify this approach we calculate the step
response functions for the brake-slip controller de-
scribed in Sect. 4.1. The result is shown in Fig. 8. For
persistent errors with constant magnitude affecting the
calculation of the control signal (the left plot) or the
observer state (the dashed line, η2(k), in the right plot)
of Eq. (2), the slip returns to the nominal value 0 within
0.4 s. This is due to the fact that the controller uses an
integrator state designed to mask the effect of constant
disturbances. However, when such errors affect the in-
tegrator state directly (the solid line in the right plot),
the slip will never return to its nominal value.

The number of samples between the fault occur-
rence and until the C1 or C2 limits are exceeded, can
be used as a measure of the required system recovery

Fig. 8 Output responses to step fault disturbances in ηu (con-
trol signal), η1 (integrator) and η2 (observer). The plots have
different scales.

†For a fault that manifests as a step with magnitude
m on state z occurring at time t = 0, i.e., ηz = mθ(k),
the impact on the process output will be described by
y(k) =

P∞
l=0 hz(l)mθ(k − l) = m

Pk
l=0 hz(l). Using this

equation we can find the first sample (if any), k, at which
the requirements are no longer fulfilled, that is, the time
within which the system needs to be recovered to avoid sys-
tem failures.
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time. As an example, consider an error occurring in
the integrator state (the solid line in the right plot of
Fig. 8). Closer inspection of the plot shows that after
0.02 s (two samples) the control error reaches 0.0483
for an error with magnitude† 1, which is well above
C1 = 0.01 (C1 was specified in Sect. 4.1). This means
that recovery must have been initiated before 0.02 s af-
ter occurrence of the error.

4.6 White Noise Response Analysis

For determining the impacts of persistent errors which
magnitude is not constant but still uncorrelated with
the control and state signals, we describe the errors
as uncorrelated stochastic processes, with variance σ2.
Then, a requirement on the maximum tolerated vari-
ance on the slip (a new failure criterion C3), can be
specified. To determine which errors violate this re-
quirement, we can calculate the resulting variance†† of
errors with different variances similar to Eq. (10) as:

n < nlim2 :=M + log2(C3/‖h‖2
2) (11)

4.7 Simulations

Even if the previously described analysis methods will
provide important information on the effect different
data errors will have on the system, simulations may
be necessary to get more detailed information on spe-
cific errors (mainly frequent errors). As we are looking
at linear systems, the impacts of several errors occur-
ring closely in time (i.e., another error occurs before
the system has returned to the correct state after the
previous error) can be simulated by superimposing the
impact of each error, for instance by using a tool such

Fig. 9 Simulations of the impact of three errors with different
magnitudes occurring close in time.

†For an error occurring in the most significant bit (i.e.,
with magnitude 231 · 2−23 = 28), the control error will be
(due to the linearity): 0.0483 · 28 ≈ 12.4, i.e., much higher.

††The variance can be calculated through: E[y2] =

E
h�P

l h(l)η(k − l)
��P

j h(j)η(k − j)
�i

=
P

l h(l)2σ2 =

‖h‖2
2σ

2, where η determines which calculation of the con-

trol algorithm Eq. (2) that is affected and ‖h‖2
2

�
=
P

k h(k)2.

as Simulink (a toolbox for MATLAB, [7]). In the sim-
ulation environment it is possible to define when differ-
ent disturbances (errors) should occur and which mag-
nitudes they should have. Then, the resulting output
can be observed to see whether any failure criteria is ex-
ceeded, see Fig. 9. Simulations can be time-consuming,
but by utilizing the information gained from the analy-
sis methods, only a small number of errors is generally
necessary to simulate.

5. Conclusions and Future Work

We have described how analysis methods adopted from
control theory can be used for understanding the im-
pact of data errors on control systems. The results
obtained from the analysis of an automotive brake-slip
controller showed that many transient faults are tol-
erated by the control system and that the part most
sensitive to data errors is the integrator state. This
indicates that many results found from fault injection
experiments [1], [9] can be estimated from analysis al-
ready at early design phases. Such information is valu-
able for safety-critical system designers when deciding
on which fault tolerance techniques are efficient to use.

More specifically, using the described analysis it is
possible to estimate: i) the control performance degra-
dation (i.e., the control error) different errors cause, ii)
the maximum allowed recovery time before a system
failure occurs, iii) how often errors can occur without
their impacts being superimposed, iv) the error mag-
nitude dependency on the data format used. We have
also used the analysis to design a controller that takes
control signal limitations into account, to reduce the
impact of data errors, [2].

In future work we will investigate how the analy-
sis methods presented in this paper can be used when
designing executable assertions.
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Appendix A: The Closed-Loop System

Let

x(k + 1) = Φpx(k) + Γpu(k)

y(k) = Cpx(k)
(A· 1)

with x ∈ R
nx , Φp ∈ R

nx×nx , Γp ∈ R
nx×1, and Cp ∈

R
1×nx be an arbitrary state realization of the process
subject to control. Combined with the controller, Eq.
(2), this yields the closed-loop system

ξ(k + 1) = Φclξ(k) + Γuc

cl uc(k) +∑
z

Γηz

cl ηz(k) + Γ
ηu

cl ηu(k) (A· 2)

y(k) = Cy
clξ(k) (A· 3)

u(k) = Cu
clξ(k) +Ducuc(k) + ηu(k) (A· 4)

with ξ = (x; z) and

Φcl=
(
Φp + ΓpD

yCp ΓpC
ΓyCp Φ

)
Γuc

cl =
(
ΓpD

uc

Γuc

)

Γηz

cl =
(
0
ez

)
Γηu

cl =
(
Γp

0

)
(A· 5)

Cy
cl =

(
Cp 0

)
Cu

cl =
(
DyCp C

)
where ez is the z:th column of the unit matrix Inz×nz .
The impulse-responses from the computation-errors
ηz(k) and ηu(k) to the process output y(k) are

hz(k) =
{
0, k ≤ 0
Cy

clΦ
k−1
cl Γ

ηz

cl , k > 0

hu(k) =
{
0, k ≤ 0
Cy

clΦ
k−1
cl Γ

ηu

cl , k > 0

(A· 6)

The process output-responses to the disturbances ηz

and ηu are now described by

y(k) =
∞∑

i=0

hz(i)ηz(k − i)

y(k) =
∞∑

i=0

hu(i)ηu(k − i)

(A· 7)

respectively. The sensitivity functions

Hz(z) = Cy
cl(zI − Φcl)−1Γηz

cl

Hu(z) = Cy
cl(zI − Φcl)−1Γηu

cl

(A· 8)

are the Z-transforms of the impulse responses, and de-
scribe the frequency responses from ηz and ηu to the
output y. Evaluation of the sensitivity functions at
z = eiωth , where th is the sampling time, gives the sta-
tionary response of the closed-loop system for pure sinu-
soidal inputs ηz(k) = sin(kωth) and ηu(k) = sin(kωth)
as y(k) = |Hz(eiωth)| sin(kωth + arg(Hz(eiωth))) and
y(k) = |Hu(eiωth)| sin(kωth + arg(Hu(eiωth))) respec-
tively. Please refer to [12] for more details.

Appendix B: The Brake-Slip Controller

The wheel-slip is the normalized relative velocity be-
tween the rotating wheel and ground: λ = (rω − v)/v,
where r is the wheel radius, ω the wheel angular veloc-
ity, and v the speed of the car. The braking force of a
wheel is proportional to the wheel slip for 0 ≤ λ � 0.2,
as Fb = FzCλλ, where Fz is the normal load on the tire
and Cλ is a tire-stiffness parameter. A simple quarter-
car model of the slip dynamics is

v/α
dλ(t)
dt

+ λ(t) = β/ατb(t) (A· 9)

with α = mgr2Cλ/4J , β = r/J , where m is the car
mass, and J is the wheel inertia. The braking torque
τb(t) is described by the actuator dynamics

Ta
dτb(t)
dt

+ τb(t) = Kau(t) (A· 10)

Combining Eq. (A· 9) and Eq. (A· 10), and discretizing
with zero-order-hold (ZOH) sampling with period th
results in the second order open-loop system Eq. (7).

Numerical values used in the example are v = 30
m/s, m = 2000 kg, J = 16 kgm2, r = 0.4 m, Cλ = 5,
Fz = 5000 N, g = 9.81 kgm/s2, Ta = 0.05 s, and Ka =
1000.

A RST-controller [12] is designed to obtain a
closed-loop system with poles in a Butterworth pat-
tern with ωcl = 30 rad/s and opening angle 45◦. The
controller includes integral action. An observer pole is
introduced at 2ωcl. A modal form state-realization of
the controller is found in Eq. (8).
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