
Efficient Verification of Program Fragments:
Eager POR ?

Patrick Metzler, Habib Saissi, Péter Bokor, Robin Hesse, and Neeraj Suri

Technische Univeristät Darmstadt,
{metzler, saissi, pbokor, hesse, suri}@deeds.informatik.tu-darmstadt.de

Abstract. Software verification of concurrent programs is hampered by
an exponentially growing state space due to non-deterministic process
scheduling. Partial order reduction (POR)-based verification has proven
to be a powerful technique to handle large state spaces.
In this paper, we propose a novel dynamic POR algorithm, called
Eager POR (epor), that requires considerably less overhead during
state space exploration than existing algorithms. epor is based on a
formal characterization of program fragments for which exploration
can be scheduled in advance and dependency checks can be avoided.
We show the correctness of this characterization and evaluate the
performance of epor in comparison to existing state-of-the-art dynamic
POR algorithms. Our evaluation shows substantial improvement in the
runtime performance by up to 91%.

Keywords: model checking, partial order reduction, concurrent programs, for-
mal verification

1 Introduction

Automated verification of concurrent programs is known to be a hard prob-
lem [13]. The non-determinism of scheduling results in an exponential number
of possible interleavings that need to be systematically explored by a program
verifier. By constraining the considered class of properties, for instance to dead-
lock and local state reachability, POR techniques [10] attempt to tackle this
problem by reducing the number of interleavings to be explored. A dependency
relation between transitions gives raise to equivalence classes of executions, re-
ferred to asMazurkiewicz traces [8], such that it is sufficient for a program verifier
to explore only one representative per Mazurkiewicz trace.

The effectiveness of POR approaches relies on the precision of the dependency
relation. In the original POR approaches, dependencies are calculated statically
leading to an inaccurate over-approximation. Dynamic partial order reduction
approaches [1,3,6] tighten the precision of the dependency relation by considering
only dependencies occurring at runtime, leading to a less redundant exploration.
? To appear at ATVA 2016. The final publication will be available at link.springer.
com.

link.springer.com
link.springer.com

Process 1:
t1: write x

Process 2:
t2: read x

Process 3:
t3: read x

Fig. 1: Readers-writers benchmark with one writer and two readers.

While exploring the state space of a program, dynamic POR algorithms
identify pairs of dependent transitions which additionally need to be explored
in reversed order so that all Mazurkiewicz traces are covered. Such pairs of
transitions constitute a reversible race [1]. In order to detect all reversible races
of a system, a dynamic POR algorithm checks for each transition whether it
constitutes a race with any previous transition in the current path. During each
such race check, the algorithm needs (often multiple times) to check whether
two transitions are dependent. Therefore, dependency checks constitute a large
part of any dynamic POR algorithm’s runtime overhead.

In this paper, we propose Eager POR (epor), an optimization of dynamic
POR algorithms such as sdpor [1] that significantly reduces the number of de-
pendency checks. epor eagerly creates schedules to bundle dependency checks
for sequences of transitions instead of checking dependencies in every visited
state. These sequences, called sections, correspond to program fragments of one
or more statements of each process. By checking races in a section only once,
many additional race checks and dependency checks can be avoided. A new
constraint system-based representation of Mazurkiewicz traces ensures that all
reversible races inside a section are explored in both orderings. As a result, epor
requires significantly fewer dependency checks compared to other DPOR algo-
rithms where dependencies are checked after the execution of every transition.

Contributions. Our contributions are threefold. (1) We introduce a gen-
eral optimization of POR algorithms that explores program fragments, called
sections. We formally model section-based exploration by a constraint system
representation of Mazurkiewicz traces and proof its correctness. (2) We present
a dynamic POR algorithm called epor that enables efficient verification of con-
current programs against local state properties and deadlocks. epor shows how
to extend existing POR algorithms with section-based exploration. Finally, (3)
we implement and evaluate epor using well established benchmarks written in
a simplified C-like programming language.

2 Motivating Example

As a motivating example, consider the Readers-Writers benchmark in Figure 1
(also used in [1, 3]). Process 1 writes to the shared variable x (t1), Processes
2 and 3 read from x (t2 and t3). The dynamic dependencies for all states are
D = {(t1, t2), (t2, t1), (t1, t3), (t3, t1)}; the operations t2 and t3 are commutative
(do not constitute a race), while both t1, t2 and t1, t3 are non-commutative,
(constitute a race).

Our approach is based on the observation that the set of all Mazurkiewicz
traces of program fragments as in the Readers-writers example can be calculated
without exploring any program states and checking for races between operations
only once. The program of Figure 1 has 4 (Mazurkiewicz) traces and the dynamic
POR algorithm sdpor [1] explores one execution per trace. Each execution con-
sists of 3 events, hence sdpor performs 3 race checks per execution (each time
an operation is appended to the current partial execution, a check is performed
whether the current operation constitutes a race with any previous operation of
the current partial execution). Each race check consists of several dependency
checks (in order to decide whether e1 and e2 constitute a race, pairwise depen-
dencies need to be determined for all events that occur between e1 and e2). In
total, sdpor performs 12 race checks and 25 dependency checks.

By exploiting the fact that all executions consist of the same operations and
contain the same races, it is possible to reduce the number of race checks to 3 and
the number of dependency checks to 8: after exploring an arbitrary execution of
the program, we know that each execution consists of t1, t2, and t3 and contains
the races (t1, t2), (t1, t3) (either in this or in reversed order), which can be de-
termined using 3 race checks. We construct four partial orders {(t1, t2), (t1, t3)},
{(t2, t1), (t1, t3)}, {(t1, t2), (t3, t1)}, and {(t2, t1), (t3, t1)}, which correspond to
the four traces of the program. By computing a linear extension of each partial
order, we obtain an execution of each trace. In Section 3.2, we explain how to
generalize this idea to systems with dynamic dependencies.

3 Constraint System-based POR

3.1 System Model

This section introduces basic notions about the system model and notations used
throughout the rest of this paper.

We write u = a1 . . . an for the sequence consisting of the elements a1, . . . , an
and define range(u) := {1, . . . , n}. The empty sequence is denoted by ε. Con-
catenation of a sequence u and a sequence v or an element t is written as u · v
or u · t, respectively. For i ∈ range(u), we define u[i] := ai, l[. . . i] := a1 . . . ai,
and l[i . . .] := ai . . . an. We model concurrent programs as transition systems
TS = (PID , S, s0, T), where PID is a finite set of process identifiers, S is a finite
set of states, s0 ∈ S is the initial state of the system, and T is a finite set of
transitions such that

– each transition t ∈ T is mapped to a unique process identifier pid(t) ∈ PID
– for all t ∈ T , t : S ⇀ S (transitions are partial functions from S to S), where

we write t ∈ enabled(s) if t is defined at s
– for all s1, . . . , sn+1 ∈ S and any finite sequence t1 . . . tn ∈ T such that
ti(si) = si+1, s1 6= sn+1 (the state graph is acyclic)

– transitions do not disable other transitions:

∀t, t′ ∈ T. ∀s, s′ ∈ S. s t−→ s′ ∧ t′ ∈ enabled(s) ∧ t′ /∈ enabled(s′)⇒ t = t′

– transitions do enable only transitions from the same process: ∀t, t′ ∈
T. ∀s, s′ ∈ S. s t−→ s′ ∧ t′ /∈ enabled(s) ∧ t′ ∈ enabled(s′)⇒ pid(t) = pid(t′)

– at most one transition per process is enabled at a given state: ∀s ∈ S.∀t, t′ ∈
T. pid(t) = pid(t′) ∧ t, t′ ∈ enabled(s)⇒ t = t′

To require that transitions do not disable other transitions simplifies the presen-
tation but is not a general limitation as distinguishing between the termination
and temporary blocking of a process would obviate the need for this restriction.
A similar restriction is used in [1]. Acyclicity restricts our method to terminating
programs in favor of a stateless exploration.

For the rest of this paper, we assume that there is an arbitrary transition
system TS = (PID , S, s0, T) which models a concurrent program under analysis.
Where not otherwise mentioned, we refer to this transition system.

Paths in the state graph of TS correspond to (partial) executions of the pro-
gram modeled by TS . We represent such paths as transition sequences t1 . . . tn for
some t1, . . . , tn ∈ T . We write s1

t1...tn−−−−→ sn+1 if there exist states s2, . . . , sn+1 ∈ S
such that si

ti−→ si+1 for all 1 ≤ i ≤ n, i.e., t1 . . . tn corresponds to a path in
the state graph of TS . Furthermore, if s1

u−→ s2 for some states s1, s2 and a
transition sequence u, we write u(s1) to denote the state s2 and call u a feasible
sequence at s1, written u ∈ feasible(s1).

A particular occurrence of a transition in a transition sequence is called an
event. In a transition sequence u = t1 . . . tn feasible at s0, we represent an event
ti by its index i in u.

We distinguish between data dependencies and dependencies caused by the
program control flow of a process. The latter is modeled by a program order for
TS , which is a partial order PO ⊆ T × T such that ∀(t1, t2) ∈ PO . pid(t1) =
pid(t2) (PO only relates transitions of the same process) and ∀t, t′ ∈ T. ∀s, s′ ∈
S. s

t−→ s′ ∧ t′ /∈ enabled(s) ∧ t′ ∈ enabled(s′) ⇒ (t, t′) ∈ PO (transitions enable
only transitions which are successors w.r.t. the program order) and ∀(t, t′) ∈
PO .∃s, s′ ∈ S. s t−→ s′ ∧ t′ /∈ enabled(s) ∧ t′ ∈ enabled(s′) (two transitions are in
relation w.r.t. the program order only if the first transitions enables the second
transition). We write t1<PO t2 for (t1, t2) ∈ PO .

Dynamic data dependencies are modeled by a relation D ⊆ T × T × S such
that ∀t1, t2 ∈ T. ∀s ∈ S. (t1, t2, s) 6∈ D ⇒ (t1 ∈ enabled(s) ∧ t2 ∈ enabled(s) ⇒
∃s′. s t1t2−−→ s′ ∧ s t2t1−−→ s′). Furthermore, ∀t1, t2 ∈ T. ∀s ∈ S. (t1, t2, s) ∈ D ⇒
(t1, t2) /∈ PO (transitions in program order are not data dependent).

The combination of program order and data dependency gives rise to partial
orders that characterize the Mazurkiewicz traces of TS . For transition sequences
v = t1 . . . tn and v′ feasible at some state s = u(s0), we represent the ordering
induced by dynamic data dependencies as the sequence dep(u, v), defined as the
sequence that consists of the elements of {(i, j) : (ti, tj , t1 . . . ti−1(s)) ∈ D∧i < j}
ordered with respect to (i, j) < (i′, j′) if i < i′, or i = i′ and j < j′. We define
Mazurkiewicz equivalence as v ' v′ if dep(u, v) = dep(u, v′).

For a given transition t and a state s, we write dependencies(t, s) := {t′ :
(t, t′, s) ∈ D} for the set of transitions that are dependent with t.

Process 0:
t00: y := 0
t01: x[y] := 1

Process 1:
t10: if x[0] = 0
t11: then z := 1

Process 2:
t20: y := 1

Fig. 2: A program with branchings.

As we use sdpor as a basis to present epor, we adapt the corresponding
definition of reversible races [1]. Two data dependent transitions ti, tj in some
transition sequence u = t1 . . . tn feasible at s0 constitute a reversible race, written
i -u j, if there exists an equivalent sequence in which ti and tj are adjacent
and dependent; formally, we define i -u j ⇔ (i, j) ∈ dep(ε, u) ∧ ∀i < k <
j. (i, k) 6∈ dep(ε, u) ∨ (k, j) 6∈ dep(ε, u) ∧ tj ∈ enabled(t1 . . . ti−1tk1

. . . tkm
(s0)),

where tk1
. . . tkm

is the sequence ti+1 . . . tj−1 with all transitions removed that
are neither data dependent nor in program order with tj .

3.2 Exploring Programs in Sections

Requirements for Sections. As described in our motivating example (Sec-
tion 2), epor requires only 3 instead of 12 race detections and only 8 instead
of 25 dependency checks when exploring the Readers-Writers program. This re-
duction is possible because two conditions are met: every maximal transition
sequence feasible at the initial state of Readers-Writers contains the same tran-
sitions and dependencies do not depend on states (it is possible to precisely
calculate all dependencies statically).

In order to generalize our approach to arbitrary programs, we identify pro-
gram fragments called sections where a generalization of these two conditions
hold: (A) every execution of the section contains the same set of events and
(B) dependencies inside the section do not change during any execution of the
section (it is possible to precisely calculate all dependencies of the section with
the information given at the first state of the section). Once all traces for a
section are explored, epor performs the same race checks as sdpor in order to
find races between events before and inside the current section.

Throughout this section, we use the program of Figure 2 as an example
to explain conditions (A) and (B). Here, three processes work on the shared
variables x, y, and z, where x is an array of length two. The statements labeled
t00, t01, and t10 constitute a section. Including t11 in the same section would
violate condition (A) and including t20 would violate condition (B), as detailed
below.

In order to meet condition (A), we have to ensure that no transition is enabled
in one trace of a section while it is disabled in another trace of the section.
For this, we define branching transitions as transitions which enable different
program order successors depending on the state it is executed in:

branching(t) :⇔ ∃s, s′ ∈ S. t ∈ enabled(s) ∧ t ∈ enabled(s′)∧
(enabled(t(s)) \ enabled(s)) 6= (enabled(t(s′)) \ enabled(s′)).

For the example of Figure 2, the statement t11 cannot be part of the same
section as t10 because t10 is a branching transition and t11 is a program order
successor of t10.

As long as sections do not contain any branching transition together with one
of its program order successors, condition (A) is satisfied. To see this, assume that
there exists a transition sequence u in a section such that u becomes unfeasible
when transformed to u′ by swapping only transitions that are not in program
order relation. Let t1 be the first transition in u that is not enabled at the
corresponding state in u′. Since transitions cannot disable other transitions by
definition, there exists some transition t2 that occurs before t1 in u and enables
t1 in u but does not enable t1 in u′. We have t2<PO t1, hence t2 occurs before
t1 in u′ as well. Transition t2 is enabled in both u and u′ because t1 is the first
transition not enabled in u′. Since t2 enables different transitions depending on
the state it is executed in, it is a branching transition, contradiction.

A section satisfies condition (B) if all of its traces contain the same set of
dependencies or, equivalently, if the dependencies inside the section can be de-
termined at the first state of the section. This condition holds if swapping two
dependent transitions inside a section does not influence whether following tran-
sitions are dependent. We characterize such a pair of dependent transitions that
influences following dependencies as hiding dependency so that the absence of
hiding dependencies implies (B):

t1
∗−→s t2 :⇔ ∃s1, s′1, s2, s′2 ∈ S. s

t1−→ s1
t2−→ s′1 ∧ s

t2−→ s2
t1−→ s′2

∧ dependencies(t2, s
′
1) 6= dependencies(t2, s

′
2).

In the example of Figure 2, the statement t20 cannot be in the same section
as statement t00 because they constitute a hiding dependency: the order in which
t00 and t20 are executed influences the fact whether t01 and t10 are dependent
and constitute a race.

A section which contains no hiding dependency trivially satisfies condi-
tion (B). Although dependencies inside of sections have to be independent
of states inside the section, dynamic information about dependencies that is
known at the beginning of a section can be accounted for. Therefore, epor
makes use of all dynamic dependency information just as sdpor.

Implementing Section Construction. In order to implement an algo-
rithm that relies on sections, it is desirable to determine where the next section
ends with only small overhead. Therefore, we present two static checks which
detect branching transitions (in order to ensure condition (A)) and hiding de-
pendencies (in order to ensure condition (B)).

When translating a program into a transition system, we statically classify all
transitions that model a branching statement as a branching transition, where a
branching statement is a statement with multiple program order successors, e.g.,
a conditional jump, an if-then-else construct, or a loop. This over-approximates
the set of all branching transitions (for example, a conditional jump with an
unsatisfiable condition would still be classified as a branching transition).

We prepare the check whether two transitions form a hiding dependency
by a static dependency analysis. For each transition t, we calculate the set of

program variables that can influence the address which is accessed by t. For each
such variable, all transitions writing to the variable are marked as potentially
influencing the address of t’s memory access. Two transitions with disjoint sets
of address-influencing transitions do not constitute a hiding dependency.

Constructing Mazurkiewicz Traces. Once transitions and the races of a
section are known (e.g., by executing an arbitrary interleaving until the end of
the current section), it is possible to calculate all Mazurkiewicz traces without
calculating any further program states as follows. A Mazurkiewicz trace can
be calculated by constructing a directed graph with statements as nodes and
an edge between two statements t and t′ whenever t should occur before t′ in
all representatives of the Mazurkiewicz trace. If the resulting graph is acyclic, it
induces a partial order that directly corresponds to a Mazurkiewicz trace and any
of its linear extensions is a representative of the Mazurkiewicz trace. Otherwise,
the graph contains a cycle and there exists no execution that obeys the ordering
of the graph.

For the example of Figure 2, we start by calculating a Mazurkiewicz trace
of the section containing t00, t01, and t10. We calculate the Mazurkiewicz trace
where t01 occurs before t10 by defining the following graph:

t00 t01 t10
po dep

The edge (t00, t01) represents the program order of Process 1 and the edge
(t01, t10) represents the (only) race of the section. Because the graph is acyclic,
there exists a linear extension of the induced partial order, t00t01t10, and we
found a Mazurkiewicz trace of the program. By swapping the direction of the
edge (t01, t10), we obtain a graph for another Mazurkiewicz trace where the
race t01 -t00t01t10 t10 is reversed. We do not swap the edge (t00, t01) because it
represents the program order, which is obeyed by all executions.

A linear extension of the induced partial order can be constructed in linear
time w.r.t. the number of nodes by iteratively removing a minimal node (a node
with no incoming edge) and all its outgoing edges [11]. If no minimal node is
found, the graph is cyclic.

By calculating Mazurkiewicz traces as described, it is possible to construct
representatives of all Mazurkiewicz traces “in advance”, i.e., without performing
any (typically expensive) program state computations.

3.3 Formal Foundations of Trace Construction

This section formalizes the notions introduced in Section 3.2 and details how
epor constructs Mazurkiewicz traces from a given transition sequence.

Section 3.2 describes sections as program fragments and specifies two condi-
tions (A) and (B) they have to satisfy in order to support our POR algorithm.
At the transition system level, we model a section as the set of transition se-
quences that correspond to an execution of the program fragment of the section.
We write section(u), where u is feasible at s0, for the set of transition sequences
that are feasible at u(s0) and include exactly those transitions that model the
statements of a section. Formally, section(u) includes all transition sequences

v = t1 . . . tk that are feasible at u(s0) and satisfy (where conditions (A) and (B)
have been introduced informally in Section 3.2):

(A): for each branching transition t in v, no transition in program order with t
follows t in v: ∀1 ≤ i ≤ k. branching(ti)⇒ ∀i < j ≤ k.¬ti<PO tj .

(B): v contains no hiding dependency: ∀1 ≤ i ≤ k. ∀i < j ≤ k.¬ti
∗−→s tj , where

s = t1 · . . . · ti−1(s0).
– maximality: There is no transition t such that v · t satisfies the above re-

quirements.

For some section(u), a POR algorithm ideally explores only a subset
section-rep(u) ⊆ section(u) that contains exactly one representative of each
Mazurkiewicz trace of the transition sequences in section(u). In order to
formalize the generation of section-rep(u), we introduce trace constraint
systems. Each satisfiable trace constraint system corresponds to the fragment
of a Mazurkiewicz trace. The constraints of a trace constraint system in
conjunction with the program order specify the fragment’s partial order of
events. By swapping those constraints, it is possible to reverse races and thereby
generate all transition sequences of section-rep(u) for some u.

Formally, a trace constraint system is a tuple c = (A,C, l) where

– A = {1, . . . , k} for some k (the variables of c).
– C is a list of pairs (i, j) ∈ A×A (the constraints of c).
– l : A→ T is a function which labels the elements of A with transitions.

If for a given transition sequence v = t1 . . . tn feasible at some s = u(s0) we
have k = n, l(i) = ti for all 1 ≤ i ≤ n, and C = dep(u, v), we call c the trace
constraint system of u at s and write c = CS (u, v).

Given a state u(s0) for some transition sequence u, one can construct a
transition sequence v from section(u) by starting with v = ε and iteratively
adding transitions enabled at u · v(s0) until adding another transition would
violate one of the conditions (A) and (B). All remaining transition sequences of
section-rep(u) can subsequently be constructed by the use of trace constraint
systems as follows. First, the trace constraint system CS (u, v) that corresponds
to the trace of v is constructed. Subsequently, all trace constraint systems which
are equal to CS (u, v) except for one or more swapped constraints are constructed.
The set of these constraint systems is called traces(u) and defined as

traces(u) := {(range(v), C, l) : ∀i ∈ range(v). l(i) = v[i]
∧ range(C) = range(dep(u, v))

∧ ∀i ∈ range(C). (C[i] = dep(u, v)[i]

∨ ∃α1, α2 ∈ range(v). (C[i] = (α2, α1) ∧ dep(u, v)[i] = (α1, α2)))}
for some v ∈ section(u).

A solution v of a trace constraint system c = (A,C, l), written
v ∈ solutions(c), is a transition sequence that (1) contains exactly the
transitions that occur in the image of l and (2) obeys the constraints in C and

(3) respects the program order for the transitions they contain. Formally, we
require for v that the following holds.

– There exists an injective (1-to-1) function σ : A → A such that ∀(α1, α2) ∈
A. (σ(α1), σ(α2)) ∈ C ⇒ α1 ≥ α2 (σ respects the constraints C) and
∀α1, α2 ∈ A. (l(σ(α1))<PO l(σ(α2)) ⇒ α1 ≥ α2 (σ respects the program
order PO).

– v = l(σ(1)) · · · l(σ(n))

We call c satisfiable if a solution of c exists. A solution of a satisfiable c can be
constructed in linear time w.r.t. the number of transitions that are contained
in c. For example, create a linear extension of the partial order induced by the
union of the constraints of c and the program order for the transitions occurring
in c. If this union contains cycles, c is not satisfiable, which is easily detected by
a linear extension algorithm.

Using the notion of traces(u), one can construct section-rep(u) as a set
that contains exactly one solution of each satisfiable trace constraint system
in traces(u). As each trace constraint system in traces(u) is unique, only one
representative of each trace of section(u) is constructed, enabling an optimal
POR exploration. Correctness of section-based exploration is provided by the
following theorem; given two transition sequences v1, v2 in section(u), there
exists a constraint system c in traces(u) whose solutions are equivalent to v2.

Theorem 1 (Correctness of section-based exploration). ∀u ∈
feasible(s0).∀v ∈ section(u).∃c ∈ traces(u).∀w ∈ solutions(c). w ' v

Proof. Let u ∈ feasible(s0), v1, v2 ∈ section(u). Because of condition (A) in the
definition of section(), v1 and v2 contain the same events (1). Because of con-
dition (B) in the definition of section(), the same data dependencies appear in
v1 and v2 (D|dom(v1) = D|dom(v2)) (2). Let traces(u) be calculated on the basis
of CS (v1); by definition, all constraint systems in traces(u) contain exactly the
transitions of dom(v1) and contain exactly one constraint for each data depen-
dency in D|dom(v1). Additionally, there exists a constraint system in traces(u)
for every ordering of races in dom(v1). Hence, and because of (1) and (2), there
exists some c ∈ traces(u) whose constraints correspond to the ordering of races
in v2. By the definition of solutions(), all transition sequences w ∈ solutions(c)
are linear extensions of the partial order induced by the constraints of c and the
program order for dom(v1). Hence, w ' v2.

3.4 The Algorithm: Eager POR

This section presents our algorithm epor. It is an extension of the sdpor al-
gorithm [1]. Instead of exploring single transitions at each recursive call, epor
creates schedules for sections of the transition system under analysis. If no sched-
ule is currently present, epor creates new schedules for all transition sequences
in the section starting at the current state. If a schedule is present, it is used
to guide the exploration. Checks for races inside a section are only performed

once when schedules are created; checks for races between an event before the
current section and an event inside the current section are still performed at
every recursive call in order to ensure correctness.

As epor is based on sdpor, we repeat basic definitions from sdpor’s pseudo
code [1]. Let u be a transition sequence feasible at the initial state s0. The next
transition of a process p at some state u(s0) is denoted by nextu(p) and u · p
denotes u·nextu(p). For two processes p1, p2 with t1 = nextu(p1), t2 = nextu(p2),
we write u � p1♦p2 to denote that t1 and t2 are independent, i.e., (t1, t2, u(s0)) 6∈
D and (t1, t2) 6∈ PO . Overloading the notation enabled(), we define enabled(u) =
{p : ∃t ∈ enabled(u(s0)). pid(t) = p}. For v ∈ feasible(u(s0)), define p ∈ Iu(v)⇔
∃v′. u · v ' u · p · v′. For event e in u, pre(u, e) denotes the prefix of u up to but
not including e and notdep(u, e) denotes the subsequence of u that contains all
events that occur after e in u but are not dependent with e in u.

The main routine Explore(u, sec-start) takes as arguments a transition se-
quence u that identifies the current state of the transition system and an integer
sec-start that identifies the index in u at which the last section of u starts. The
initial call is Explore(ε, 0) so that the exploration starts at the initial state. epor
uses three global variables sleep, backtrack , and schedule, which map a transition
sequence to a set of processes. For some transition sequence u feasible at the ini-
tial state, sleep(u) corresponds to the sleep set at state u(s0); backtrack(u) holds
processes whose transitions need to be explored at state u(s0) in order to reverse
races between two events of different sections; schedule(u) holds processes which
are scheduled at state u(s0) in order to explore a section.

At some call Explore(u, sec-start), epor first checks whether a deadlock is
reached or u is sleep set-blocked (line 4). Subsequently, if no schedule for the
current state is present, the subroutine Fill_Schedule calculates section-rep(u) (as
described in Section 3.3) and corresponding schedules (lines 6–8).

The loop in lines 10–15 explores any transitions of processes that are
scheduled for the current state in order to explore a section. The subroutine
Race_Detection checks whether there are reversible races between an event before
the start of the current section (as specified in variable sec-start) and an event
inside the current section. This avoids race checks between two events that are
both inside the current section. For every reversible race that is found, the
reversed race is scheduled for later exploration just as in the sdpor algorithm.

Finally, the loop in lines 16–21 explores any transitions of processes that
have been scheduled for the current state in order to reverse a race. Before the
race check, the marker for the start of the current section is updated so that all
reversible races in the current transition sequence are found.

Correctness. epor is correct in the sense that it explores a representative
of every Mazurkiewicz trace that starts at s0 and ends at a deadlock, which is
expressed by the following theorem.

Theorem 2 (Correctness of epor). ∀u ∈ feasible(s0).∀w ∈ feasible(u(s0)).
∃v. v ' w∧ Explore(u, length(u)) calls Explore(v, ·), i.e., v is explored

Proof. By ind. on the ordering ∝ where u1 ∝ u2 if Explore(u1, ·) returned before
Explore(u2, ·) (as in [1]). Base case: trivial, as feasible(u(s0)) = ∅. Inductive step:

1 initially: Explore(ε, 0)
2 global variables:

sleep, backtrack , schedule = λu.∅
3 Explore(u, sec-start):
4 if (enabled(u) \ sleep(u)) = ∅ then
5 return
6 if schedule(u) = ∅ then
7 sec-start := length(u)
8 Fill_Schedule(u)
9 Done := ∅

10 while ∃p ∈ (schedule(u) \Done) do
11 Race_Detection(u, sec-start , p)
12 sleep(u) := {p′ ∈ sleep(u) : u � p♦p′}
13 Explore(u · p, sec-start)
14 add p to Done
15 add p to sleep(u)
16 while ∃p ∈ (backtrack(u) \ sleep(u)) do
17 sec-start := length(u)
18 Race_Detection(u, sec-start , p)

19 sleep(u) := {p′ ∈ sleep(u) : u � p♦p′}
20 Explore(u · p, sec-start)
21 add p to sleep(u)
22

23 Fill_Schedule(u):
24 foreach v ∈ section-rep(u) do
25 foreach prefix v′ = e1 . . . en of v do
26 add pid(en) to schedule(u · v′)
27 sleep(u · v′) := {p′ ∈ sleep(u · v′) : u �

p♦p′}
28

29 Race_Detection(u, sec-start , p):
30 foreach e ∈ u[. . . sec-start] with

e -u·p nextu(p) do
31 u′ := pre(u, e)
32 v := notdep(u, e) · p
33 if Iu′(v) ∩ backtrack(u′) = ∅ then
34 add some p′ ∈ Iu′(v) to backtrack(u′)

Fig. 3: The epor algorithm.

By [1], it is sufficient to prove that sleep(u) is a source set for feasible(u). Indi-
rectly assume that ∃w ∈ feasible(u(s0)).∀p ∈ sleep(u).∀v, w′. u ·w · v 6' u ·p ·w′.
Then there exists a race i -u·p·w′ j that distinguishes u·w·v and u·p ·w′. Case (1):
i and j belong to different sections. epor in lines 11 and 18 performs the same
backtracking as sdpor, hence ∃q ∈ sleep(u). q ∈ Iu(notdep(u · p ·w′, p)). By the
induction hypothesis, ∃v1, v2. u·w ·v1 ' u·q ·v2. E. Case (2): i and j belong to the
same section section(u′) f.s. u′. By the definition of Fill_Schedule, section-rep(u′)
is explored. By Theorem 1, section-rep(u′) contains a representative of every
trace in section(u′). Hence, ∃q ∈ sleep(u). q ∈ Iu(u · w). E.

4 Implementation and Evaluation

We implemented epor and sdpor in the Python programming language and
ran it on multiple benchmark programs that are written in a simple impera-
tive programming language where processes communicate over shared memory.
We used sequential consistency as a memory model, which corresponds to total
program orders. Two events are data dependent if one of the events writes to a
memory location the other event either reads from or writes to. All experiments
were run on 8 Intel i7-4790 CPUs at 3.60GHz with 16 GB main memory.

We use the runtime and the number of dependency checks as main metrics
for the comparison of epor and sdpor. A dependency check determines whether
two events are in the dynamic dependency relation of the current transition sys-
tem and is often performed several times in order to determine whether two
events constitute a reversible race. The complete results can be found in ap-

Table 1: Comparison of epor and sdpor on four well-known benchmarks.

Benchmark Algorithm Time(s) Traces Dep.Checks Speedup(%)

Readers-Writers (9) sdpor 0.668 256 60885 —
Readers-Writers (9) epor 0.400 256 3204 40.1
Readers-Writers (20) sdpor 6874.472 524288 1570045995 —
Readers-Writers (20) epor 2728.742 524288 17827145 60.3

Indexer (12) sdpor 0.413 8 27072 —
Indexer (12) epor 0.284 8 19325 31.2
Indexer (16) sdpor 13060.033 32768 1345407904 —
Indexer (16) epor 7998.984 32805 466384458 38.8

Last Zero (6) sdpor 0.911 96 66384 —
Last Zero (6) epor 0.724 96 29570 20.5
Last Zero (16) sdpor not terminating
Last Zero (16) epor 18408.671 262144 7232899654 —

Shared Pointer (50) sdpor 32.529 101 14074966 —
Shared Pointer (50) epor 17.398 101 11459539 46.5
Shared Pointer (100) sdpor 238.968 201 192707828 —
Shared Pointer (100) epor 170.762 201 154590222 28.5

pendix A.A missing runtime indicates that the corresponding algorithm did not
terminate for the given benchmark configuration within 35000 seconds (∼ 9.7
hours) or required more than 16 GB of memory.

In Table 1, we present results for four benchmarks which have previously
been used to evaluate dynamic POR algorithms. The Readers-Writers, Indexer,
and Last Zero benchmarks are used in [1] to evaluate sdpor; the Shared Pointer
benchmark is borrowed from [6]. The Readers-Writers (N) benchmark contains
a single writer and N − 1 readers. The Indexer (N) benchmark consists of N
processes that write to a shared hash table. It is the only benchmark presented
here that contains hiding dependencies. The scheduling of an execution influences
the control flow behaviour. The parameter of the Indexer benchmark specifies the
number of processes. The Last Zero (N) benchmark consists of N − 1 processes
that update a shared array and an additional process that reads the same array.
Again, the scheduling of an execution influences the control flow behaviour. The
Shared Pointer (N) benchmark consists of two equal processes which execute a
loop N times, followed by an update of the respective other’s process pointer.

In all four benchmarks, epor shows a speed-up over sdpor for the highest
parameter. The number of dependency checks is always lower for epor than
for sdpor (except for Indexer (11), where no races occur), while the number of
explored maximal transition sequences is equal between epor and sdpor for all
configurations.

Process PID:
x[(PID+1)%l] := x[PID]

(a) Ring

Process PID:
if x[PID] == 0 then
x[(PID+1)%l] := 1

if x[PID] == 0 then
x[(PID+1)%l] := 1

(b) Branching

Process PID:
x[(PID+1)%l] := x[PID]
x[(PID+1)%l] := x[PID]

(c) Ring Extended

Fig. 4: Three artificial benchmarks (x is a global array of length l, a is a local
variable. Each program statement is executed atomically.)

Table 2: Comparison of epor and sdpor on two simple benchmarks.

Benchmark Algorithm Time(s) Traces Dep.Checks Speedup(%)

Ring (17) sdpor 5984.174 131070 734642101 —
Ring (17) epor 538.031 131070 2096753 91.0
Ring (19) sdpor not terminating
Ring (19) epor 2884.695 524286 8653144 —

Branching (5) sdpor 1.180 311 145186 —
Branching (5) epor 1.045 311 114640 11.4
Branching (11) sdpor 19068.490 318363 2200202598 —
Branching (11) epor 8220.448 318978 1343673801 56.9

In order to investigate the performance of epor in special cases, we have
designed two artificial benchmarks Ring and Branching, which are depicted in
Figure 4b and 4a. They loosely resemble the communication of processes which
communicate in a ring, for example as in a ring election protocol. Every line is
executed atomically. The Branching benchmark consists of two branching state-
ments and two assignments; whether the assignments are executed depends on
the scheduling of a particular execution. In the Ring benchmark, each process
likewise communicates with its next process, but without control flow branch-
ings. The Ring benchmark is similar to the Readers-Writers benchmark, but
shows a higher number of dependencies, as each process is both reading and
writing. Selected results for these two benchmarks are depicted in Table 2.

For the Ring and Branching benchmarks, epor requires considerably less
dependency checks than sdpor for all configurations. The number of explored
traces is equal for epor and sdpor except for the Branching benchmark with 9 to
11 processes. The speed-up of epor over sdpor is very prominent for the Ring
benchmark; sdpor does not terminate for 19 processes. Equally significantly,
epor requires several orders of magnitude less dependency checks than sdpor.
For the Branching benchmark, epor still shows a considerable speed-up over
sdpor, however, the saving in terms of dependency checks is lower than for the
Ring benchmark.

Table 3: Comparison of epor, epor-sh (short sections), and sdpor on the
Ring Extended benchmark.

Benchmark Algorithm Time(s) Traces Dep.Checks Unsat.TCS Speedup(%)

Ring Extended (6) sdpor 70.729 38466 7537485 0 —
Ring Extended (6) epor 3412.561 38466 144095 16738750 -4724.8
Ring Extended (6) epor-sh 72.869 38466 6747840 126 -3.0
Ring Extended (8) sdpor 6552.194 1548546 806537903 0 —
Ring Extended (8) epor not terminating
Ring Extended (8) epor-sh 5061.882 1548546 720212287 510 22.7

Less Unsatisfiable Trace Constraint Systems. Interestingly, epor
shows a much higher runtime overhead than sdpor for a slightly changed
Ring benchmark as depicted in Figure 4c (Ring Extended). Here, each process
repeats its assignment so that the program order is not empty as opposed to
the Ring benchmark.

As will be detailed later, epor (in its original form) does not scale as well for
this benchmark as for the benchmarks previously presented. We explain this by
the fact that epor generates at most 2 unsatisfiable trace constraint systems for
the previous benchmarks while the number of unsatisfiable trace constraint sys-
tems for the Ring Extended benchmark increases with the number of processes.
These additional unsatisfiable constraint systems occur due to the dependency
structure of the Ring Extended benchmark. Each process consists of two tran-
sitions, which model its two assignments. Each of these transitions depends on
both transitions of the previous process and additionally on both transitions
of the next process. Consequently, when combining the constraints of a trace
constraint system for the Ring Extended benchmark with the program order
between the two transitions of each process, a cycle occurs with considerably
higher probability than it is the case for the Ring benchmark.

For program fragments with dense dependencies as in the Ring Extended
benchmark, we propose an alternative definition of sections in order to reduce
the generation of unsatisfiable trace constraint systems. Specifically, sections are
shortened so that no trace constraint systems are generated whose constraints
show cycles due to a combination with the program order. We call these adapted
sections short sections. Cycles due to the program order can be avoided by
permitting only one dependent transition per process inside a single short section.
Formally, we define short sections by adding the following constraint to the
definition of sections given in Section 3.3) such that all transition sequences v =
t1 . . . tk ∈ section(u) additionally satisfy ∀1 ≤ i, j,m, n ≤ k. (i, j) ∈ dep(u, v) ∧
(m,n) ∈ dep(u, v) ∧ pid(ti) = pid(tm)⇒ i = m.

We have implemented the epor algorithm with short sections instead of
sections, denoted by epor-sh, and compare it with epor and sdpor on the
Ring Extended benchmark. The observed numbers are shown in Table 3. For 6

processes, epor-sh still shows a considerable number of unsatisfiable constraint
systems but reduces this number by more than 99% in comparison to epor
with original sections. While epor is more than 47 times slower than sdpor
for 6 processes and does not terminate for 8 processes, epor-sh is only slightly
slower than sdpor for 6 processes and more than 22% faster than sdpor for 8
processes. Hence, the overhead of generating the remaining unsatisfiable trace
constraint systems is still small enough so that epor-sh outperforms sdpor.
Appendix A shows the performance of epor-sh on our remaining benchmarks.

In order to increase the robustness of epor, it is perceivable to dynamically
adapt the section length to the dependency structure of the program. Addi-
tionally, we expect that the number of generated unsatisfiable trace constraint
systems can be reduced by exploiting information about the infeasibility of a
constraint system to prevent the generation of further trace constraint systems
that contain the same cycle (with or without program order). Such optimizations
would further improve the performance of epor and epor-sh.

5 Related Work

Static POR techniques use a static approximation of dependencies [2, 5, 10, 12].
While both static and dynamic POR algorithms can be augmented with section-
based exploration as in epor, we focus on dynamic dependency calculation,
which drastically increases the state space reduction for, e.g., Indexer benchmark.

Dynamic POR has been introduced by Flanagan and Godefroid [3]. Their
algorithm dpor computes a persistent set of transitions to explore in every
visited state. Like many POR algorithms, dpor has been combined with the sleep
set technique [4]. For every visited state, the corresponding sleep set contains
transitions whose exploration would be redundant and is avoided.

Abdulla, Aronis, Jonsson, and Sagonas have proposed two model checking
algorithms based on dpor [1], named sdpor and odpor, replacing persistent
sets with source sets. In some cases, the source set of a state is smaller than the
smallest persistent set of this state, which improves the state graph reduction.
epor uses source sets in order to reverse races between sections but avoids
redundant race checks and source set calculations inside of sections.

The odpor algorithm is an extension of sdpor that can increase the amount
of state space reduction for certain benchmarks, however adding runtime over-
head that is not always compensated by a higher state space reduction. In fact,
for many benchmarks, sdpor is faster than odpor due to less runtime over-
head [1]. Consequently, we compare our algorithm epor to sdpor instead of
odpor in order to investigate whether even the lower runtime overhead of sdpor
can be reduced.

cdpor by Gueta, Flanagan, Yahav, and Sagiv [6] handles sequences of tran-
sitions, similar to epor and unlike dpor, sdpor, and odpor. However, cdpor
explores only transitions of a single process at once, while epor handles transi-
tion sequences of all processes and of varying length.

POR approaches for relaxed memory models have been proposed, e.g., [15].
Our system model is able to handle systems with relaxed memory models by
defining the program order accordingly. Symbolic model checking (both bounded
and unbounded) using POR has been addressed, e.g., in [7,14]. We present epor
as an improvement of dependency calculation in concrete-state dynamic POR
algorithms. However, we see no fundamental difficulty in using it in symbolic
POR algorithms as well.

6 Conclusion

We present section-based exploration, a dynamic POR approach that eagerly
creates schedules for program fragments. In comparison to known dynamic POR
algorithms, it avoids redundant race and dependency checks. We introduce trace
constraint systems as a formalization of section-based exploration and prove its
correctness. While our approach does not depend on a particular POR algorithm,
we implement section-based exploration in epor and compare it to sdpor. Our
results show that epor is able to reduce the runtime overhead by up to 91% and
increase the tractable program size.

References

1. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.F.: Optimal dynamic partial
order reduction. In: POPL. pp. 373–384. ACM (2014)

2. Bokor, P., Kinder, J., Serafini, M., Suri, N.: Supporting domain-specific state
space reductions through local partial-order reduction. In: ASE. pp. 113–122. IEEE
(2011)

3. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL. pp. 110–121. ACM (2005)

4. Godefroid, P.: Using partial orders to improve automatic verification methods. In:
CAV. LNCS, vol. 531, pp. 176–185. Springer (1990), http://dx.doi.org/10.1007/
BFb0023731

5. Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verifica-
tion methods (ext. abstr.). In: CAV. LNCS, vol. 697, pp. 438–449. Springer (1993)

6. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction.
In: SPIN. LNCS, vol. 4595, pp. 95–112. Springer (2007)

7. Kahlon, V., Wang, C., Gupta, A.: Monotonic partial order reduction: An optimal
symbolic partial order reduction technique. In: CAV. LNCS, vol. 5643, pp. 398–413.
Springer (2009)

8. Mazurkiewicz, A.W.: Trace theory. In: Advances in Petri Nets. LNCS, vol. 255, pp.
279–324. Springer (1986)

9. Metzler, P., Saissi, H., Bokor, P., Hesse, R., Suri, N.: Efficient verification of pro-
gram fragments: Eager POR. Tech. rep., Technische Universität Darmstadt (2016)

10. Peled, D.: All from one, one for all: on model checking using representatives. In:
CAV. LNCS, vol. 697, pp. 409–423. Springer (1993), http://dx.doi.org/10.1007/
3-540-56922-7_34

11. Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM 23(2), 373–386
(1994), http://dx.doi.org/10.1137/S0097539791202647

http://dx.doi.org/10.1007/BFb0023731
http://dx.doi.org/10.1007/BFb0023731
http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1137/S0097539791202647

12. Valmari, A.: Stubborn sets for reduced state space generation. In: Applications
and Theory of Petri Nets. LNCS, vol. 483, pp. 491–515. Springer (1989)

13. Valmari, A.: The state explosion problem. In: Lectures on Petri Nets I.
LNCS, vol. 1491, pp. 429–528. Springer (1996), http://dx.doi.org/10.1007/
3-540-65306-6_21

14. Wachter, B., Kroening, D., Ouaknine, J.: Verifying multi-threaded software with
impact. In: FMCAD. pp. 210–217. IEEE (2013), http://ieeexplore.ieee.org/
xpl/freeabs_all.jsp?arnumber=6679412

15. Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed
memory models. In: PLDI. pp. 250–259. ACM (2015), http://doi.acm.org/10.
1145/2737924.2737956

A Supplementary Appendix: Detailed Benchmark
Results

The following table shows our complete experiment results for detailed refer-
ence. All benchmarks are parametric, where the parameter specifies the number
of processes, except for the Shared Pointer benchmark, where it specifies the
number of loop iterations. epor and epor-sh refer to our algorithm with sec-
tions as defined in Section 3.3 and short sections as defined in 4. Column Unsat.
TCS refers to the number of unsatisfiable trace constraint systems generated by
epor and epor-sh; column Speedup refers to the percentage-wise time saving
over sdpor.

Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Readers-Writers (2) sdpor 0.001 2 3 2 0 0
Readers-Writers (2) epor-sh 0.001 2 2 1 0 0.0
Readers-Writers (2) epor 0.001 2 2 1 0 0.0
Readers-Writers (3) sdpor 0.002 4 28 12 0 0
Readers-Writers (3) epor-sh 0.002 4 10 3 0 0.0
Readers-Writers (3) epor 0.002 4 10 3 0 0.0
Readers-Writers (4) sdpor 0.005 8 148 47 0 0
Readers-Writers (4) epor-sh 0.005 8 33 6 0 0.0
Readers-Writers (4) epor 0.005 8 33 6 0 0.0
Readers-Writers (5) sdpor 0.015 16 607 153 0 0
Readers-Writers (5) epor-sh 0.012 16 92 10 0 20.0
Readers-Writers (5) epor 0.012 16 92 10 0 20.0
Readers-Writers (6) sdpor 0.041 32 2155 449 0 0
Readers-Writers (6) epor-sh 0.030 32 236 15 0 26.8
Readers-Writers (6) epor 0.030 32 236 15 0 26.8
Readers-Writers (7) sdpor 0.109 64 6969 1233 0 0
Readers-Writers (7) epor-sh 0.072 64 578 21 0 33.9
Readers-Writers (7) epor 0.072 64 578 21 0 33.9
Readers-Writers (8) sdpor 0.274 128 21107 3233 0 0
Readers-Writers (8) epor-sh 0.172 128 1375 28 0 37.2
Readers-Writers (8) epor 0.170 128 1375 28 0 38.0
Readers-Writers (9) sdpor 0.668 256 60885 8193 0 0
Readers-Writers (9) epor-sh 0.403 256 3204 36 0 39.7
Readers-Writers (9) epor 0.400 256 3204 36 0 40.1
Readers-Writers (10) sdpor 1.627 512 169111 20225 0 0
Readers-Writers (10) epor-sh 0.934 512 7346 45 0 42.6
Readers-Writers (10) epor 0.936 512 7346 45 0 42.5
Readers-Writers (11) sdpor 3.907 1024 455705 48897 0 0
Readers-Writers (11) epor-sh 2.145 1024 16618 55 0 45.1
Readers-Writers (11) epor 2.125 1024 16618 55 0 45.6

Continued on next page

http://dx.doi.org/10.1007/3-540-65306-6_21
http://dx.doi.org/10.1007/3-540-65306-6_21
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp? arnumber=6679412
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp? arnumber=6679412
http://doi.acm.org/10.1145/2737924.2737956
http://doi.acm.org/10.1145/2737924.2737956

Continued from previous page

Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Readers-Writers (12) sdpor 9.231 2048 1197851 116225 0 0
Readers-Writers (12) epor-sh 4.853 2048 37165 66 0 47.4
Readers-Writers (12) epor 4.799 2048 37165 66 0 48.0
Readers-Writers (13) sdpor 21.675 4096 3083805 272385 0 0
Readers-Writers (13) epor-sh 10.840 4096 82300 78 0 50.0
Readers-Writers (13) epor 10.741 4096 82300 78 0 50.4
Readers-Writers (14) sdpor 50.985 8192 7799839 630785 0 0
Readers-Writers (14) epor-sh 24.221 8192 180696 91 0 52.5
Readers-Writers (14) epor 24.299 8192 180696 91 0 52.3
Readers-Writers (15) sdpor 116.479 16384 19429409 1445889 0 0
Readers-Writers (15) epor-sh 54.318 16384 393794 105 0 53.4
Readers-Writers (15) epor 54.015 16384 393794 105 0 53.6
Readers-Writers (16) sdpor 268.414 32768 47759395 3284993 0 0
Readers-Writers (16) epor-sh 121.130 32768 852667 120 0 54.9
Readers-Writers (16) epor 119.901 32768 852667 120 0 55.3
Readers-Writers (17) sdpor 608.308 65536 116031525 7405569 0 0
Readers-Writers (17) epor-sh 264.130 65536 1835844 136 0 56.6
Readers-Writers (17) epor 262.993 65536 1835844 136 0 56.8
Readers-Writers (18) sdpor 1361.840 131072 278986791 16580609 0 0
Readers-Writers (18) epor-sh 582.379 131072 3933150 153 0 57.2
Readers-Writers (18) epor 579.521 131072 3933150 153 0 57.4
Readers-Writers (19) sdpor 3076.191 262144 664600617 36896769 0 0
Readers-Writers (19) epor-sh 1264.264 262144 8389770 171 0 58.9
Readers-Writers (19) epor 1256.383 262144 8389770 171 0 59.2
Readers-Writers (20) sdpor 6874.472 524288 1570045995 81657857 0 0
Readers-Writers (20) epor-sh 2738.353 524288 17827145 190 0 60.2
Readers-Writers (20) epor 2728.742 524288 17827145 190 0 60.3

Indexer (11) sdpor 0.015 1 880 946 0 0
Indexer (11) epor-sh 0.025 1 880 946 0 -66.7
Indexer (11) epor 0.026 1 880 946 0 -73.3
Indexer (12) sdpor 0.413 8 27072 12825 0 0
Indexer (12) epor-sh 0.274 8 19325 7961 0 33.7
Indexer (12) epor 0.284 8 19325 7961 0 31.2
Indexer (13) sdpor 4.181 64 485600 106214 0 0
Indexer (13) epor-sh 3.367 64 239590 74980 0 19.5
Indexer (13) epor 3.506 64 239590 74980 0 16.1
Indexer (14) sdpor 49.120 512 5279831 1177634 0 0
Indexer (14) epor-sh 42.644 512 2812237 795788 0 13.2
Indexer (14) epor 44.144 512 2812237 795788 0 10.1
Indexer (15) sdpor 766.280 4096 79436769 16007293 0 0
Indexer (15) epor-sh 556.283 4096 35103635 9347279 0 27.4
Indexer (15) epor 576.093 4096 35103635 9347279 0 24.8
Indexer (16) sdpor 13060.033 32768 1345407904 251890633 0 0
Indexer (16) epor-sh 7485.608 32805 466384458 116349641 0 42.7
Indexer (16) epor 7998.984 32805 466384458 116349641 0 38.8

Last Zero (2) sdpor 0.002 2 9 13 0 0
Last Zero (2) epor-sh 0.003 2 13 13 0 -50.0
Last Zero (2) epor 0.003 2 8 10 0 -50.0
Last Zero (3) sdpor 0.013 6 197 128 0 0
Last Zero (3) epor-sh 0.024 6 125 116 0 -84.6
Last Zero (3) epor 0.012 6 80 84 0 7.7
Last Zero (4) sdpor 0.068 16 2065 709 0 0
Last Zero (4) epor-sh 0.044 16 800 579 0 35.3
Last Zero (4) epor 0.070 16 676 479 0 -2.9
Last Zero (5) sdpor 0.255 40 13613 2791 0 0
Last Zero (5) epor-sh 0.173 40 4279 2371 0 32.2
Last Zero (5) epor 0.195 40 4976 2120 0 23.5
Last Zero (6) sdpor 0.911 96 66384 10275 0 0
Last Zero (6) epor-sh 0.633 96 19645 8480 0 30.5
Last Zero (6) epor 0.724 96 29570 7885 0 20.5
Last Zero (7) sdpor 3.018 224 274999 33881 0 0
Last Zero (7) epor-sh 2.142 224 79578 27720 0 29.0
Last Zero (7) epor 2.517 224 147844 26234 0 16.6

Continued on next page

Continued from previous page

Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Last Zero (8) sdpor 9.206 512 1109904 97439 0 0
Last Zero (8) epor-sh 6.975 512 294877 85185 0 24.2
Last Zero (8) epor 8.339 512 647298 80647 0 9.4
Last Zero (9) sdpor 22.350 1152 3836659 306046 0 0
Last Zero (9) epor-sh 33.547 1152 1464128 314042 0 -50.1
Last Zero (9) epor 33.950 1152 2884130 310058 0 -51.9
Last Zero (10) sdpor 108.007 2560 15149844 1160330 0 0
Last Zero (10) epor-sh 94.648 2560 5405445 923038 0 12.4
Last Zero (10) epor 95.582 2578 11544604 1015493 0 11.5
Last Zero (11) sdpor 264.036 5632 51558504 3325567 0 0
Last Zero (11) epor-sh 197.799 5632 16019928 2410338 0 25.1
Last Zero (11) epor 257.922 5632 40368624 2649056 0 2.3
Last Zero (12) sdpor 821.374 12288 175535648 9951180 0 0
Last Zero (12) epor-sh 480.859 12288 41678637 5885987 0 41.5
Last Zero (12) epor 705.437 12288 125302898 5950551 0 14.1
Last Zero (13) sdpor 2160.776 26624 565002531 29044732 0 0
Last Zero (13) epor-sh 1361.417 26624 111575184 14917085 0 37.0
Last Zero (13) epor 1441.852 26624 347226642 11989526 0 33.3
Last Zero (14) sdpor 8138.822 57344 1744754931 78289802 0 0
Last Zero (14) epor-sh 3372.409 57344 300987594 37479306 0 58.6
Last Zero (14) epor 3421.276 57344 1005154306 29966707 0 58.0
Last Zero (15) sdpor 17441.597 122880 4019531983 230194076 0 0
Last Zero (15) epor-sh 6026.374 122880 514821851 93547034 0 65.4
Last Zero (15) epor 6703.371 122880 1896719286 73740996 0 61.6
Last Zero (16) sdpor
Last Zero (16) epor-sh 19144.029 262144 1934932782 239409835 0 —
Last Zero (16) epor 18408.671 262144 7232899654 179027187 0 —

Shared Pointer (10) sdpor 0.480 21 80395 32777 0 0
Shared Pointer (10) epor-sh 0.896 21 61207 33655 0 -86.7
Shared Pointer (10) epor 0.535 21 60546 33025 0 -11.5
Shared Pointer (20) sdpor 2.123 41 661981 225737 0 0
Shared Pointer (20) epor-sh 4.226 41 528044 229295 0 -99.1
Shared Pointer (20) epor 2.968 41 525351 226835 0 -39.8
Shared Pointer (30) sdpor 7.837 61 2374011 722897 0 0
Shared Pointer (30) epor-sh 14.770 61 1932212 730935 0 -88.5
Shared Pointer (30) epor 8.047 61 1923801 725445 0 -2.7
Shared Pointer (40) sdpor 17.013 81 6201931 1668257 0 0
Shared Pointer (40) epor-sh 37.533 81 5060976 1682575 0 -120.6
Shared Pointer (40) epor 13.508 81 5042257 1672855 0 20.6
Shared Pointer (50) sdpor 32.529 101 14074966 3205817 0 0
Shared Pointer (50) epor-sh 125.372 101 11494347 3228215 0 -285.4
Shared Pointer (50) epor 17.398 101 11459539 3213065 0 46.5
Shared Pointer (60) sdpor 52.435 121 27575051 5479577 0 0
Shared Pointer (60) epor-sh 219.720 121 22323086 5511855 0 -319.0
Shared Pointer (60) epor 43.751 121 22263258 5490075 0 16.6
Shared Pointer (70) sdpor 84.797 141 49302287 8633537 0 0
Shared Pointer (70) epor-sh 370.194 141 39524860 8677495 0 -336.6
Shared Pointer (70) epor 64.530 141 39430039 8647885 0 23.9
Shared Pointer (80) sdpor 84.948 161 83360055 12811697 0 0
Shared Pointer (80) epor-sh 458.459 161 66218755 12869135 0 -439.7
Shared Pointer (80) epor 95.521 161 66076608 12830495 0 -12.4
Shared Pointer (90) sdpor 143.694 181 128693768 18158057 0 0
Shared Pointer (90) epor-sh 919.317 181 102871367 18230775 0 -539.8
Shared Pointer (90) epor 132.781 181 102676446 18181905 0 7.6
Shared Pointer (100) sdpor 238.968 201 192707828 24816617 0 0
Shared Pointer (100) epor-sh 1531.204 201 154847568 24906415 0 -540.8
Shared Pointer (100) epor 170.762 201 154590222 24846115 0 28.5

Ring (2) sdpor 0.002 2 3 2 0 0
Ring (2) epor-sh 0.001 2 2 1 0 50.0
Ring (2) epor 0.001 2 2 1 0 50.0
Ring (3) sdpor 0.008 6 39 18 0 0
Ring (3) epor-sh 0.005 6 11 3 2 37.5
Ring (3) epor 0.005 6 11 3 2 37.5

Continued on next page

Continued from previous page

Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Ring (4) sdpor 0.018 14 247 80 0 0
Ring (4) epor-sh 0.022 14 43 6 2 -22.2
Ring (4) epor 0.017 14 43 6 2 5.6
Ring (5) sdpor 0.064 30 1231 275 0 0
Ring (5) epor-sh 0.045 30 139 10 2 29.7
Ring (5) epor 0.047 30 139 10 2 26.6
Ring (6) sdpor 0.168 62 4932 813 0 0
Ring (6) epor-sh 0.118 62 397 15 2 29.8
Ring (6) epor 0.121 62 397 15 2 28.0
Ring (7) sdpor 0.459 126 17742 2283 0 0
Ring (7) epor-sh 0.226 126 1038 21 2 50.8
Ring (7) epor 0.298 126 1038 21 2 35.1
Ring (8) sdpor 1.297 254 59947 6275 0 0
Ring (8) epor-sh 0.382 254 2540 28 2 70.5
Ring (8) epor 0.710 254 2540 28 2 45.3
Ring (9) sdpor 3.530 510 191381 17288 0 0
Ring (9) epor-sh 0.877 510 5577 36 2 75.2
Ring (9) epor 1.635 510 5577 36 2 53.7
Ring (10) sdpor 8.967 1022 543438 44107 0 0
Ring (10) epor-sh 3.418 1022 12281 45 2 61.9
Ring (10) epor 2.919 1022 12281 45 2 67.4
Ring (11) sdpor 23.903 2046 1551020 116202 0 0
Ring (11) epor-sh 8.452 2046 27769 55 2 64.6
Ring (11) epor 6.020 2046 27769 55 2 74.8
Ring (12) sdpor 57.755 4094 4498596 299602 0 0
Ring (12) epor-sh 18.373 4094 61507 66 2 68.2
Ring (12) epor 17.331 4094 61507 66 2 70.0
Ring (13) sdpor 153.056 8190 12342751 752788 0 0
Ring (13) epor-sh 34.668 8190 127345 78 2 77.3
Ring (13) epor 40.175 8190 127345 78 2 73.8
Ring (14) sdpor 307.406 16382 36655573 2172569 0 0
Ring (14) epor-sh 65.806 16382 261835 91 2 78.6
Ring (14) epor 60.154 16382 261835 91 2 80.4
Ring (15) sdpor 731.446 32766 105588804 5623429 0 0
Ring (15) epor-sh 143.513 32766 534423 105 2 80.4
Ring (15) epor 145.635 32766 534423 105 2 80.1
Ring (16) sdpor 1782.207 65534 278381118 13318473 0 0
Ring (16) epor-sh 327.465 65534 1084045 120 2 81.6
Ring (16) epor 327.977 65534 1084045 120 2 81.6
Ring (17) sdpor 5984.174 131070 734642101 35656128 0 0
Ring (17) epor-sh 708.740 131070 2096753 136 2 88.2
Ring (17) epor 538.031 131070 2096753 136 2 91.0
Ring (18) sdpor
Ring (18) epor-sh 1542.738 262142 4167297 153 2 —
Ring (18) epor 1062.553 262142 4167297 153 2 —
Ring (19) sdpor
Ring (19) epor-sh 3359.111 524286 8653144 171 2 —
Ring (19) epor 2884.695 524286 8653144 171 2 —
Ring (20) sdpor
Ring (20) epor-sh 4454.283 1048574 9495364 190 2 —
Ring (20) epor 4442.308 1048574 9495364 190 2 —
Ring (21) sdpor
Ring (21) epor-sh 13158.802 2097150 28329284 210 2 —
Ring (21) epor 13084.234 2097150 28329284 210 2 —

Branching (2) sdpor 0.009 11 181 155 0 0
Branching (2) epor-sh 0.009 11 174 147 0 0.0
Branching (2) epor 0.008 11 142 124 1 11.1
Branching (3) sdpor 0.046 28 3169 1105 0 0
Branching (3) epor-sh 0.055 28 2679 1124 0 -19.6
Branching (3) epor 0.046 28 2206 943 1 0.0
Branching (4) sdpor 0.268 103 24945 6933 0 0
Branching (4) epor-sh 0.308 103 21967 6960 0 -14.9
Branching (4) epor 0.233 103 17296 5617 1 13.1

Continued on next page

Continued from previous page

Benchmark Algorithm Time(s) Traces Dep. Checks Race Checks Unsat. TCS Speedup(%)

Branching (5) sdpor 1.180 311 145186 32384 0 0
Branching (5) epor-sh 1.458 311 143461 34068 0 -23.6
Branching (5) epor 1.045 311 114640 26926 1 11.4
Branching (6) sdpor 5.600 1010 796033 155629 0 0
Branching (6) epor-sh 6.679 1010 809098 156745 0 -19.3
Branching (6) epor 4.512 1010 645243 120540 1 19.4
Branching (7) sdpor 23.737 3165 3963738 665731 0 0
Branching (7) epor-sh 29.320 3165 4153755 677854 0 -23.5
Branching (7) epor 18.819 3165 3332731 505448 1 20.7
Branching (8) sdpor 111.485 10063 19677616 3051999 0 0
Branching (8) epor-sh 124.574 10063 19995225 2827886 0 -11.7
Branching (8) epor 76.783 10063 16091273 2042519 1 31.1
Branching (9) sdpor 588.386 31780 102640823 15619776 0 0
Branching (9) epor-sh 835.651 31775 106250930 17043326 0 -42.0
Branching (9) epor 444.051 30921 68635810 11463305 1 24.5
Branching (10) sdpor 3107.106 100651 516099474 79852841 0 0
Branching (10) epor-sh 3832.897 100327 530295199 73161559 0 -23.4
Branching (10) epor 1964.219 99920 325828401 48463434 1 36.8
Branching (11) sdpor 19068.490 318363 2200202598 358100829 0 0
Branching (11) epor-sh 21970.231 316881 2091377423 284175909 0 -15.2
Branching (11) epor 8220.448 318978 1343673801 179170034 1 56.9

Ring Extended (2) sdpor 0.003 6 41 34 0 0
Ring Extended (2) epor-sh 0.004 6 38 29 0 -33.3
Ring Extended (2) epor 0.004 6 9 6 10 -33.3
Ring Extended (3) sdpor 0.050 90 2264 1029 0 0
Ring Extended (3) epor-sh 0.047 72 1553 663 14 6.0
Ring Extended (3) epor 0.365 90 126 15 4006 -630.0
Ring Extended (4) sdpor 0.692 786 44477 14734 0 0
Ring Extended (4) epor-sh 0.737 786 39708 12722 30 -6.5
Ring Extended (4) epor 7.826 786 1632 28 64750 -1030.9
Ring Extended (5) sdpor 7.497 5730 631224 156322 0 0
Ring Extended (5) epor-sh 7.754 5730 565678 138590 62 -3.4
Ring Extended (5) epor 164.094 5730 16734 45 1042846 -2088.8
Ring Extended (6) sdpor 70.729 38466 7537485 1427204 0 0
Ring Extended (6) epor-sh 72.869 38466 6747840 1285045 126 -3.0
Ring Extended (6) epor 3412.561 38466 144095 66 16738750 -4724.8
Ring Extended (7) sdpor 608.836 247170 81503018 11900225 0 0
Ring Extended (7) epor-sh 622.568 247170 72416459 10706749 254 -2.3
Ring Extended (8) sdpor 6552.194 1548546 806537903 94539059 0 0
Ring Extended (8) epor-sh 5061.882 1548546 720212287 83761394 510 22.7
Ring Extended (8) epor

	Efficient Verification of Program Fragments: Eager POR

