ASE 2017, pp 776-781

Quick Verification of Concurrent Programs by
Iteratively Relaxed Scheduling

Patrick Metzler, Habib Saissi, Péter Bokor, Neeraj Suri
Technische Univeristdt Darmstadt, Germany
{metzler, saissi, pbokor, suri} @deeds.informatik.tu-darmstadt.de

Abstract—The most prominent advantage of software ver-
ification over testing is a rigorous check of every possible
software behavior. However, large state spaces of concurrent
systems, due to non-deterministic scheduling, result in a slow
automated verification process. Therefore, verification introduces
a large delay between completion and deployment of concurrent
software.

This paper introduces a novel iterative approach to verification
of concurrent programs that drastically reduces this delay. By
restricting the execution of concurrent programs to a small
set of admissible schedules, verification complexity and time is
drastically reduced. Iteratively adding admissible schedules after
their verification eventually restores non-deterministic schedul-
ing. Thereby, our framework allows to find a sweet spot between a
low verification delay and sufficient execution time performance.
Our evaluation of a prototype implementation on well-known
benchmark programs shows that after verifying only few sched-
ules of the program, execution time overhead is competitive to
existing deterministic multi-threading frameworks.

I. INTRODUCTION

Automated verification of concurrent programs with non-
deterministic scheduling is known to be challenging: verifica-
tion has to consider all possible schedules a concurrent pro-
gram may be executed with, which may result in exponentially
many states to be verified, known as state space explosion [1].

Partial order reduction (POR) is able to reduce the state
space of a concurrent program by identifying equivalence
classes of program executions such that only one represen-
tative of each class needs to be verified [2]-[4]. Such an
equivalence class is called Mazurkiewicz trace or simply trace.
However, the reduced state space may still be of exponential
size [3]. Hence, the high complexity of state space exploration
for concurrent systems remains and hinders a wide application
of automated verification (e.g., model checking) in industrial
software development.

In particular, verification introduces a considerable delay
between completion and deployment of software. When de-
velopment of a candidate program is complete, it may be
deployed only after the verifier approved that it is correct
under all possible schedules. This verification delay reaches
large values for benchmark programs even if state-of-the-art
POR is used [5], [6]. We conjecture that the verification delay
is unacceptably high for large areas of industrial software
development. Nevertheless, individual traces can be verified
quickly as can be seen when relating verification time to the
number of explored traces.

In the area of concurrency testing, deterministic multi-
threading (DMT) can help to reduce the number of necessary
test cases. Several techniques exist to restrict scheduling such
that (1) scheduling is deterministic for a particular input
and/or (2) only a reduced set of schedules may occur [7], [8].
Such DMT techniques trade potential execution time overhead
(compared to executing the unmodified program) for reduced
non-determinism that may simplify festing. However, these
approaches do not allow to control the schedule that will
occur in advance, which renders them unsuitable for automated
verification of concurrent programs. We are not aware of
any existing tool or concept that allows to execute selected
schedules after they are successfully verified. Moreover, it
is not possible to adjust the amount of non-determinism in
existing DMT approaches.

We propose to make the amount of non-determinism and
thereby the verification delay adjustable by using interme-
diate verification results and reducing non-determinism by
dynamically constrained scheduling. In particular, instead of
waiting for verification to complete, we propose to use inter-
mediate verification results that guarantee program correctness
for one or more schedules. By generalizing the concept of
Mazurkiewicz traces [9] for symbolic model checking, we are
able to use POR as a verification technique with intermediate
verification results. As soon as a single trace is verified, the
program may be used inside a suitable execution environment
with constrained scheduling. By continuously verifying and
permitting more traces, scheduling constraints are iteratively
relaxed and, as shown by our evaluation, execution time
overhead is reduced. Thus, execution time overhead can be
traded for verification delay.

We provide the following contributions. (1) We develop
a formal framework for iterative, automated verification of
concurrent programs. (2) We introduce the concept of symbolic
traces as an extension and generalization of Mazurkiewicz
traces to symbolic model checking. (3) We discuss implemen-
tation issues for a suitable execution environment using our
prototype implementation for LLVM programs [10]. (4) We
show experimentally that only few traces need to be verified
to considerably reduce execution time overhead.

II. OVERVIEW

We propose iteratively relaxed scheduling (IRS) for con-
current programs with non-deterministic scheduling as an

Verifier I Execution Verifier I IRS Execution
environment environment
(unconstrained

scheduling)
Verify Verify
program program
Submit initial
schedule Program
can be
safely
: used
Iteratively
submit
additional
schedules
Permit all
Program schedules
can be
safely
used
(a) Conventional (b) IRS

Figure 1: The program verification process (sequence diagram)

improvement over the conventional approach to program ver-

ification:

(1) Develop a program (or program update).

(2) Verify the program.

(3) The program can be safely used (with unconstrained
scheduling).

In case verification is successful, correctness is ensured for
all feasible schedules of the program. This guaranty comes
at the price of a typically large verification delay because
of exponentially many schedules when unconstrained (non-
deterministic) scheduling is used.

Instead of waiting until the program is verified for all
feasible schedules, we propose to start using the program
already after a use case-specific threshold of schedules has
been verified. Correctness is guaranteed by wrapping the
program in an IRS execution environment, which permits only
verified schedules by constraining scheduling. We provide
details about IRS execution environments in Section III.
Specifically, verifying a concurrent program with IRS proceeds
as follows.

(1) Develop a program (or program update).

(2) Continuously verify individual schedules or sets of sched-
ules.

(3) As soon as one admissible schedule is available, the
program can be safely used inside an IRS execution
environment.

(4) Additional verified schedules may be added during pro-
gram usage to relax scheduling constraints.

The difference between conventional verification and IRS is
illustrated in Figure 1. While conventionally the verification
delay corresponds to the full verification time, IRS enables to
adjust verification delay and the amount of non-determinism

in scheduling: the longer the verification delay, the more
schedules are verified and the fewer scheduling constraints
are necessary to enforce that only admissible schedules may
occur.

Constraining scheduling presumably introduces consider-
able execution time overhead. While execution time overhead
may be considerable, relaxing scheduling constraints is able to
quickly reduce this overhead. Our experiments show that iter-
atively relaxing scheduling constraints also iteratively reduces
execution time overhead, which we detail in Section V.

Given a positive relationship between relaxed scheduling
constraints and decreased execution time overhead, IRS may
be used to exploit the sweet spot between a short verification
delay and small execution time overhead. In other words,
IRS enables to use as much non-determinism in scheduling
as needed for execution time performance and no more non-
determinism than necessary in order to limit the verification
delay.

An additional advantage of IRS over conventional program
verification is that programs that show both correct and erro-
neous schedules can be used safely, as erroneous schedules
are never enabled. Such a program may be either corrected
such that eventually, all schedules can be enabled, or left
unchanged such that the program is used with erroneous sched-
ules disabled. In contrast, conventional verification requires to
correct the program so that the program is only available after
verification is restarted and completed successfully. Please
note that it is well possible that a program that is used inside an
IRS execution environment has erroneous schedules. However,
program usage inside the IRS environment is always safe
as only correct schedules are enabled. The only limitation
in such a case is that the program cannot be used safely
with all schedules enabled (e.g., outside the IRS execution
environment).

Several scenarios of how to use IRS are conceivable, e.g.:

(1) Safely deploy programs with large state spaces due to
concurrency that are infeasible to fully verify.

(2) In case a program update introduces a bug but correct
schedules can still be found, safely deploy the program
with erroneous schedules disabled until the bug is fixed.

(3) For a given time budget for verification (maximum verifi-
cation delay), verify as much schedules as possible until
the threshold is reached and deploy the program (with
the remaining schedules disabled). Verification delay is
reduced.

(4) For a given budget of execution time performance (e.g.,
maximum execution time overhead), start verification and
continuously test the execution time performance for the
so far verified schedules. As soon as the program is
fast enough, deploy the program (with the remaining
schedules disabled). Verification delay is reduced.

(5) In addition to (4), continue verification after deployment
and continuously extend the set of verified and enabled
schedules. Execution time performance is increased after
deployment. (It is required to update scheduling con-

straints online. With a suitable implementation, it is not
necessary to update the program itself.)

Depending on the specific requirements of a use case, it
may be suitable or even necessary to combine or extend
these scenarios. As we detail in Section IV, it is possible to
realize an IRS execution environment completely inside an
application program, without modifying the operating system.

In order to execute programs safely inside an IRS execution
environment (i.e., such that the specification is never violated)
while preserving usability (i.e., such that full program func-
tionality is available), it must be ensured that intermediate
verification results correspond to scheduling constraints that
describe how to remain inside the known-to-be-safe state
space for arbitrary program inputs. Thereby, it is guaranteed
that the program is safely executed regardless of the current
input. While this requirement may be strong for programs
with non-deterministic inputs, the same limitation applies for
verification of sequential programs.

Although there exist techniques to deterministically execute
concurrent programs (e.g., [7], [8], [11]) in order to support
concurrency testing, IRS constitutes a novel approach to
verifying concurrent programs. To our best knowledge, all
existing DMT approaches depend on concrete program inputs
for enforcement of a deterministic execution: no guaranty
is given about which schedule is used after a change in
program inputs. However, program verification requires correct
behavior for every possible program input. Consequently,
using an existing DMT approach for verification would require
to verify a program separately for each individual input, which
is typically infeasible.

III. APPROACH

A key requirement for a verification technique to be useful
in conjunction with IRS is to yield meaningful intermediate
verification results. Otherwise, safe execution of the program
would have to wait until the program has been verified for
all schedules and IRS would be reduced to conventional
verification. Meaningful intermediate verification results either
show a counter example for program correctness or guarantee
correctness under certain scheduling constraints. No additional
constraints should be necessary such as constraints about
program inputs or execution length, as a program may not be
fully operational under such constraints. Therefore, techniques
such as explicit state model checking or bounded model
checking are unsuitable for IRS.

Partial order reduction (POR) is a state space reduction
technique suitable for symbolic model checking [12], although
it is often presented for explicit-state model checking [4]-
[6]. We choose POR as a verification technique to instantiate
IRS and extend the notion of Mazurkiewicz traces to a novel
concept of symbolic traces in order to support symbolic
model checking with meaningful intermediate verification re-
sults. An alternative technique for reducing the complexity
of non-deterministic scheduling, iterative context bounding
(ICB) [13], would equally fit to produce meaningful interme-

diate verification results. However, to our knowledge, ICB has
not been applied to symbolic model checking before.

A. System Model

A (concurrent) program P is a transition system
(S, Sinit, X, —) where S is a finite set of states, Si C S
is a set of initial states (program intputs), ¥ is a finite set
of threads, and —pC (S x ¥) — S is an acyclic transition
relation (for a given state and thread, there is at most one
successor state). We write s1 AN S to denote (s1,t,s2) €—.

A partial execution of P is an initial state (the program
input for this execution) and a sequence (Sg, u) € Sinir X X%,
where u = t; ...t, such that there exist states si, ..., s, with
So 1IN S1--- In, Sn (sop may be omitted if it is clear from
the context or arbitrary). In order to uniquely describe each
occurrence t; of a thread in wu, it is associated with an event
e € ¥ x Nsuch that e = (¢t,k) with k = [{t; : j <iAt; =
t;}|, i.e., e specifies the thread ¢; and the number of thread
occurrences of ¢; that occur before position ¢ in u.

We assume the existence of a dependency relation for P
that induces a happens-before relation between events and a
notion of Mazurkiewicz equivalence on partial executions [6],
[9]. We extend the notion of Mazurkiewicz traces to symbolic
traces as follows. A symbolic trace or simply trace o of P
is a graph o = (E,, C,, —,) that represents a partial order,
the happens-before relation, of some partial execution w of P
and all partial executions that are Mazurkiewicz equivalent to
u. We say that w is a linearization of o. Let u = t;...t,
be an arbitrary linearization of o such that there exist states
$1,...,5, with sq I, ITREE In, Sn. Eo ={e1,...,en} is a
set of events such that e; corresponds to ¢; for 1 < ¢ < n.
C, is a set of sets of path constraints (that may be collected
during model checking). —,C E,xC, x E, is an edge relation
between events annotated with path constraints such that for
every event e; € E, and every incoming edge of e; with path
constraints C, s; satisfies C. We write traces(P) for a set of
traces that completely cover the state space of P, i.e., it is
sufficient to verify all traces in traces(P) in order to decide
correctness of P.

B. Algorithm

Given a program P, we define an IRS execution environ-
ment that is able to (1) continuously receive representations of
admissible traces from a verifier and (2) schedule the program
P such that only admissible executions occur. Verifier and
execution environment of P are defined by Algorithm 1.

During execution of a program, the IRS execution envi-
ronment maintains that the current partial execution (s, u)
adheres to the scheduling constraints represented by some
admissible trace o, for which we write (sp,u) < o. We

formalize this notion for a sequence u = t;...t, with
¢ tn .
s — 81+ — s, for some states sg,...,s, and o with

events F, = {e1,...,emn} as (sg,u) < o if

(1) u is empty or

Algorithm 1: IRS
Data: V' — the set of admissible traces, initially empty
Verifier:
for each trace o in traces(P) do
verify o;
if o is correct then
L add o to the set of admissible traces V;

N R W N -

¢ Execution environment:

7 set the current partial execution (sg, u) to the empty
sequence;

8 while P has not terminated do

9 choose some thread ¢ from admissible(V, s, u);

10 execute the next event of ¢;

11

append ? to u;

(2) there exists some e; € E, that represents ¢; and for
all incoming edges with path constraints C, sy does not
satisfy C' and (s1,t2...t,) < remove(e;, 0)

where remove(e;,0) is o with e; and all incoming and
outgoing edges of e; removed. Intuitively, (sg,u) < o can be
checked as follows: if u is empty, the condition is satisfied, as
they do not contain any events that can violate any ordering
given by o. If u is not empty, check whether the first element
of u corresponds to an event e; in o that has no incoming edge
that satisfies the current path constraints (i.e., no event has to
be scheduled before under the current program inputs). The
condition is satisfied if u without its first element adheres to
o with e; and all adjacent edges removed.

For a given partial execution (sg, u) and a set of admissible
traces V', we define the set of all threads that can be executed
next, without violating adherence to an admissible trace, as
admissible(V, sg,u) :== {t € ¥p : Jo € V. (sg,u - t) < o}

When large fractions of a program’s state space are to be
explored, i.e., when V' contains many traces, time and space
complexity of checking ¢ € admissible(V, so,) and (sp,u) <
o may be relevant. An efficient implementation of Algorithm 1
may use, for example, a compact representation of multiple
traces in a single data structure.

The execution environment representation of Algorithm 1
corresponds to the interleaving semantics of concurrent pro-
grams. It does not show explicitly when threads wait for
permission to execute their next memory access. In a simple
implementation, a thread waits before each memory access,
which corresponds to one wait operation per loop iteration of
the execution environment. For a possible implementation of
an execution environment, please refer to Section IV.

Correctness In order to use IRS for program verification,
it is necessary to ensure that an IRS execution environment
permits only correct traces, i.e., traces that show correct
program behavior. For Algorithm 1, it is clear that only
executions that adhere to a admissible trace may occur by
the definition of admissible().

1 %20 = call i32 @getThreadld(%"class.indexer::WorkUnit"x %this)
2 %21 = alloca i32

3 store i32 %20, i32x %21

4 %22 = load 32, i32+ %21

5 %23 = bitcast i32+ %17 to i8x

6 call void @before_memory_access(i32 %22, i8+ %23, i64 4,i32 1)
7 %24 = cmpxchg i32% %17, i32 0, i32 %19 seq_cst seq_cst

s call void @after_memory_access(i32 %22)

Listing 1: A global memory access (cmpxchg) after inserting callbacks
directly before and after.

Progress Besides correctness, progress is required in order
to safely use a program inside an IRS execution environ-
ment with the same functionality as the unmodified program.
Progress for an IRS execution environment expresses that
as long as a program has not yet terminated, there exists
a thread that can be scheduled next in coherence with a
admissible trace, i.e., admissible(V, sg,u) is not empty. In
other words, progress means that IRS does not introduce
additional deadlocks into the program. Algorithm 1 provides
progress, as only complete traces are added by the verifier.

IV. IMPLEMENTATION

We have implemented IRS in a C++ prototype that uses
the LLVM compiler infrastructure [10] to automatically in-
strument LLVM-IR code and enforces a set of admissible
traces when executing the program. This design allows to
use IRS for programs that can be translated to LLVM-IR,
e.g., C or C++ programs. After instrumenting a program and
linking to our IRS library, the program can be safely used
(provided that at least one correct schedule is known) without
modifying the operating system or any other parameters of
the environment. We do not see fundamental obstacles to
implement IRS differently, e.g., inside a Java virtual machine
(for programs that can be translated to Java bytecode) or with
a customized scheduler inside the operating system.

Our implementation consists of an LLVM pass responsible
for instrumentation and a library that enforces specified traces
in instrumented code. The instrumentation inserts a callback to
the library directly before and after memory access instructions
(load, store, compare-and-swap). Only those memory accesses
are instrumented that directly access a global variable or where
the address of the access depends (possibly transitively) on
the value of a global variable. Hence, the library sees thread
executions as a sequence of events that contain exactly one
global memory access. We consider two events dependent if
they access the same memory location and at least one of them
is a write operation.

Listing 1 shows the global memory access of the Indexer
benchmark [4] and how callbacks are inserted. Identifiers have
been renamed for easier readability. Only line 7 (contain-
ing the compare-and-swap instruction cmpxchg) is contained
in the original program. All additional lines are added by
our instrumentation. Before the memory access, thread ID,
memory location and whether the access can modify the
memory are reported by callback before_memory_access to the

library, where the event is recorded. After the memory access,
callback after_memory_access signals that the memory access
is completed. At the beginning of the program, an additional
“scheduler” thread is started, which collects recorded events
and decides whether an event is currently admissible.

When a program thread enters the callback function before
a memory access, it checks whether it is necessary to wait for
an other thread in order to follow the set of admissible traces.
Only if this is the case, synchronization with the scheduler
thread is necessary. The program thread appends its current
event to a queue of requests and waits on a C++ condition
variable. Once the scheduler thread reads the request and
the corresponding event is admissible, the program thread is
signaled and continues by locking the memory location of
the current access, performing the memory operation, and
recording the executed event.

When testing our implementation, we found that as ex-
pected, locks and condition variables are responsible for a
large portion of execution time overhead. In order to reduce the
number of locks, we introduced busy-waiting in the scheduler
thread, which made synchronization between program threads
and the scheduler thread faster for most cases. However, in
some cases, synchronization may also be much slower, which
may be a disadvantage if execution time should never exceed
a tight maximum. We expect further improvement by the use
of more advanced lock-less synchronization.

Alternative implementation approaches that do not use an
additional scheduler thread are well conceivable and we expect
important insights from comparing different implementation
approaches. For example, it might be overall faster to perform
scheduling tasks locally in program threads instead of the
scheduler thread. Even if this duplicates work, execution time
might be improved by omitting synchronization.

V. EXPERIMENTAL EVALUATION

We concentrate our experimental evaluation on supporting
the claim that iteratively relaxing scheduling constraints de-
creases execution time overhead. Experimentally validating
this claim would show that it is feasible to use IRS to adjust
and find a sweet spot between verification delay and execution
time overhead. As development of our prototype is only in an
early stage, we do not provide a full experimental evaluation
but report preliminary results for two benchmark programs
Indexer [4] and Last Zero [6] that are used to evaluate POR
algorithms. These programs have been chosen because model-
checking them with POR is well-studied. We use the Last Zero
benchmark with 15 worker threads, for which Abdulla et al.
report 147456 traces and 1813s execution time for POR. For
Indexer, we use 15 threads, where Abdulla et al. report 4096
traces and 3155s execution time for POR [6].

Table I shows our experimental results. Each benchmark
is run without instrumentation (plain) and instrumented by
our prototype (IRS). The number of admissible traces is
gradually increased. Each configuration is run 1000 times. We
report the median execution time and execution time overhead
in comparison to the unmodified benchmark. Illustrating the

Table I: EXECUTION TIME OVERHEAD OF IRS AND VERIFICATION DELAY

Benchmark #Traces Time (us) Overhead Delay (s)

(interpolated)
Last Zero (IRS) 1 623 230% 0
Last Zero (IRS) 128 506 168% 2
Last Zero (IRS) 1024 486 157% 13
Last Zero (IRS) 16384 402 113% 201
Last Zero (plain) 147456 189 0% 1813
Indexer (IRS) 1 2614 1321% 1
Indexer (IRS) 16 2352 1178% 12
Indexer (IRS) 256 859 367% 197
Indexer (IRS) 2048 761 314% 1578
Indexer (plain) 4096 184 0% 3155

interplay of execution time overhead and verification delay, we
show the linearly interpolated verification delay for verification
times given by Abdulla et al. as an approximation of how
long a model checker would need to verify the corresponding
number of traces.

For both benchmarks, execution time overhead can be
reduced considerably by permitting only a small portion of
all traces. For Last Zero, permitting less than 1% of all traces
reduces execution time overhead from 230% to 168%. For
Indexer, permitting 6% of all traces reduces execution time
overhead from 1321% to 367%. However, execution time
overhead is reduced less drastically when additional traces are
permitted. Nevertheless, execution time overhead with only
few admissible traces is competitive with the execution time
overhead of up to about 700% and 300% reported for CoreDet
and Dthreads [7].

VI. RELATED WORK

Approaches that attempt to limit the amount of non-
determinism in the behavior of multi-threaded programs per-
form deterministic multi-threading (DMT) and may be imple-
mented using runtime systems [8], [11], [14], libraries [7], and
OS modifications [15]. Liu et al. present Dthreads [7] as a re-
placement for the multi-threading library Pthreads. For a given
input, Dthreads forces a deterministic execution by allowing
threads to execute in parallel, updating separate copies of the
shared state. The separate copies are then merged back in a
deterministic order once a synchronization point is reached. In
[11], Cui et al. propose to enforce deterministic schedules by
recording initial executions and reusing the executed schedule
subsequently on compatible executions with similar inputs.
Another deterministic approach is Parrot [8], which combines
a runtime environment with constrained scheduling with a
model checker for bug-finding. Only performance-critical parts
of the program need to be model-checked that are manually
excluded from deterministic scheduling.

The main difference between these DMT approaches and
IRS is that the former support concurrency festing, while our
approach is suitable for program verification by supporting
symbolic program inputs. Using existing DMT approaches for
verification seems unrealistic as their scheduling constraints
depend on concrete program inputs, which would require
to verify all possible inputs separately. Another limitation

of above described DMT approaches are fixed scheduling
constraints that cannot be relaxed at runtime. In contrast,
our approach allows to automatically and iteratively relax
scheduling constraints at runtime, eventually leading to all
schedules (that are successfully verified) being permitted.
Additionally, these DMT approaches either provide no fairness
in scheduling (completely deterministic execution) or provide
fairness for parts of the program by completely unconstrained
scheduling. IRS, in contrast, may provide controlled fairness
by enabling corresponding schedules and enabling them.

Another line of work deals with limiting the number of
context switches to facilitate concurrency bug detection and
concurrency testing. In [16] and [17], programs are model-
checked using bounded model checking (BMC) where the
SMT formula is further constrained to allow only a certain
number of context switches. By doing so, they reduce the
number of program executions that the SAT/SMT solver has
to consider. Musuvathi et al. [13] take this further by using
an iterative approach to context switch bounding (ICB). They
start with an initial number of context switches, and iteratively
allow more to gain a higher confidence in the correctness of
the program. In this approach, the model checker implements
an explicit state space exploration strategy that systematically
explores all possible executions as long as a number of context
switches is not exceeded. While these techniques only deal
with bug finding and concurrency testing, IRS proposes a
complete verification deployment solution. Nevertheless, we
expect that the concept of ICB can be applied to symbolic
model checking as well and therefore could be used as a
verification technique under IRS. To our knowledge, ICB has
not yet been applied to symbolic model checking.

In addition to scheduling, a source of non-determinism
are relaxed memory models in modern architectures. Relaxed
memory models allow more feasible orderings than the more
restricted sequential consistency model (SC) leading to more
program behavior that has to be covered by the model checker.
In [18], a memory monitoring approach is proposed to make
sure that SC is maintained during the execution of a program.
Fang et al. in [19] present an automated memory fence
insertion technique to enforce SC using instrumentation at
the source code level. In both cases, the program can be
safely verified under the assumption that SC holds with a
reduced state space. Similarly to IRS, these approaches restrict
the amount of non-determinism. However, in contrast to IRS,
they are not able to dynamically adapt the amount of non-
determinism and are restricted to non-determinism due to
relaxed memory access.

VII. CONCLUSION

We propose a formal framework for iteratively relaxed
scheduling (IRS) as a method to make both verification
delay and the amount of non-determinism in scheduling of
concurrent programs adjustable. By enforcing scheduling con-
straints, multi-threaded programs can be safely used even if the
program has only partially been verified. We outline several
scenarios of how to use IRS to enable verification of programs

with intractably-large state spaces, enable safe deployment
of programs with erroneous schedules, handle verification
within a given time budget, manage execution time overhead,
and increase execution time performance after deployment.
Our preliminary experimental results suggest that iteratively
relaxing scheduling constraints gradually reduces execution
time overhead.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments. Research supported, in part, by H2020-644579
(ESCUDO-CLOUD).

REFERENCES

[1] A. Valmari, “The state explosion problem,” in Lectures on Petri Nets I:
Basic Models, Advances in Petri Nets, ser. LNCS, vol. 1491. Springer,
1996.

[2] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled, “State space
reduction using partial order techniques,” International Journal on
Software Tools for Technology Transfer (STTT), vol. 2, no. 3, 1999.

[3] P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, ser. LNCS.
Springer, 1996, vol. 1032.

[4] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in Symposium on Principles of Programming
Languages (POPL). ACM, 2005.

[5] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv, “Cartesian partial-
order reduction,” in International SPIN Workshop, ser. LNCS, vol. 4595.
Springer, 2007.

[6] P. A. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas, “Optimal
dynamic partial order reduction,” in Symposium on Principles of Pro-
gramming Languages (POPL). ACM, 2014.

[7]1 T. Liu, C. Curtsinger, and E. D. Berger, “Dthreads: efficient deterministic
multithreading,” in Symposium on Operating Systems Principles (SOSP).
ACM, 2011.

[8] H. Cui, J. Simsa, Y. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A. Gibson,
and R. E. Bryant, “Parrot: a practical runtime for deterministic, stable,
and reliable threads,” in Symposium on Operating Systems Principles
(SOSP). ACM, 2013.

[91 A. W. Mazurkiewicz, “Trace theory,” in Advances in Petri Nets, 1986.

[10] “The LLVM compiler infrastructure,” http://llvm.org.

[11] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang, “Efficient deterministic
multithreading through schedule relaxation,” in Symposium on Operating
Systems Principles (SOSP). ACM, 2011.

B. Wachter, D. Kroening, and J. Ouaknine, “Verifying multi-threaded
software with impact,” in Formal Methods in Computer-Aided Design
(FMCAD). IEEE, 2013.

M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” in Conference on Programming
Language Design and Implementation (PLDI). ACM, 2007.

T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman,
“Coredet: a compiler and runtime system for deterministic multithreaded
execution,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM,
2010.

A. Aviram, S. Weng, S. Hu, and B. Ford, “Efficient system-enforced
deterministic parallelism,” in Symposium on Operating Systems Design
and Implementation (OSDI). USENIX Association, 2010.

I. Rabinovitz and O. Grumberg, “Bounded model checking of concurrent
programs,” in International Conference Computer Aided Verification
(CAV), ser. LNCS, vol. 3576. Springer, 2005.

L. C. Cordeiro and B. Fischer, “Verifying multi-threaded software
using smt-based context-bounded model checking,” in International
Conference on Software Engineering (ICSE), 2011.

S. Burckhardt and M. Musuvathi, “Effective program verification for
relaxed memory models,” in International Conference Computer Aided
Verification (CAV), ser. LNCS, vol. 5123. Springer, 2008.

X. Fang, J. Lee, and S. P. Midkiff, “Automatic fence insertion for shared
memory multiprocessing,” in International Conference on Supercomput-
ing (ICS). ACM, 2003.

(12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

http://llvm.org

	Introduction
	Overview
	Approach
	System Model
	Algorithm

	Implementation
	Experimental Evaluation
	Related Work
	Conclusion
	References

	Button1:
	Button2:
	Button3:
	Button5:
	Button6:
	Button8:

