
Efficient Model Checking of Fault-Tolerant Distributed Protocols

Péter Bokor†, Johannes Kinder†, Marco Serafini‡ and Neeraj Suri†
†Technische Universität Darmstadt, Germany
{pbokor,kinder,suri}@cs.tu-darmstadt.de

‡Yahoo! Research, Barcelona, Spain
serafini@yahoo-inc.com

Abstract—To aid the formal verification of fault-tolerant
distributed protocols, we propose an approach that significantly
reduces the costs of their model checking. These protocols
often specify atomic, process-local events that consume a set
of messages, change the state of a process, and send zero
or more messages. We call such events quorum transitions
and leverage them to optimize state exploration in two ways.
First, we generate fewer states compared to models where
quorum transitions are expressed by single-message transi-
tions. Second, we refine transitions into a set of equivalent,
finer-grained transitions that allow partial-order algorithms
to achieve better reduction. We implement the MP-Basset
model checker, which supports refined quorum transitions. We
model check protocols representing core primitives of deployed
reliable distributed systems, namely: Paxos consensus, regular
storage, and Byzantine-tolerant multicast. We achieve up to
92% memory and 85% time reduction compared to model
checking with standard unrefined single-message transitions.

I. INTRODUCTION

Message-passing is a broadly used communication and
programming paradigm in the design of reliable distributed
systems [6], [32], [10], [28]. However, given the complex-
ity resulting from concurrency and faults, message-passing
systems are prone to subtle bugs [29], [23], [35], [37].
Consequently, a variety of formal techniques is advocated
for ascertaining protocol correctness. A widely used formal
technique for finding bugs or proving their absence is model
checking [12], i.e., the automated and exhaustive exploration
of the system’s state space. The continuing main limitation
of model checking is that the size of the full state space
(and the corresponding time of exploration) is intractably
large even for small systems, i.e., state space explosion.

An effective measure against state space explosion is
abstraction [12], the separation of the conceptual, protocol-
level state space from the low-level implementation (Fig-
ure 1). An implementation of protocol-level constructs
defines a “one-to-many” mapping between protocol and
implementation-level states and transitions. Once the cor-
rectness of the implementation (i.e., the mapping in general)
is verified, a new protocol can be checked on the reduced
protocol-level state space only [23]. If the implementation is

Research supported in part by EC FP7 INDEXYS, Loewe TUD CASED,
and DFG GKMM.

Figure 1. Illustration of protocol and implementation-level states.

not proven correct, the properties that hold at protocol-level
are still valuable, e.g., to justify the conceptual design, but
they do not transfer to the implementation.

Another generic state space reduction technique is partial-
order reduction (POR) [12]. POR assumes that the system
is defined in terms of transitions, i.e., atomic operations
that change the state of the system. In message passing
systems, for example, transitions are the sending or receiv-
ing of messages. The idea of POR is that the sequential
execution of “independent” transitions leads to the same
state irrespective of the relative order of the transitions and,
often, the intermediate states do not impact the properties
of interest. Therefore, it suffices to explore a representative
execution order of such transitions.

Our overall goal is to minimize the size of protocol-level
models and to perform space and time efficient state explo-
ration of these models. A general pattern in the message-
passing computation model is that a transition consumes
multiple messages by a single execution. We call such tran-
sitions quorum transitions. Generally speaking, a quorum
transition can process multiple messages, change the state
of the process that executes it, and send new messages, in a
single indivisible step. We show that quorum transitions not
only enable a natural specification of a class of protocols,
they also yield succinct protocol-level models and allow
better POR performance.

As an example of quorum transitions, consider systems
that guarantee reliability under the assumption that the
number of faulty processes lies below a given threshold and

each correct (non-faulty) process executes an instance of the
same replicated service [4], [6], [10], [38]. The threshold
assumption implies that a set of messages from a large
enough subset (or quorum) of processes contains at least
one message from a correct process. Therefore, a common
technique in such systems is that the execution of an event
is triggered when a set of messages from a quorum (e.g., a
majority) of processes is received.

Exploiting the characteristics of quorum transitions, we
make the following contributions:

• We argue for quorum transitions to be modeled at the
protocol-level. Otherwise, a quorum transition must be
modeled via a sequence of transitions, each of them
processing a single message, which generates a large
number of (implementation-level) states (Section II).
Although the implementation of quorum transitions can
be complex, its correctness has to be verified only once.

• We observe that, maybe surprisingly, the definition of
transitions, which depends on the programming style
and language, can greatly affect the reduction achieved
by POR. We introduce the concept of transition re-
finement, which exploits this observation to tune POR
for better performance. Transition refinement splits a
transition into multiple sub-transitions such that (a) the
behavior of the system remains the same and (b) POR
algorithms can detect more independent transitions. In
particular, we define two transition refinement strate-
gies: quorum-split and reply-split (Section III).

• We implement a POR-based model checker called MP-
Basset that supports quorum transitions and the quorum
and reply-split strategies. MP-Basset is built upon Bas-
set, an existing model checker for actor programs, and
upon its input language ActorFoundry [23]. Our proto-
col specification language is highly expressive, allowing
the execution of arbitrary Java code that respects the
message-passing computation model (Section IV).

• We evaluate MP-Basset based on diverse protocol ex-
amples with a range of fault semantics, namely (a)
Paxos, a fundamental crash-tolerant consensus protocol
[20], (b) a message-based regular storage implementa-
tion [3], and (c) a Byzantine-tolerant multicast protocol
[26]. As the protocol properties are preserved by POR,
our verification results are sound. While Paxos-similar
protocols and storage implementations are already see-
ing deployment in various commercial settings [10],
[38], [40], ready-to-use Byzantine tolerant libraries are
also available [41]. Our experiments show that the
proposed approach can be highly efficient with savings
(verification memory and time) of more than one order
of magnitude compared to models with unsplit single-
message transitions. In addition, the proposed approach
is also suitable for fast debugging especially of “subtle”
bugs (Section V).

II. MESSAGE-PASSING MODELS WITH QUORUM
TRANSITIONS

In this section, we briefly review the message-passing
computation model [4]; we use simplified but equivalent
semantics, which does not distinguish delivery and sending
transitions and is better suited for model checking [8].
We then introduce MP, a Java-like language for specifying
message-passing protocols. Finally, we show how quorum
transitions affect the size of protocol-level models.

A. The Message-Passing Computation Model

Syntax. The system consists of n processes communi-
cating via directed channels, which are (unordered) sets of
messages from a set M . For processes i, j, ci,j represents
a channel from process i to j and is called the outgoing
channel of process i and incoming channel of j. Each
process i assumes a set Si of local states. Initially, every
process i is in some initial state from Si, and all channels
are empty.

A message passing protocol is specified by defining a set
Ti of transitions for each process i. Intuitively, a transition
t ∈ Ti can consume zero or more messages from the
incoming channels of i, change the local state of i, and
send multiple messages. If it can consume more than one
(respectively, at most one) message, t is called a quorum
(respectively, single-message) transition. t is associated with
a predicate (or guard) gt, whose truth value depends only on
a set of incoming messages and i’s local state. In addition,
t is associated with lst : Si × 2M → Si, the local state
transition function of t. Intuitively, lst returns the new local
state of process i depending on the current local state and
a set of incoming messages. If the guard is true (i.e., t is
enabled) in the current local state of i for a set of messages
X in the incoming channels of i, the transition t can be
executed. After executing t, all messages in X have been
removed from the incoming channels of i, its local state
may have been updated via lst, and messages may have
been added (i.e., sent) to the incoming channels of other
processes.

Note that transitions can be non-deterministic. For exam-
ple, if transition t is enabled for messages {m1} and {m2},
then t non-deterministically consumes either m1 or m2.

Semantics. The semantics of a message passing protocol
is given by a state graph, i.e., pairs of states forming directed
edges. Formally, a state graph (often referred to as Kripke
structure [12]) is a tuple (S, S0,∆), where S is the set of
states, S0 is the set of initial states, and ∆ ⊆ S×S is a set of
state pairs. A state s ∈ S is a vector with all channel contents
and the local state of each process. We denote the contents
of channel ci,j and the local state of process i in s by s(ci,j)
and s(i), respectively. Every transition t is a relation such
that t ⊆ S × S. For every s, s′ ∈ S and t ∈ Ti, (s, s′) ∈ t
iff gt(X, s(i)) is true for some subset X of the union of all
incoming channels of i in s and s′ is identical to s except

2

@guard
boolean READ_REPL(READ_REPL[] messages) {

// guard: replies from a majority of N acceptors
return messages.length==(Math.ceil((double)(N+1)/2));

}

@message
void READ_REPL(READ_REPL[] messages) {

... // select highest READ REPL message among messages
WRITE write=new WRITE(propNo, readReplHighest.val);
for (ActorName w : acceptors)
send(w, write);

}

Figure 2. MP syntax: Quorum transition in Paxos.

for the following: (1) the messages in X are removed from
the input channels of i, (2) s′(i) = lst(s(i), X), and (3) zero
or more messages are added to every outgoing channel of i.
In this case, we say that t is executed in s with X and write
s

t(X)−−−→ s′. Now, (s, s′) ∈ ∆ iff there is a transition t such
that (s, s′) ∈ t.

For later use, we define senders(X) to be {j |m ∈
X ∧ m ∈ s(cj,i)}, i.e., the set of processes that have

sent a message in X . If there is s
t(X)−−−→ s′ such that

|senders(X)| > 1, then t is a quorum transition. Otherwise,
t is a single-message transition.

Properties. Properties of a state graph can be defined
using temporal logics [12]. These properties are interpreted
over paths, i.e., sequences of states starting in an initial
state such that each state is connected to the next state
in the sequence. For example, a simple but useful class of
properties are invariants, which define a state-local predicate
that must hold in every state of any path. A counterexample
is a path that violates the property. The property is true if
there exist no counterexamples.

B. MP: A Language Implementation

We have implemented a language called MP (from
message-passing) which allows specifying protocols in the
message-passing computation model. MP extends the input
language of the Basset model checker [23] with quorum
transitions. MP inherits from Basset the ability to specify
expressive guards and transitions in native Java. The only
restrictions compared to full-fledged Java (in both Basset
and MP-Basset) are imposed by the message-passing com-
putation model, e.g., transitions cannot change the local state
of other processes.

Figure 2 shows an example of a quorum transition from
the Paxos consensus protocol [20] written in MP. In this
transition a proposer defines its behavior on receiving a
READ REPL message from a quorum of acceptors.1 By
convention, the type of the message (here READ REPL)

1The original Paxos protocol is defined in terms of four phases 1a, 1b,
2a, and 2b, which we call READ, READ REPL, WRITE, and ACCEPT,
respectively. In the following discussion we assume basic familiarity with
Paxos. As space constraints preclude us from fully detailing the protocol
operations, we point the reader to [20], [21] and also pages 8-9.

@message
void READ_REPL(READ_REPL message){
cnt++;
... // stores READ REPL if it is the highest seen
if (cnt>=(Math.ceil((double)(N+1)/2))){
cnt=0;
WRITE write=new WRITE(propNo, readReplHighest.val);
for (ActorName w : acceptors)
send(w, write);

}
}

Figure 3. MP syntax: Single-message Paxos transition.

must match with the name of the transition. The transi-
tion (annotated by @message) can only be executed if its
guard (annotated by @guard) is true. In this example, the
guard requires that the quorum contains a majority of the
N acceptors. In the body of the transition the proposer
sends the “highest” among the READ REPL messages to
all acceptors. Again, the name of the transition (and the
corresponding guard) determines the type of messages this
transition can consume. The argument of the transition (and
guard) is an array of this message type, which stores the
messages consumed by the transition. In accordance with
the message-passing model, the order of elements in the
array is arbitrary. It is guaranteed by the implementation
that, given the current state of the process and the input
array of messages, the guard function returns true before
any execution of the transition.

A transition can change the local state of a process and
send messages. Messages are sent using the send operation,
which takes the recipient and the message as arguments.
For example, the READ REPL transition sends the same
WRITE message to every acceptor (Figure 2).

C. MP without Quorum Transitions

Arguably, implementing quorum transitions is more com-
plex than single-message transitions. We now show that the
extra effort can pay off, given that the use of only single-
message transitions can inflate the size of the state space.

Consider a language where only single-message transi-
tions are allowed [23], i.e., a transition cannot consume
multiple messages. In such a language the transition of Paxos
shown in Figure 2 cannot be directly defined. We can de-
scribe a Paxos-like protocol by “simulating” READ REPL
via single-message transitions. Figure 3 shows such a tran-
sition: it receives a READ REPL message, increments cnt
to count the number of messages, and, if a majority of
acceptors have sent a READ REPL message, sends the
WRITE message (with the same content as in Figure 2). In
this case, the counter is reset, and the process of collecting
READ REPL messages starts over.

State space issues. A significant drawback of express-
ing quorum transitions with single-message transitions is
that they can be interleaved with other transitions. For
example, given the single-message READ REPL and an-
other transition of Paxos that can be co-enabled in states

3

where READ REPL is executed, a model checker executes
READ REPL and this other transition in different orders in
each of these states.

In general, consider a message-passing protocol P and
transitions t1, ..., tk that are enabled in some state s. De-
pending on the order of execution, the number of different
states resulting from executing t1, ..., tk is at most k!k.

Let t be a quorum transition that is enabled in s for a set
X and s

t(X)−−−→ s′ for some s′. Assume that P ′ is a message-
passing protocol that is specified via single-message transi-
tions only and s′ is reachable from s in P ′. The shortest
path from s to s′ in P ′ contains at least |X| = l transitions,
because any transition in P ′ can consume a single message.
If we assume that these transitions are enabled in s, then
the number of states is at most (k + l)!(k + l), which is
at least (k + l)2 times more states than k!k in P . This
matches with the intuition that the larger the quorum the
bigger the gain of using quorum transitions. We know that
k ≤ |T | where |T | is the number of all transitions in P .
For the smallest meaningful instance and a “reasonable”
specification of Paxos (|T | + l)2 = 169. If we assume that
l ≤ n, i.e., t consumes at most one message from each
process, then the state graph of P ′ can have (|T | + n)2

times more states than P .

III. TRANSITION REFINEMENT

In this Section, after recalling the basics of partial-order
reduction (Section III-A), we introduce and formalize transi-
tion refinement and prove that it preserves the soundness of
POR (Section III-B). After the general definition, we intro-
duce quorum-split, a message-passing example of transition
refinement (Section III-C). Finally, we discuss reply-split, a
useful and general quorum-split strategy (Section III-D).

As an early note, we emphasize that transition refinement
preserves the underlying state graph of the system. It is es-
sentially a “renaming” of the transitions that never affects the
truth of properties. Note that replacing quorum transitions
with single-message transitions does not have this property.
This is because a single edge of the state graph representing
a quorum transition can be divided into a path of lower-level
single-message transitions.

A. Preliminary: Basic POR Terms

In practice, transition systems are used to specify how the
system changes its state. Every transition t is a set of pairs
(s, s′) and makes the system proceed from state s to s′.
Intuitively, a transition groups “similar” state changes of the
system. Formally, a transition system is a tuple (S, S0, T)
where S (S0) is the set of (initial) states and T is the set
of transitions where t ⊆ S × S for every t ∈ T . Note that
message-passing protocols define a transition system with
T = ∪n

i=1Ti (see Section II-A).
Model checkers generate a state graph based on an input

transition system in order to reason about the properties.

Formally, (s, s′) ∈ ∆ in the generated state graph iff there
is a transition t such that (s, s′) ∈ t. The idea of reduction is
to generate a reduced state graph that contains fewer edges
than the original (unreduced) one.

POR is a reduction technique that is based on the obser-
vation that the execution of certain independent transitions
leads to the same state irrespective of the order in which
the transitions are executed (e.g., t1 and t2 in Figure 4(a)).
In the Paxos example, t1 and t2 can be the READ REPL
transitions of different proposers. Therefore, it suffices to
execute these transitions in one, representative order (e.g.,
t2t1) if the states that are missed (s1 in this example) are
irrelevant for the truth of the property. In this example, the
reduced state graph consists of (s, s2), (s2, s12) and (s2, s3).

POR is defined via global terms through a sufficient
set of paths that must be contained in the reduced state
graph. In general, it is as hard to exactly determine this
set as to explore the unreduced state graph. Practical POR
algorithms therefore over-approximate this set of paths to
respect property preservation. We now discuss two general
classes of POR implementations that can benefit from transi-
tion refinement differently. Both classes implement POR by
limiting (if possible) the set of enabled transitions that are
executed in every reachable state. Such a sufficient subset of
the set of all enabled transitions is called stubborn set [31].2

In the example of Figure 4(a), {t2} is a stubborn set in
s. Note that stubborn sets only preserve deadlocks, i.e.,
they guarantee that all states without enabled transitions
will be explored. The preservation of general temporal logic
properties (a class of properties called stuttering equivalent)
requires additional constraints [31].

Static POR. The first class of implementations is called
static (SPOR) because the stubborn set is computed in every
state s when s is visited [15], [31], [12]. This means that
the search is blocked for the time of the stubborn set com-
putation. The main challenge of SPOR is to guess “future”
paths, i.e., paths starting from s (note that these paths have
not been explored yet). If there is a path among these future
paths that is in the sufficient set defined by POR but that
is not in the reduced state graph, then additional transitions
must be added to the stubborn set. A common technique to
guess future paths is the concept of can-enabling transitions
[15]. For example, transition t2 can enable t3 in Figure 4(a).
Therefore, we know that there is a path t2t3 starting from
s. As we will illustrate, transition refinement can affect how
transitions can enable each other.

Dynamic POR. In dynamic POR (DPOR) the stubborn set
in s is computed during the search [13]. In other words, the
stubborn set is computed “on-the-fly” while the successors
of s are visited. In fact, instead of guessing all future paths,
DPOR explores some of these and defines the stubborn

2There are other notions of sufficient subsets such as ample [12],
persistent [15], cartesian [16], monotonic [18], etc. The following discussion
similarly applies to these alternate approaches.

4

Figure 4. (a) Independent transitions t1 and t2. (b) Unrefined transition t: no reduction possible. (c) Caveat: transition refinement disables reduction.

sets later. An important limitation of DPOR is that it is
unsound with stateful model checking, where the model
checker maintains a set of visited states. Therefore, DPOR
can only support stateless search, where the model checker
cannot know if a state has been visited before and therefore
its successor states are visited again.3

A commonality of SPOR and DPOR is that their per-
formance can be greatly influenced by the choice of the
seed transition [5] (also called start transition [31]), the first
transition added to the stubborn set. Intuitively, the size of
the stubborn set grows with the number of transitions that
are dependent on the seed transition. In practice, heuristics
are used to select seed transitions [5], [24].

B. General Transition Refinement

The ability of POR to achieve reduction strongly depends
on the definition of transitions. Consider the transition sys-
tem in Figure 4(b), which generates the same state graph as
the system in Figure 4(a). Although the same reduction can
be used in principle, POR is unable to realize a reduction in
this case. This is because there is a single non-deterministic
transition t enabled in s that must be executed in all possible
ways. Therefore, to leverage POR, t can be refined into t1
and t2 as shown in Figure 4(a).

Transition refinement is a transformation of a transition
system into another one such that the underlying state
graph remains unchanged. Note that the following general
definition does not require that the original transition set
contains fewer transitions than the refined one.

Definition 1: Given transition systems TS and TS ′, TS
is a transition refinement of TS ′ if TS and TS ′ generate
the same state graph.

Transition refinement might affect the POR-reduced state
graph but not the truth of any property. This is because POR
is based on transitions, whereas properties are evaluated in
the state graph. The property preservation result of POR
directly implies that transition refinement also preserves
temporal logic.

Theorem 1: Let TS1 and TS2 be two transition systems
and φ a temporal logic property preserved by POR. Then, if

3We remark that stateful optimizations of DPOR exists [34] but only at
a price of increased memory and time overhead.

TS2 is a transition refinement of TS 1 and TSR
1 and TSR

2

denote the partial-order reductions of TS1 and TS2, then φ
holds in TSR

1 iff it holds in TSR
2 .

Proof: Assume that φ holds in TSR
1 but not in TSR

2 .
From the property preservation of POR we know that φ
holds in state graph generated by TS1. Furthermore, since
TS2 is a transition refinement of TS1 we know that they
generate the same state graphs. Therefore, φ also holds in
state graph generated by TS 2. Again, from the property
preservation of POR we know that φ holds in TSR

2 , a
contradiction. The reverse can be proven similarly.

Benefit in practice. Transition refinement is not only
theoretically useful but can also assist practical POR im-
plementations in computing smaller stubborn sets. Firstly,
the refinement of non-deterministic transitions into a set of
deterministic ones can be beneficial (equally for SPOR and
DPOR) if the refined transitions are independent. Unfortu-
nately, a non-deterministic transition in practice often con-
tains choices that are not independent. However, transition
refinement can also help SPOR to guess future paths more
accurately. Using the example of can-enabling transitions,
a refined transition can enable fewer transitions. For an
example, transition t in Figure 4(b) can enable t3 because
t3 is disabled in s and, after the execution of t, enabled
in s2. Therefore, a static POR algorithm in s might falsely
conclude that there is a future run s

t−→ s1
t3−→ s′ (where

s′ denotes some state). However, if t is refined into t1
and t2 (Figure 4(a)), then t2 can enable t3 but t1 cannot
enable t3. Therefore, the POR algorithm does not consider
s

t1−→ s1
t3−→ s′ as a possible future run.

Caveat. Unregulated transition refinement can have un-
desired effects. As the runtime of POR algorithms increases
with the number of all transitions [31], transition refinement
can slow down the overall model checking time. Even worse,
overly refined transition can even have a negative effect in
terms of memory reduction. To see that, consider another
transition system (Figure 4(c)) that also generates the same
state graph. Here, every change of the system state is trig-
gered by a new transition. Clearly, this transition system can
be obtained via refining the transitions of one of the previous
examples. Again, although reduction would be possible,
POR sees no pair of transitions that could be executed in

5

@guard
boolean READ_REPLij(READ_REPL[] messages) {

return messages.length==((Math.ceil((double)(N+1)/2))
&& messages_are_sent_by_ij);

}

@message
boolean READ_REPLij(READ_REPL[] messages) {
WRITE write=new WRITE(propNo, readReplHighest.val);
for (ActorName w : acceptors)
send(w, write);

}

Figure 5. Quorum-split READ REPL with three acceptors.

different orders. Despite these warning scenarios, we will
show that transition refinement is effective in practice.

C. Quorum-split: Refined Quorum Transitions

The idea of refining quorum transitions is to define a new
transition for each set of processes from which the original
quorum transition can consume a message. For example,
consider the READ REPL transition of Paxos in Figure 2.
This transition is executed by a proposer process and it
can only be enabled if a majority of all acceptor processes
has sent a READ REPL message to this proposer. If there
are three acceptors 1, 2, and 3, then READ REPL can be
executed with messages from acceptors 1 and 2, 1 and 3,
and 2 and 3. Therefore, the transition can be refined into
three transitions READ REPLij for every unordered pair i
and j of acceptors (Figure 5). The transition READ REPLij
behaves exactly as READ REPL except that it can only
consume messages from acceptors i and j. We call this
refinement strategy quorum-split.

Intuitively, READ REPLij tells more about the possible
state transitions of the system than the unsplit READ REPL.
In fact, we know that READ REPLij only consumes mes-
sages from acceptors i and j. This additional information
can be used by POR algorithms to achieve better reduction
(we will show examples in Section III-D).

Formal definition. Transition refinement must not alter
the system behavior. Thus, we define conditions under which
a quorum-split can be performed and yields a valid transition
refinement. We start by defining a special class of quorum
transitions where the number of sender processes is fixed.

Definition 2: A transition t is an exact quorum transition
with a threshold qt iff s

t(X)−−−→ s′ implies |senders(X)| = qt
for all s, s′ ∈ S and sets of messages X .

Next, we formally define quorum-split.
Definition 3: Given a message-passing protocol P and an

exact quorum transition t with threshold qt, a quorum-split
of P via t is an MP protocol P ′ derived from P by replacing
t with transitions t1, t2, . . . , tm, for m =

(
n
qt

)
, such that

s
tk(X)−−−−→ s′ iff s

t(X)−−−→ s′ ∧ senders(X) = Qk, where Qk is
the kth of the m sets of process IDs of size qt.

Note that the definition of quorum-split also allows single-
message transitions (with quorum-size one). In fact, every

@message
void READ(READ message) {
highestPropNo=READ.propNo;
READ_REPL read_repl=new READ_REPL(acceptedProp);
send(message.sender,read_repl);

}

Figure 6. READ transition in Paxos.

single-message transition is an exact quorum transition. We
now state that quorum-split is a transition refinement.

Theorem 2: Let P be an MP protocol, TS the transition
system of P , t an exact quorum transition in P with
threshold qt, P ′ a quorum-split of P via t, and TS ′ the
transition system of P ′. Then, TS ′ is a transition refinement
of TS .

Proof: Let S and T be the set of states and transitions
in TS and T ′ the set of transitions in TS ′. Assume that
TS and TS ′ generate different state graphs with sets of
state pairs ∆ and ∆′, respectively. Assume that there is a
(s, s′) ∈ ∆ such that (s, s′) ̸∈ ∆′. Let t′ ∈ T be a transition
such that (s, s′) ∈ t′. Let X be a set of messages such

that s
t′(X)−−−→ s′. If t′ ̸= t, then t′ ∈ T ′ and thus (s, s′) ∈

∆′, a contradiction. Since t is an exact quorum transition,
it must be that |senders(X)| = qt. P ′ is a quorum-split

of P via t, so there is a tk ∈ T ′ such that s
tk(X)−−−−→ s′

where Qk = senders(X), a contradiction. The reverse can
be shown similarly.

Note that in principle every transition t can be split by
adding a new transition tQ for every subset Q of processes.
However, this would mean adding 2n extra transitions for
every t (n is the number of all processes), which can worsen
the time overhead of the POR algorithm.

Implementation. Quorum-splits can be performed auto-
matically by conservatively analyzing the guards of quorum
transitions. If the guard of a quorum transition t specifies an
exact quorum size qt (as in the example in Figure 2), then
refining t for each set of processes of size qt is guaranteed
to be a transition refinement.

The number of new transitions can be further reduced by
ruling out a process i that never sends messages consumed
by t, i.e., if t is executed in a state with some X , then i
cannot be in senders(X). For example, learner processes in
Paxos send no messages at all. Or, a proposer process sends
no message to another proposer. The automatic detection
of all possible senders(X) sets can be done using simple
patterns, otherwise we conservatively assume that i can be
in such a set.

D. Splitting Reply Transitions

We discussed in Section III-B how transition refinement
can benefit from POR. We now present some implications
of quorum-split for static POR algorithms.

As refined transitions are dependent on fewer transitions
than their unrefined counterpart, the SPOR algorithm can
more accurately approximate future paths. In fact, a quorum

6

transition t can be enabled by (possibly) any process.
However, if tk is the quorum-split version of t, then tk can be
enabled only by transitions that are executed by processes
in Qk. For example, consider the transition READ REPL
in Figure 2. For acceptor processes 1 and 2 this transition
is split into READ REPL12 according to Figure 5. Now,
READ REPL can be enabled by every acceptor whereas
READ REPL12 can be enabled by transitions of acceptors
1 and 2 but not by acceptor 3.

Reply transition. We observe that the quorum-split of
some special transitions can yield even more reduction. The
idea is that the split version of these special transitions can
enable fewer transitions than the original one. We observe
that many protocols define reply transitions where a process
receives one or more messages and sends messages only to
the senders of these messages (e.g., acknowledgement).

For example, consider the READ transition of Paxos
written in MP (Figure 6, guard is not depicted). Before a new
value can be proposed in Paxos, the proposer process asks
all acceptors about the values they have previously seen by
sending a READ message to every acceptor. If an acceptor
receives such a message, it executes a reply-transition to
send a READ REPL message to this proposer. Formally,
we have the following.

Definition 4: Given an MP protocol and a process i,
ti ∈ Ti is a reply transition if for all s, s′ ∈ S and
for all subsets X of messages: s

ti(X)−−−→ s′ implies that
{j | s(ci,j) ⊂ s′(ci,j)} = senders(X).

We call the quorum-split of reply-transitions reply-split.
The additional benefit of reply-split is that the split transition
tk can only enable transitions executed by processes in Qk.
For example, the reply-split of READ for proposer 1 can
only enable transitions of this proposer.

Implementation. For example, it is possible to automat-
ically detect that a transition t is a single-message reply-
transition if the recipient argument of any send operation
appearing in t is message.sender, where message is
the message consumed by t and message.sender is the
sender of this message (Figure 6).

IV. THE MP-BASSET MODEL CHECKER

We implemented a tool called MP-Basset to model check
protocol-level specifications written in MP. The architecture
of MP-Basset is illustrated in Figure 7. The intuition is that
the inclusion of a box denotes that it is “subsumed” by
the outer boxes, e.g., JavaPathfinder (JPF) runs within the
Java Virtual Machine (JVM). MP-Basset is built upon Basset
[23], a model checker that supports a subset of ActorFoundry
[19].4 Therefore, protocols using only single-message tran-
sitions (the common subset of MP and ActorFoundry) are
supported by both MP-Basset and Basset.

4Basset also supports a subset of Scala Actors, an actor programming
language within Scala [25].

Figure 7. MP-Basset architecture illustration.

While Basset supports a wide range of DPOR algorithms,
MP-Basset implements a new SPOR algorithm called MP-
LPOR [9]. The novelty of MP-LPOR is two-fold: (1) it uses
pre-computation to decrease the time overhead of SPOR
and (2) it specifies independent transitions in the message-
passing model. Despite these special characteristics, MP-
LPOR is essentially an SPOR algorithm as discussed in
Section III-A. Therefore, we expect that transition refine-
ment can improve the reduction achieved by MP-LPOR.

In the following sections, we present the architecture
of MP-Basset and key design issues. The complete source
code and installation instructions of MP-Basset are available
online [43].

A. Leveraging JPF & Basset

MP-Basset extends Basset, which runs as a Java applica-
tion within the JPF model checker [39]. While JPF is written
in Java itself and is executed by the JVM, the execution of
target Java programs is “modeled” within JPF’s model layer.
We call this layer JPF-VM to refer to its functional similarity
with the host JVM. Basset is an ordinary Java program that
runs within the JPF-VM. JPF defines a gateway called Model
Java Interface (JPF-MJI) between the modeled program
and the core of JPF (JPF-Core). JPF-Core implements the
search (model checking) functionalities of JPF such as the
computation of concurrently enabled transitions in each
state. By default, JPF assumes a fine-grained interleaving
of Java threads. In order to prevent JPF from exploring un-
necessary interleavings, Basset uses JPF-MJI (a) to impose
the concurrency of the message-passing computation model,
e.g., the execution of a transition is an atomic event, and
(b) to implement different DPOR algorithms. In Basset, the
model checking of an actor program written in ActorFoundry
starts with creating the processes of the input actor program
and sending an initial message. Then, JPF explores the state
space of the program corresponding to interleavings defined
by (a) and (b).

MP-Basset utilizes Basset’s core architecture and imple-
ments quorum transitions by extending Basset’s concept of
“enabled message” into “enabled set of messages”. More

7

precisely, set X of messages in the current state s is
“enabled” if there is a transition t and a state s′ such that
s

t(X)−−−→ s′. Note that computing these sets is time-expensive;
in worst case they compose the powerset of all pending
messages, which is an exponential overhead compared to
the single-message case. Therefore, using quorum transitions
can only reduce verification time if the space-reduction can
compensate for the increased time overhead.

Example. Consider a state s where some process has
three pending messages m1,m2 and m3 in its input buffers.
In order to find the enabled sets of messages, MP-Basset
generates every set X in the powerset of {m1,m2,m3} to
check if X is enabled for some transition t, i.e., the guard gt
is true for X in s. These are 23 sets compared to only three
messages that need to be considered in a model of single-
message transitions. Intuitively, this is the price we pay for
the memory gain with quorum transitions as discussed in
Section II-C.

B. Efficient Design of MP-Basset

We observe the following issues that are important with
respect to the design of MP-Basset:

• Executing code within MP-Basset. Due to the indirec-
tion that MP-Basset runs in JPF-VM, any piece of
code executed in MP-Basset is slower than in native
Java. Fortunately, most message-passing protocols de-
fine simple code. However, other computation-intensive
functionality such as stubborn set computation can be
ineffective if executed within MP-Basset.

• State size. The larger the state of the modeled program
the less the throughput of JPF, i.e., number of visited
states per time unit. Reasons for this include that
the time for hashing, storing, and state comparison
increases with the size of the state.

• MJI overhead. Communication through JPF-MJI is
expensive and tedious because JPF-MJI calls are imple-
mented via Java methods that can only pass primitive
type parameters. Therefore, the conversion (serializa-
tion and de-serialization) of complex types is required,
which comes at the price of increased invocation time
and additional code.

These issues necessitate tuning of how and where MP-
Basset is implemented in the JPF architecture. It turned out
to be efficient to compute enabled message sets entirely
within MP-Basset (without JPF-MJI calls). However, the
efficient design of MP-LPOR was more elaborate. It is
possible for MP-LPOR to compute independent transitions
before model checking as MP-LPOR uses a notion of
independency that is unconditional, i.e., it is not a function
of the system state. This information is queried (and not
re-computed) repeatedly during the search. We perform pre-
computation outside MP-Basset, i.e., through JPF-MJI calls,
for two reasons. First, even if pre-computation is a one-time
cost, it takes considerably longer when executed within the

modeled program. Second, the pre-computed data is state
unconditional, thus, it need not be stored in the state (an
expensive measure as explained above).

An obvious approach to pre-compute and query indepen-
dent transitions through JPF-MJI calls would be to serialize,
pass, and de-serialize transitions as primitive types. To avoid
this expensive and tedious task, we instantiate an exact copy
of each transition within JPF-Core. As a result JPF-MJI calls
can simply address transitions and the result of the queries
(whether or not two transitions are independent) is passed
through primitive boolean types. Note that this solution is
only possible because the set of all transitions is fixed.

V. EVALUATION

In this Section, we first briefly discuss the protocols we
selected for analysis and how they are modeled in MP
(Section V-A). Next we detail the verification results using
Basset and MP-Basset (Section V-B).

A. Target Systems and Protocol-Level Abstractions

We use three widely used and representative fault-tolerant
protocols to demonstrate the benefits of our approach. Each
protocol assumes a threshold of the minimum number of
correct processes. However, they define different fault mod-
els and also specify different properties. We now introduce
these protocols and the properties that we analyzed with MP-
Basset. Note that the goal of this evaluation is to evaluate
the benefit of quorum transitions and transition refinement,
and not a complete verification of these protocols.

• The Paxos protocol solves consensus, a fundamental
primitive that can be used to implement state-machine
replication [20]. Intuitively, consensus means that at
most one value is “chosen”, i.e., all processes agree
on this value. Paxos solves consensus if a minority of
processes can fail by crashing.

• Our second example is a consistent multicast protocol
called Echo Multicast [26]. The agreement property
of consistent multicast specifies that no two processes
receive different messages. Echo Multicast implements
agreement in a Byzantine environment [22] where up
to one third of the processes can fail arbitrarily and the
remaining processes are called honest.

• Our third example is regular storage protocol in the
style of [3]. The objective of distributed storage is to
reliably store data despite failures of the base (storing)
objects. A regular storage guarantees that a read op-
eration returns a value not older than the one written
by the latest preceding write operation. The protocol
assumes a crash-tolerant setting where a minority of
all base objects might crash.

We remark that none of our target protocols assumes
synchrony, i.e., an upper-bound of the worst-case message
delivery time. Synchrony is required only for progress, e.g., a

8

value is eventually chosen in Paxos. Furthermore, messages
can be delivered out-of-order.

Protocol settings. The protocols are parametric in the
number of processes. In addition, processes can be of
different type. In a given protocol setting we specify the
number of processes of each type. Next we summarize the
different process types in each protocol:

• Paxos defines proposer, acceptor, and learner processes.
A proposer can initiate a consensus instance by propos-
ing a value to be chosen. Acceptors store values pro-
posed by proposers. Learners receive messages from
acceptors to learn about proposals and output a chosen
value. A Paxos setting (P,A,L) gives the number of
proposers, acceptors, and learners, respectively. For
example, Paxos (2,3,1) (as in Tables I-II) specifies two
proposers, three acceptors, and a single learner.

• Echo Multicast defines initiator and receiver processes.
In a setting (HR,HI,BR,BI), we define the number
of honest receivers, initiators, Byzantine receivers and
initiators, respectively.

• Every storage protocol defines writers, base objects,
and readers. Since the selected protocol is a single-
writer one, a setting (B,R) defines the number of base
objects and readers, respectively.

Process faults. The above protocols tolerate two classes
of faults, crash (Paxos and regular storage) and Byzantine
(multicast). We do not explicitly model crash faults. This is
because MP-Basset schedules processes in all possible ways
and the effect of crash is implicitly modeled by scheduling
other (non-crashed) processes first. In other words, crashed
and correct processes taking no steps are equivalent. To
model Byzantine faults, we specify processes that do not
obey the protocol. We consider different attack strategies
to challenge the multicast protocol. A complete model of
Byzantine faults is beyond the scope of this paper.

We distinguish Byzantine processes whether they are
initiators or receivers:

• A Byzantine initiator attempts to violate the agreement
property by sending different messages to each of two
groups of honest receivers.

• A Byzantine receiver sends invalid confirmations to
an honest initiator and cooperates with a Byzantine
initiator by confirming (signing) both of its messages.

Fault injection. For debugging purposes we also inject
faults into (a) correct processes and (b) the specification
of the protocols. In particular, we specify “Faulty Paxos”,
where learners do not compare the values received from the
acceptors. In case of Echo Multicast and regular storage
we utilize deliberately incorrect specifications. For example,
in Echo Multicast we exceed the threshold of the number
of maximum Byzantine processes (“wrong agreement”). For
storage we require that a read operation that completes after
a write has to return the value written by the write even if

the two operations are concurrent (“wrong regularity”).

B. Evaluation Strategy and Results.

We perform three experiments for each protocol setting:
• (Table I) We show that using quorum semantics reduces

the size of the overall state space. We run our exper-
iments with POR-optimization. We use two stubborn
set-based POR implementations, a DPOR algorithm
[13] implemented in Basset and an SPOR algorithm [9]
(see Section IV).5 As Basset does not support quorum
transitions, we apply DPOR only for models with
single-message transitions. Furthermore, as the safety
property of regular storage (a form of linearizability) is
not preserved by the DPOR implementations of Basset,
we use unreduced search for verification in this case.

• (Table II) We show that transition refinement can addi-
tionally save model checking resources. As our split
strategies refine transitions of the same process, the
refined transitions are inter-dependent. Thus, transition
refinement is ineffective with dynamic POR (see discus-
sion in Section III-B) and the results are not depicted.
In Table II we measure the performance of SPOR [9]
for models splitting only reply transitions (reply-split),
only non-reply quorum transitions (quorum-split), and
all of these transitions (combined-split).

• (Across Tables I-II) We demonstrate that our approach
can be used for efficient debugging. We show that
finding the first bug6 in faulty protocols or in protocols
with wrong specification requires little resources.

Seed transitions. As explained in Section III-A, the
performance of POR depends on the first transition in
the stubborn set. We use a heuristic where transitions are
preferred that either start a new instance of the protocol (e.g.,
READ transition in Paxos) or, if there is no such transition,
do not terminate an ongoing instance (e.g., READ REPL
or WRITE transitions but not an ACCEPT transition). This
heuristic shows good performance in our POR experiments.
Intuitively, the execution of such a transition “delays” the
decision of which instance is pursued at a given process.
Surprisingly, this heuristic suggests the opposite of the
transaction strategy proposed in [5]. We speculate that
the difference lies in that our target protocols allow more
concurrency than the cache coherence protocol analyzed
in [5]. There, the processing of further client requests is
blocked until the centralized cache controller (assumed to
be fault-free) completes the ongoing instance of the protocol
started by another client.

Note that our heuristic depends on the semantics of the
protocol, which might be hard to automate. In fact, our seed

5Other DPOR algorithms in Basset such as [27] have property preser-
vation guarantees other than stubborn sets. We chose [13] for a fair
comparison with the stubborn-set based SPOR algorithm of MP-Basset.

6The bug first found by the model checker, after which the search is
terminated and a counterexample is returned.

9

Table I
QUORUM SEMANTICS RESULTS.

Baseline experiments︷ ︸︸ ︷ Our quorum results︷ ︸︸ ︷
Protocol Property Result No quorum (DPOR[13])1 No quorum (SPOR[9]) Quorum2 (SPOR[9])

States Time States Time States Time
Paxos (2,3,1) Consensus Verified >16,087,468 >48h4 6,247,530 23h 2,822,764 9h37m

Faulty Paxos (2,3,1) Consensus CE5 162 8s 524 12s 279 10s
Echo Multicast (3,0,1,1) Agreement Verified 2911 41s 9222 2m22s 652 12s
Echo Multicast (2,1,0,1) Agreement Verified 2010 27s 9986 1m55s 2787 31s
Echo Multicast (2,1,2,1) Wrong agreement CE5 66 6s 66 9s 48 6s

Regular storage (3,1) Regularity Verified 2,358,3453 8h57m3 185,711 33m49s 20,039 3m4s
Regular storage (3,2) Wrong regularity CE5 286,410 1h1m 72,937 12m37s 41,331 6m46s

1Run by Basset (stateless search). 2DPOR not supported. 3Unreduced (stateful) search. 4Time-out after 48h. 5Counterexample found.

Table II
TRANSITION REFINEMENT IN ACTION.

Our transition refinement results︷ ︸︸ ︷
Protocol Property Result Quorum (SPOR[9])1 Reply-split2,3 Quorum-split2,3 Combined-split2,3

States Time States Time States Time States Time
Paxos (2,3,1) Consensus Verified 2,822,764 9h37m 1,087,486 3h47m 1,826,560 11h28m 548,061 3h30m

Faulty Paxos (2,3,1) Consensus CE5 279 10s 105 8s 279 10s 105 8s
Echo Multicast (3,0,1,1) Agreement Verified 652 12s 652 12s 232 12s 232 12s
Echo Multicast (2,1,0,1) Agreement Verified 2787 31s 1165 18s 2787 31s 1165 18s
Echo Multicast (3,1,1,1) Agreement Verified 12,023,663 >48h4 >10,472,557 >48h4 7,600,843 >48h4 7,087,193 42h21m
Echo Multicast (2,1,2,1) Wrong agreement CE5 48 6s 48 7s 48 9s 48 9s

Regular storage (3,1) Regularity Verified 20,039 3m4s 18,451 3m13s 18,451 4m31s 18,451 4m32s
Regular storage (3,2) Wrong regularity CE5 41,331 6m46s 6,969 1m32s 29,877 9m51s 6,987 2m34s

1Unsplit from Table I. 2All protocols are modeled with quorum transitions. 3Using the static POR algorithm from [9]. 4Time-out after 48h. 5Counterexample found.

priorities were set by hand. Other heuristics that require no
user intervention are proposed in [5], [24]. For example,
some heuristics are based on different characteristics of the
pending messages [24]. A comprehensive comparison of
how different heuristics perform for quorum transition-based
protocols is beyond the scope of this paper.

Evaluation results. We use Basset and MP-Basset to
run the experiments. All experiments ran on DETERlab
machines [42] with Xeon processors and 4 GB of memory.
The results are shown in Tables I-II. Our POR experiments
utilize the “opposite transaction heuristic” explained above.
The transaction heuristic resulted in very little reduction (not
shown). The depicted protocol settings were selected such
that they represent a meaningful instance of the protocol
(e.g., enough processes to tolerate faults) and are feasible
for model checking. Since the current version of MP-Basset
does not support the automation of transition refinement,
the split models were created by hand. For each protocol
and setting, we highlight the best search strategy (if any)
with bold italic numbers. For example, the quorum model
of Paxos in Table I is the smallest and its model checking
takes the shortest time. We observe the following trends:

• Using quorum transitions can reduce both verification
memory and time (up to 89% and 91% for regular
storage with SPOR) compared to the single-message
case. First, the models with quorum transitions are
smaller. Second, although the throughput of model
checking quorum models is smaller (due to more com-

plex semantics), the overall verification time is less
because of state space reduction.

• Transition refinement can achieve additional reduction
in terms of both memory and time (up to 81% and 64%
for Paxos) compared to the unsplit case. Although the
throughput falls with quorum-split (because split quo-
rum transitions trigger a time-consuming optimization
of the SPOR algorithm), it can achieve significant space
reduction, which adds up to an overall time reduction
(see combined-split of Paxos and multicast (3,1,1,1)).

• The proposed optimizations can also find bugs fast
using little memory. If the bug is “deep” in the search
space, we observe similar trends as for verification (see
regular storage results with wrong property).

Behind the numbers. The above results offer interesting
insights about the different search strategies. Firstly, the
benefit of stateful over stateless search becomes significant
with large state spaces. Otherwise, the stateless search can
be faster because (1) it has no overhead of state comparison
and (2) it revisits just a few states. In this case, the benefit
of DPOR over SPOR can be exposed, e.g., for Faulty
Paxos (Table I). In addition, the benefit of quorum models
decreases with the small quorum size of Echo Multicast
(2,1,0,1) (Table I).

If an optimization is ineffective in a particular fraction
of the state space, then the search strategy with the least
overhead achieves the best result, as can be seen for Echo
Multicast (2,1,2,1) in Table II. In other cases, the split

10

strategies achieve no reduction in the entire state space. For
example, reply-split is ineffective if there is a single initiator
to which the receivers can reply (Echo Multicast (3,0,1,1)),
or quorum-split makes no difference if the quorum contains
all receivers (Echo Multicast (2,1,0,1)). Another example is
regular storage (3,1), where reply-split and quorum-split are
both ineffective. Note that the size of the reduced state space
is slightly different (smaller) compared to the unsplit case.
This is because split models define other (refined) transitions
and the order in which these are executed can be different
(depending on the scheduler of the model checker).

Note that, in general, there is no guarantee that a bug
is found if POR does not preserve the property under
verification. However, if the bug is contained also in the
reduced state space, then the POR search tends to find
the bug quicker as it explores “different” paths [35]. For
example, we refer to the DPOR result of wrong regularity
in Table I for which the unreduced search times out (not
depicted).

VI. RELATED WORK

Our formal model of message-passing systems adapted
from [4] can be seen as an actor program [1]. Similarly,
the proposed MP language shares commonalities with ac-
tor languages such as ActorFoundry [19]. For example,
a concept similar to quorum transitions appears as joint
transitions of actors [14]. However, these are proposed to
make a specification language expressive and not to mitigate
state space explosion. The actor model implements rich
semantics, e.g., synchronization between actors or dynamic
creation of actors. New transition refinement strategies can
be devised for such richer semantics, if needed.

The protocol design and also verification can be simplified
by making assumptions such as synchrony and fail-silent
faults [30], [11] (note that none of our example proto-
cols makes synchrony assumptions). The benefit of quorum
transitions is possibly less significant in such systems as
the possible interleavings of single-message transitions is
constrained by synchronized events.

Existing work on POR concentrates on the definition
and implementation of sound POR-conditions given the
transitions of the system [15], [31], [12]. A concept similar
to transition refinement is operation refinement in [15].
However, operation refinement is specific for a proof-of-
concept modeling language, it is discussed informally, and
its effect on the performance of POR implementations is
not studied. In addition, no general applicable operation
refinement is proposed nor its effect is evaluated in practical
verification.

Promela, the input language of the SPIN model checker
[17], supports message-passing and can be used, as any
other general-purpose specification language, to implement
the semantics of quorum transition (via atomic blocks).
We consider our contribution, regarding quorum transitions,

primarily on the modeling-side as substantiated by our MP-
Basset experiments. However, we could have as well used
other model checkers such as SPIN for these experiments.
SPIN’s POR algorithm is limited to exclusive reads and
writes of FIFO channels. MP-Basset (and Basset) implement
more general POR algorithms and can be extended with such
FIFO-specific independencies.

Automated verification of specific message-passing fault-
tolerant protocols is often done via model checking, e.g.,
[29], [28]. Other approaches target general classes of pro-
tocols. For example, MODIST is a POR-optimized di-
rected testing tool for the analysis of unmodified distributed
message-passing protocols [35]. As MODIST explores the
state space of the real, unabstracted system, it is generally
non-exhaustive due to state space explosion. A related ap-
proach is the network abstraction layer from [2], which is
useful if the processes being model checked communicate
with other external processes. Crystalball is a tool to debug
and prevent failures through a combination of real execution
and model checking [33]. Other work utilizes symmetry
reduction for scalable model checking of message-passing
protocols [7]. These and similar techniques are orthogonal
to ours and can be used in combination.

VII. CONCLUSIONS AND FUTURE WORK

We have devised, implemented, and evaluated a frame-
work for efficient model checking of message-passing dis-
tributed protocols using quorum transitions. The framework
consists of (a) using quorum transitions in protocol-level
abstractions and (b) a new technique called transition re-
finement to improve the performance of certain partial-order
reduction algorithms.

An open issue to pursue in our future work is whether
the presented reduction techniques show similar trends in
symbolic model checking. Such a comparison is especially
motivated by the fact that certain POR methods, e.g. [18],
are best suited for symbolic model checking.

Acknowledgement: We are deeply appreciative of Gul
Agha, Steven Lauterburg and Rajesh Karmani from UIUC
for making the sources of Basset available as well as for
their continuing support of Basset.

REFERENCES

[1] G. Agha, I. A. Mason, S. Smith, and C. Talcott, A foundation
for Actor Computation. Journal of Functional Programming,
7(1):1–72, 1997.

[2] C. Artho, W. Leungwattanakit, M. Hagiya, Y. Tanabe. Efficient
Model Checking of Networked Applications. Objects, Models,
Components and Patterns, pp. 22–40, 2008.

[3] H. Attiya, A. Bar-Noy, D. Dolev. Sharing Memory Robustly
in Message-Passing Systems. J. ACM, 42(1):124–142, 1995.

[4] H. Attiya, J. Welch. Distributed Computing. Wiley, 2004.

11

[5] R. Bhattacharya, S. German, G. Gopalakrishnan. Exploiting
Symmetry and Transactions for Partial Order Reduction of
Rule Based Specifications. SPIN, pp. 252-270, 2006.

[6] K. P. Birman. Reliable Distributed Systems: Technologies, Web
Services, and Applications. Springer, 2005.

[7] P. Bokor, M. Serafini, N. Suri, H. Veith. Role-Based Sym-
metry Reduction of Fault-tolerant Distributed Protocols with
Language Support. ICFEM, pp. 147–166, 2009.

[8] P. Bokor, M. Serafini, N. Suri. On Efficient Models for Model
Checking Message-Passing Distributed Protocols. FORTE, pp.
216–223, 2010.

[9] P. Bokor, J. Kinder, M. Serafini, N. Suri. Local Partial-Order
Reduction. Tech. Report, TR-TUD-DEEDS-11-01-2010, 2010.

[10] M. Burrows. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. OSDI, pp. 335-350, 2006.

[11] M. Chaouch-Saad, V. Charron-Bost, S. Merz. A Reduction
Theorem for the Verification of Round-Based Distributed Al-
gorithms. Proc. Reachability Problems, pp. 93–106, 2009.

[12] E. Clarke, O. Grumberg, D. Peled. Model Checking. MIT
Press, 2000.

[13] C. Flanagan, P. Godefroid. Dynamic Partial-Order Reduction
for Model Checking Software. POPL, pp. 110–121, 2005.

[14] S. Frolund, G. Agha. Abstracting Interactions Based on Mes-
sage Sets. Object-based Models and Languages for Concurrent
Systems., pp. 107–124, 1995.

[15] P. Godefroid. Partial-Order Methods for the Verifcation
of Concurrent Systems: An Approach to the State-Explosion
Problem Springer, 1996.

[16] G. Gueta, C. Flanagan, E. Yahav, M. Sagiv. Cartesian Partial-
Order Reduction. SPIN, pp. 95–112, 2007.

[17] G. J. Holzmann. The SPIN Model Checker : Primer and
Reference Manual. Addison-Wesley, 2004.

[18] V. Kahlon, C. Wang, A. Gupta. Monotonic Partial Order
Reduction: An Optimal Symbolic Partial Order Reduction
Technique. CAV, pp. 398–413, 2009.

[19] R. K. Karmani, A. Shali, G. Agha. Actor Frameworks for the
JVM Platform: A Comparative Analysis. Int. Conf. Principles
and Practice of Programming in Java., pp. 11–20, 2009.

[20] L. Lamport. The part-time parliament. ACM Trans. Comp.
Sys., 16(2):133–169, 1998.

[21] L. Lamport. Paxos made simple. ACM SIGACT News,
32(4):18–25, 2001.

[22] L. Lamport, R. Shostak, M. Pease. The Byzantine Generals
Problem. ACM Trans. Prog. Lang. and Sys., 4(3): 382–401,
1982.

[23] S. Lauterburg, M. Dotta, D. Marinov, G. Agha. A Framework
for State-Space Exploration of Java-Based Actor Programs.
Automated Software Engineering, pp. 468–479, 2009.

[24] S. Lauterburg, R.K. Karmani, D. Marinov, G. Agha. Evaluat-
ing Ordering Heuristics for Dynamic Partial-Order Reduction
Techniques. FASE, pp. 308–322, 2010.

[25] M. Odersky, L. Spoon, B. Venners. Programming in Scala.
Artima, 2008.

[26] M. K. Reiter. Secure Agreement Protocols: Reliable and
Atomic Group Multicast in Rampart. CCS, pp. 68–80, 1994.

[27] K. Sen, G. Agha. Automated Systematic Testing of Open
Distributed Programs. FASE, pp. 339–356, 2006.

[28] M. Serafini et al. Application-Level Diagnostic and Mem-
bership Protocols for Generic Time-Triggered Systems. IEEE
Trans. on Dep. and Sec. Comp., 2011 (To appear).

[29] W. Steiner, J. Rushby, M. Sorea, H. Pfeifer. Model Checking
a Fault-Tolerant Startup Algorithm: From Design Exploration
To Exhaustive Fault Simulation. DSN, pp. 189–198, 2004.

[30] T. Tsuchiya, A. Schiper. Using Bounded Model Checking to
Verify Consensus Algorithms. DISC, pp. 466–480, 2008.

[31] A. Valmari. The State Explosion Problem. Petri Nets I: Basic
Models, pp. 429-528, 1998.

[32] P. Verissimo, L. Rodrigues. Distributed Systems for System
Architects. Kluwer, 2001.

[33] M. Yabandeh, N. Knezevic, D. Kostic, V. Kuncak. Crystal-
Ball: Predicting and Preventing Inconsistencies in Deployed
Distributed Systems. NSDI, pp. 229–244,2009.

[34] Y. Yang, X. Chen, G. Gopalakrishnan, R. Kirby. Efficient
Stateful Dynamic Partial Order Reduction. SPIN, pp. 288–305,
2008.

[35] J. Yang et al. MODIST: Transparent Model Checking of
Unmodified Distributed Systems. NSDI, pp. 213–228, 2009.

[36] http://www.deeds.informatik.tu-darmstadt.de/peter/MP-
Basset.pdf

[37] http://hadoop.apache.org/zookeeper/issue tracking.html

[38] http://hadoop.apache.org/zookeeper/

[39] http://babelfish.arc.nasa.gov/trac/jpf

[40] http://aws.amazon.com/s3/

[41] http://code.google.com/p/upright/

[42] http://www.isi.deterlab.net/

[43] http://www.deeds.informatik.tu-darmstadt.de/peter/mp-basset/

12

