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ABSTRACT
Bounded Model Checking (BMC) is often able to handle
thousands of system variables by encoding the system and
its properties via symbolic formulas and using satisfiability
(SAT) solvers for verification. To further ease the verifica-
tion of state invariants, BMC is augmented with a general
induction rule called k -induction; however, this sacrifices
completeness. Invariant strengthening, a method proposed
to overcome this problem, often requires user intervention
which limits its general applicability.

This paper presents a systematic method which is able to
prove every property that is provable with standard k-induc-
tion and, in addition, further properties that the standard
technique is unable to prove might be provable as well. Our
case studies demonstrate the benefit of our approach with re-
spect to plain k-induction. The main idea is to constrain the
state transition relation in a way that the space of reachable
states remains unchanged and k -induction is more likely to
succeed. We show an implementation of our technique where
the user needs only to extend the guard conditions with in-
variants obtained from the system’s specification. This is
always possible if the schedule of the executed transitions is
(partially) known a-priori.

1. INTRODUCTION
Model checking [6] has proven to be one of the most ef-
fective verification techniques. Over the last two decades,
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model checking has been applied to various fields including
hardware, software and protocol verification. The growing
demand for verifying large systems has made model check-
ing of explicit state models infeasible, therefore, the system
and its properties were proposed to be represented by sym-
bolic formulas. In fact, Binary Decision Diagrams made it
possible to verify systems with hundreds of variables [10],
SAT-based methods have gone even beyond that [2]. The
latter approach is called Bounded Model Checking because
only execution paths of limited length are translated into in-
put formulas of the SAT engine. The technique guarantees
that, given a bound k, the SAT instance is satisfiable if and
only if there exists a counterexample (i.e., a violating exe-
cution) whose maximum depth is k. The limitation of the
BMC approach is that general completeness, i.e., the guar-
antee that correct properties can always be proven, comes
at high price. The intuition is to find the diameter of the
system which can be thought of as the longest depth to ex-
hibit any counterexample. In practice, however, this value
is often too large for effective analysis.

To mitigate the “depth-explosion” of BMC for the verifi-
cation of state invariants, an adaptation of mathematical
induction was proposed in which, under favorable circum-
stances, no exhaustive exploration of the state space is needed
[17]. Despite the practical success of k -induction, the appli-
cation of this approach is limited by the fact that the proof of
valid invariants might fail due to spurious counterexamples.
Such runs are false negatives because they lead to unreach-
able states and are thus invalid executions of the system. A
possible solution is to increase the induction depth, which,
however, does not scale since the best known SAT algorithms
are exponential in the number of input variables. This solu-
tion, even if the complexity of SAT was manageable, might
not work for systems with infinitely long paths if a spuri-
ous counterexample exists for any large k. As an alternative
solution, invariant strengthening has been proposed which
constrains the input formula of the SAT solver such that
no spurious counterexamples are generated and soundness
of the algorithm is maintained (e.g., [9]). The contributions
of this paper are to (1) present a new method of invariant
strengthening, which can be used in conjunction with other



Figure 1: Comparing strengthened transitions with
other methods

existing techniques, to (2) show an implementation of the
proposed general technique, and to (3) demonstrate its prac-
tical usability in protocol verification.

1.1 Positioning the Method and Related Work
The verification of a safety property p is to decide whether
every reachable state satisfies p. The different methods of
induction-based safety verification can be categorized based
on how the verification problem is (re-)formulated (Figure
1).

Assume that k -induction returns a counterexample which
starts in the non-reachable state s0 and reaches sk after k
steps such that the goal invariant (denoted by p) is violated
in sk (see Figure 1). This is a spurious counterexample be-
cause sk is not reachable. If such a run exists, we say the
property p is non-inductive. As a general solution, invari-
ant strengthening was proposed where q (the strengthened
invariant) is assumed to be inductive and p can be proven
if q implies p. The question is how to obtain q? The differ-
ent approaches can be classified as bottom-up or top-down.
The first class only considers the given program, the ap-
proaches in the second class are guided by the goal assertion
p. System-independent solutions for both classes are given
in [13]. Specific knowledge about the system can also be
used to find the appropriate q (e.g., see the study about the
analysis of protocols for low-level data transmission [5]). An-
other systematic approach, called conjunctive invariants [9],
uses the spurious counterexample to rule out s0 as a possi-
ble state and derives the strengthened invariant q = p∧¬s0.
The execution of k-induction can be preceded by a BDD-
based pre-image computation of the undesired states (target
enlargement) [1]. The predicate describing the states that
can reach the target t0 in l steps can be used to strengthen
the invariant1. Another form of strengthened invariants is
to prove the invariants of auxiliary formulas (defined as a
lemma) and discard spurious counterexamples that contra-
dict any of the lemmas.
A different strategy is using disjunctive invariants where the
invariant of the system is built incrementally such that it is
weakened every time k -induction finds a valid counterexam-
ple [15]. For example, qk is a reachable state from initial

1The parameter l can be tuned such that the BDD compu-
tation is still effective.

state q0 and the fact that qk violates p proves that p is not
an invariant of the system. Property p is now extended
such that all configurations in the set of reachable states are
covered. Another approach is using interpolants which are
over-approximations of the set of reachable states; approxi-
mations are computed based on the unsatisfiability of reach-
ing a violating state after up to k steps [14]. Interpolants are
inductively computed (starting with the initial set of states)
such that the resulting set is an over-approximation of the
set of states reachable in i steps (i < k). It is guaranteed
that the invariant is true when a fixed-point is reached. The
motivation of using interpolation instead of k-induction is
that the depth k needed for the first one is, in general, sig-
nificantly smaller. However, not all bounded model checkers
implement the interpolation algorithm.

We propose to strengthen the state transition relation of the
system such that, for a sufficiently large k, system execu-
tions starting from unreachable states (spurious counterex-
amples) are ignored during the induction step. Note that,
although our method resembles invariant strengthening, it
does not bound the state space (by ruling out unreachable
states) but limit the space of trajectories instead. Our tech-
nique is bottom-up in the sense that it does not depend on
the property under verification. The previous approaches
(except of interpolation) do not contradict with strength-
ened transitions, hence, hybrid algorithms can be directly
derived. For example, properties proven via strengthened
state transitions can be used as lemmas in subsequent proofs,
or disjunctive invariants can be proven based on a system
with a strengthened transition relation. Interpolation, on
the other hand, uses fixed-point calculation rather than in-
duction as proof method; therefore, techniques towards in-
ductive invariants are not directly applicable here. Note
that our method, if successful, runs k -induction only once,
whereas other induction-based approaches use failed proofs
or pre-analysis before the property can be proven.

We present a general framework which uses k-induction as
verification method and strengthens the state transition re-
lation of the system. We prove that the framework, when
used for verification, (i) might enhance the completeness of
k-induction and (ii) preserves soundness. Analogous to in-
variant strengthening, the main challenge is to invent how
to obtain the strengthened state transition relation. As a
special case, we show how the Boolean guards of the sys-
tem’s transitions can be modified to strengthen the state
transition relation. For this method to work, we make the
assumption that the control flow of the system is (at least
partially) known. This technique is demonstrated through
the next simple example.

1.2 A Short Example: the Bakery Protocol
We show how strengthened guards can be used to model
check a simplified version of Lamport’s Bakery protocol [11].
We use SAL’s implementation of k -induction [8] which ap-
plies none of the techniques mentioned above. As the Bakery
algorithm works with infinite domains (the ticket number of
a process can be any natural number), we use SAL’s infinite
bounded model checker (sal-inf-bmc) for verification2. The

2sal-inf-bmc makes calls to the Yices [8] Satisfiability Mod-
ulo Theories (SMT) solver which can also handle infinite



1 bakery: CONTEXT = BEGIN
2 PC: TYPE = {sleeping, trying, critical};
3 job: MODULE =
4 BEGIN
5 INPUT y2 : NATURAL
6 OUTPUT y1 : NATURAL
7 LOCAL pc : PC
8 INITIALIZATION
9 pc = sleeping;
10 y1 = 0
11 TRANSITION
12 [ pc = sleeping --> y1’ = y2 + 1;
13 pc’ = trying
14 []
15 pc = trying AND (y2 = 0 OR y1 < y2)
16 AND y1 > 0 %STRENGTHENED GUARD
17 --> pc’ = critical
18 []
19 pc = critical --> y1’ = 0;
20 pc’ = sleeping ]
21 END;

22 system: MODULE =
23 job
24 []
25 RENAME y2 TO y1, y1 TO y2 IN job

26 mutex:THEOREM system
27 |- G(NOT(pc.1 = critical AND pc.2 = critical));
28 END

Figure 2: The SAL model of the Bakery protocol

SAL code of the protocol with two processes is depicted in
Figure 2. The protocol’s main property, mutual exclusion
(mutex), is defined as an invariant saying that it is never
true that both processes are in the critical section at the
same time.

SAL cannot prove mutex using the default depth 10. A spu-
rious counterexample of length 10 is produced starting from
a state where the 1st process has pc=trying, y1=0. This
is not a reachable state because every process increments
its ticket when changing from sleeping to trying (line 12-
13). As a result, the system reaches a state which violates
mutual exclusion. Note that the original model cannot be
proven with any depth. Therefore, it does not help increas-
ing k to any large number. This can be seen by consider-
ing that the state where the two processes have respectively
pc.1=trying, y1=0 and pc.2=trying, y2=1 is a recurring
one because the 2nd process returns to the same state if it
first enters the critical section. As a result, a counterexam-
ple similar to the previous one can be produced for any value
of k. We propose to strengthen the state transition relation
such that the spurious counterexample is not a possible run
of the system. We do it by simply adding a new clause to
the guard of the transition that drives the process into the
critical section (line 16). The new condition requires that
y1 is always positive when the process is at pc=trying. The
theorem can now be proven.

Our observation is that the previous solution gives rise to a
general approach if the system follows a strict control flow.

domains. We note that in the context of this paper, SAT
and SMT solvers are conceptually identical in that they both
decide satisfiability of logical formulas.

The idea is to use the updates in the previously executed
transitions for strengthening the guards. In particular, each
Bakery process periodically alternates between sleeping,
trying and critical. Therefore, we can safely state (with-
out changing the specified behavior) that the assignment of
y1 at line 12 is still valid at line 16.

Paper structure. First we establish a general framework of
transition strengthening (Section 2), then we present strength-
ened guards as a special case (Section 3). Finally, we use
strengthened guards to formally verify a diagnosis protocol
with more than 150 lines of SAL code and compare our tech-
nique with other approaches (Section 4).

2. A SIMPLE FRAMEWORK
We first formally define the system, its properties and the
applied proof method (Section 2.1), then a general technique
is presented and its properties are formally proven (Section
2.2).

2.1 Preliminaries
Assume that the system is defined as a general state transi-
tion graph with tuple M = (S, I, R, L). As usual, S denotes
the set of states, I ⊆ S the set of initial states, R ⊆ S × S
the state transition relation and L : S → 2AP the label-
ing function (AP is the set of atomic propositions). For
simplicity, we use the notations I(s) iff s ∈ I, R(s, s′) iff
(s, s′) ∈ R. A path in M is a sequence of states s0, ..., sk

iff R(si, si+1) for all 0 ≤ i < k. Note that this defini-
tion of path does not require the first state to be an ini-
tial state. We use the predicate path(s0, ..., sk) to designate
paths. Furthermore, we define the set of reachable states in
M as ReachM = {s|I(s)∨∃s0, s1, ... : I(s0)∧path(s0, ..., s)}.

Properties are formulas that are defined based on the for-
mal definition of the system. We restrict to state invariants
(or simply invariants) which are true in all reachable states.
Formally, invariants can be defined over AP using the stan-
dard Boolean operators. We use the shorthand P (s) such
that the predicate is true iff p holds in s, i.e., the atomic
propositions in L(s) satisfy p. A state s is called P-state iff
P (s) holds.

We assume that k-induction is used to verify invariant p
in system M . Before giving the formal definition of k -
induction, we describe it informally. The intuition is to check
that paths of length k starting from an initial state visit only
P-states. If it is not always the case, a counterexample of
length k is found. The dilemma is to determine the value
of k such that the invariance of the property can be safely
established. The strategy is to check whether there exists a
(k+1)-long path starting from an arbitrary state and leading
to a non-P-state. If not, we can safely stop since all shorter
paths have already been checked. Otherwise, the value of
k needs to be increased [17]. Note that this method cor-
responds to the generalization of the simple induction rule
which first states that the invariant includes all initial states
(base case), then it proves that the invariant is closed on
the transitions (inductive step). For the formal definition
of k -induction we use the one taken from [9]. The proof is
parameterized with a system M , depth k and property p. A



k -induction proof instance is denoted by INDM (k)(p) and
is true if the following two predicates hold for all s0, ..., sk.

Base case: I(s0)∧path(s0, ..., sk−1) → P (s0)∧...∧P (sk−1)

Induction: P (s0)∧ ...∧P (sk−1)∧ path(s0, ..., sk) → P (sk)

Note that there is no need to explicitly search for paths
shorter than k if we can assume that the system is live. In
this case, violating paths of length < k are also checked by
INDM (k).

Finally, a proof method is called sound, if the fact that it
proves p in M implies that p is indeed true in M . It has
been shown that k-induction is sound with respect to state
invariants [17, 9]. Furthermore, a proof method is complete
if every property p which is true in M can be proven by
the method. There have been several attempts towards the
completeness of k-induction. In worst case, exhaustive ex-
ploration can be used if there is an upper bound on the
length of the possible trajectories of the system. It is of-
ten possible to find such an upper bound even in systems
with infinite paths. For example, path compression can be
used to make sure that a trajectory only visits “new” states
[9]. As the most common special case, only loop-free paths
are considered. In this case, an alternative induction step
is to check that no (k + 1)-long loop-free path starts form
an initial state [17]. Consequently, we can conclude that all
loop-free paths are covered by the base case and the entire
reachable state has been explored. Formally, the definition
of path predicate needs to be modified if compressed paths
are used. Although our technique works with all known op-
timizations, it is not dependent of any of them, therefore,
they are omitted in the formal discussion.

2.2 k-Induction with Strengthened Transitions
We define a new system based on the original specification
which will be used during the verification. The intuition
is to constrain the state transition relation such that the
observable behavior of the system remains the same. In
this paper, we concentrate on state invariants, therefore, the
preservation of the behavior corresponds to having the same
set of reachable states in both systems. Next, we define
systems with strengthened transitions in a declarative way,
i.e., without discussing how the conditions can actually be
fulfilled. We will show an implementation of such systems
in Section 3.

Definition 1. M ′ = (S, I, R′, L) is a system with strength-
ened transitions with respect to M = (S, I, R, L) if R′ ⊆ R
and ReachM = ReachM′ .

The next simple theorem claims that a system with strength-
ened transitions might improve but never weakens complete-
ness of k -induction. This is equivalent with showing that the
set of provable invariants in M is never greater than that in
M ′. In general, full completeness is not reached, therefore,
both sets are a subset of the set of all invariants in M .

Theorem 1. The completeness of k-induction in a sys-
tem with strengthened transitions can be characterized as
follows.

{p|INDM (k)(p)} ⊆ {p|INDM′(k)(p)} ⊆ {p|M |= Gp}

Proof. Assume that p is an invariant. From Definition
1, M and M ′ entail the same set of reachable states. There-
fore, the base case of INDM (k)(p) is true iff it is true in
INDM′(k)(p). As R′ ⊆ R, path(s0, ..., sk) in M ′ implies
path(s0, ..., sk) in M , thus, INDM (k)(p) implies INDM′(k)(p).
We have proven that if k -induction can verify p in M it can
also prove it in M ′. We now show that it is possible that {p|
INDM (k)(p)} ⊂ {p|INDM′(k)(p)}. Assume that ¬P (sk),
path(s0, ..., sk) in M for some s0, ..., sk but ¬path(s0, ..., sk)
in M ′ for any s0, ..., sk. This is possible if R′ ⊂ R. Finally,
we prove that general completeness cannot be guaranteed.
Assume ¬P (sk) and path(s0, ..., sk) in M ′. In this case,
INDM′(k)(p) is false even if p is an invariant.

2.3 Discussion

Refutation. In general, better completeness with strength-
ened transitions comes at a price. Since the new transition
relation is restricted with respect to the original one, it is
possible that the shortest path between two reachable states
s0 and s increases from k (in M) to k′ > k (in M ′). As a
result, the base case of the induction might find counterex-
amples with greater depths. For example, assume that P (s)
does not hold and k′ is the length of the shortest path to s in
M ′. In this case, a counterexample in M ′ can only be found
with depth k′, whereas, it suffices to use depth k in M . As
finding counterexamples quickly is particularly important in
early phases of the system development, we propose using M
for refutation and M ′ for verification. However, making this
differentiation is not always needed. In the next Section, we
show an implementation of transition strengthening which
never degrades the method’s ability to disprove invariants.

Soundness. We remark that our method, while improving
completeness of k-induction under favorable circumstances,
preserves the general soundness property. This directly comes
from (i) the restriction to state invariants and (ii) the con-
dition that the new system must entail the same space of
reachable states. Accordingly, if a state s is reachable in M
it is also reachable in M ′, therefore, any state invariant is
true in M iff it is true in M ′. The last statement and the
fact that k-induction is sound imply that the verification of
M via M ′ is sound.

3. AN IMPLEMENTATION
Previously, we introduced a theoretical framework to en-
hance the completeness of induction-based BMC. The main
premise was that it is possible to create a system with strength-
ened transitions. But how can we do it in practice? In this
section, we give a solution as a possible implementation of
the general framework. The heart of the solution is the as-
sumption that a fixed control flow of the system exists.



3.1 Preliminaries
To ease further discussion, we use interpreted first order
formulas to describe the system. The predicates and func-
tion symbols as well as the translation from (and to) the
tuple-based representation of Section 2 are defined similarly
to those in [6]. Let V = {v1, ..., vn} be the set of system
variables. Variables range over a finite domain D. A state
s : V → D is interpreted as a valuation of V assigning val-
ues from D to a subset of variables. I denotes a first order
formula which is only true for valuations representing ini-
tial states. R(V, V ′) is the formula which corresponds to the
transition relation. Variables in V are thought of as current
state variables and those in V ′ are the next state variables.
The formula is true if the valuations of V and V ′ represent
a current and next state of the system. Finally, properties
are defined based on atomic propositions of the form v = d
where v ∈ V and d ∈ D. A proposition is true in a state s
if s(v) = d.

Using guarded commands is a common way to describe a
system’s transitions. The simple example of Figure 2 also
used guards to rule the execution of transitions. The next
values of variables can be updated whenever a guard con-
dition based on current values is true. In general, we can
assume that the transition formula implements the following
template: (guard1∧update1)∨(guard2∧update2)∨..., where
guardi is restricted to be defined over V . We say that the
system is defined with guarded commands if R(V, V ′) imple-
ments the previous template. In addition to the definition
of all possible state transitions, a scheduler is attached to
the system to decide which transitions are executed and in
which order. For example, it is the scheduler’s job to re-
solve conflicts when more than one guard is enabled. The
SAL scheduler, for example, selects one of the enabled tran-
sitions non-deterministically or, if none of the guards is true,
it executes the default transition if it is defined (using the
ELSE keyword). The system deadlocks if no transition can
be executed.

3.2 Execution Plan: Fixed Control Flow
Our implementation of systems with strengthened transi-
tions is based on the assumption that the control flow of
the system is a-priori known. For example, in the Bakery
protocol each process executes the same transitions in the
same order. More generally, we assume that an execution
plan is available which contains information about the or-
der of executed transitions. Let transi denote the formula
(guardi∧updatei). In the simplest case, an execution plan is
a sequence of positive integers i1, i2, ... meaning that transij

is the jth transition executed by the system. We call it to-
tal execution plan. However, even if a system adheres to a
control flow, partial non-determinism is possible. Therefore,
we define partial execution plans to be a similar sequence of
numbers with the guarantee that transik is executed after
transij iff j < k. We allow multiple partial execution plans
for the same system, however, with the restriction that they
contain distinct transitions. This makes sense otherwise
there was an uncertainty about what transitions are pre-
ceded by the one appearing in multiple plans. For example,
the Bakery protocol with two processes can be associated
with two partial execution plans each of them containing the
three transitions between lines 12 and 20 (Figure 2). Note
that it is not possible to associate a total execution plan with

Figure 3: Execution plans and actual executions

the Bakery protocol as the participating processes execute
transitions asynchronously without an a-priori global order
of transitions.

Denote the sequence a1, a2, ... an actual execution where
transai is the ith transition executed by the system. The
actual execution models an arbitrary run of the real system.
The relation between execution plans and actual execution
is depicted in Figure 3.

3.3 Strengthened Guards
The main idea of strengthened guards is to prune some of the
impossible behavior by taking into account the scheduling of
the transitions in the real execution of the system. We only
make a natural assumption to require that a transition can
only be executed if its guard is true. To eliminate impossible
runs we use the updates of previously executed transitions to
strengthen the guard. If the system adheres to the execution
plan the new guard will be true exactly when the old one
is true because no further updates have been done to the
variables. In k -induction, the values of state variables in
spurious counterexamples are usually not in accordance with
the execution plan. Consequently, such runs can be ruled
out by using strengthened transitions.

The first solution is to replace the original guard guardi

with guardi ∧ (
∨

updateij−1) for all ij = i in the execution
plan. It is possible that a transition is preceded by different
transitions in the execution plan. Therefore, we add all of
them such that only one needs to be true. If a transition
is executed as first, the possible initial assignments can also
be added to the strengthened guard. Since execution plans
are disjunct or total, at most one execution plan is used for
the replacement of a guard. Before formally defining the
strengthened system, consider the following two issues.

• Formally, updatei is defined over V and V ′. There-
fore, its syntactical rewriting is needed when used in a
guard because guards can only use current state vari-
ables. For example, the update y1’=y2+1 can be used
as y1=y2+1 in the strengthened guard. However, this
is not correct if current state variables that are used in
the assignment are modified by the same update. In
the previous example, changing the value of y2 would



mean that y1=y2+1 will not be true. In general, if vari-
able v is used as both current and next state variable
by the same update, its old value stored in an (aux-
iliary) variable v old can be used in the strengthened
guards (e.g., y1=y2_old+1 in the previous case).

• We have to be careful with partial execution plans be-
cause transitions that are not part of the plan can
modify the assignments with respect to the ones in
updateij−1 . For example, the update y1=y2+1 could
not be directly used to strengthen the guard in line
15 (Figure 2) because the other process might change
y2 in the meanwhile. Therefore, for the general case,
we assume that there is a function fun which extracts
the possibly strongest condition which can be safely
used to strengthen the guard; fun takes an update
as input and returns a formula over V . For exam-
ple, in the strengthened version of the Bakery proto-
col, fun(y1′ = y2 + 1) returns y1 > 0 to use it for
strengthening the guard at line 15. Techniques for im-
plementing fun in an effective and automated way are
part of our future work (see Section 3.6 for more).

The system with strengthened guards M ′ can now be defined
based on the original specification M of the system. Note
that the transformation from M to M ′ can be automated if
we suppose that the function fun and the execution plans
are given.

Definition 2. Supposed that executions plan(s) i1, i2, ...
of a system with guarded commands, described with I and
R(V, V ′), are available; the system with strengthened guards
is described with I and R′(V, V ′) such that every guardi in
R(V, V ′) is replaced by guardi∧(I∨∨

fun(updateij−1)) for
all ij = i, j > 1. The strengthened guard only includes I if
i1 = i.

We claim that Definition 2 is a special case of Definition
1. Therefore, the result of Theorem 1 and the discussion in
Section 2.3 is valid.

Corollary 1. Assume that a system A is defined with
guarded commands. The system A with strengthened guards
(call it A′) is a system with strengthened transitions with
respect to A if A′ is scheduled as A.

Proof sketch. Assume that A and A′ are represented
by tuples M = (S, I, R, L) and M ′ = (S, I, R′, L) respec-
tively. This assumption is valid because Definition 2 only
modifies R(V, V ′). By intuition, R′ ⊆ R because guards
are never weakened and A and A′ share the same sched-
ule (see Section 3.4 for more details). We have to prove
that ReachM = ReachM′ . Assume that the execution plan
i1, i2, ... is total. In this case, fun(updateij ) = updateij .
For every reachable state s in M , there is s0, s1, ... such that
I(s0) and path(s0, ..., s). We use induction by the position
of states in the path. I(s0) is true in both M and M ′. sj

is computed by executing guardij ∧ updateij . The same sj

can be computed by transij in M ′ if guardij ∧ updateij−1

(the strengthened guard) is true. The condition is indeed

true because updateij−1 represents the assignments in sj−1

which is the current state. If the current state is an initial
state, guardi1 ∧ I is true. If the execution plan is not total,
the proof is dependent of the implementation of fun. As-
suming that fun(updateij ) = updateij , the proof is similar
to the one presented above.

Note that our technique does not eliminate transitions, it
only strengthens the guards. Since every new guard is triv-
ially true on paths starting from initial states (this is guar-
anteed by construction), valid counterexamples can be found
with the same depth as for the original system. Therefore,
unlike in the general case (see Section 2.3), there is no need
to use the original system for seeking counterexamples. In
the next Section, we explain why Corollary 1 makes the as-
sumption on the schedule of transitions.

3.4 Preserving Execution Semantics
We say that a system with strengthened transitions A′ is
scheduled as the original system A if they execute the same
sequence of transitions if possible. This ensures that if a
strengthened guard is not true then no other transition is
taken and the execution stops, i.e., no path of depth k exists.

Note that the scheduler which triggers the execution of tran-
sitions might prevent the previous condition from being true.
It is the core of our technique that the execution stops if
a transition which is supposed to be executed is not en-
abled. However, the scheduler might select another transi-
tion which can be alternatively executed. In SAL, for exam-
ple, having the default transition might cause the strength-
ened system to explore states that are not entailed by the
original system. There are two options to circumvent the
undesired interplay of the scheduler. In theory, it is possible
to directly translate the specification into the tuple-based
representation without using the built-in scheduler of the
execution environment. This solution is cumbersome and
can only be viable if the process of translation is fully auto-
mated. Another option is to use the scheduler at hand and
enforce it to implement the desired schedule. Usually it is
not a hard thing to do. For example, ELSE-branches can
easily be eliminated from the original SAL specification by
replacing them with regular guarded commands. We show
an example of how to do it in Section 4.

3.5 Optimizations
Usually, an update only changes the assignment of a real
subset of all state variables instead of changing each of them.
Therefore, guards can be further strengthened with updates
that are not defined by direct predecessors of a transition
plan but whose assignments (or some of them) are not changed
by the subsequent transitions.

Another refinement of our basic technique is to strengthened
guards based on variables (say v old) that store old (e.g.
the previous) values of another variable (v). In this case,
the assignments of v can be used in guards even if value of
v has already been re-assigned. It is also possible to store
more than one old value (i.e., from different states) of the
same variable. In this case, a good tradeoff has to be found
between the overhead of the verification and the benefit of
using strengthened guards. Note that v old is not necessarily



an auxiliary variable of the system that is only introduced to
implement strengthened guards. It is a common technique
to use such variables in order to express liveness properties as
invariants. Variables storing earlier values of other variables
can also be a functional part of the system’s model if some
correlation between the current and previous values needs
to be established. Our case study shows an example of both
optimization techniques.

3.6 Discussion

Transition-validated assertions. The technique of tran-
sition validated assertions (TVAs) is a bottom-up approach
for strengthened invariants [13]. By definition, a TVA is an
invariant q such that updatei → q for every transi interfer-
ing with q. Accordingly, every TVA is 1-inductive and can be
used to strengthen the original property p. Our technique of
strengthening the guards based on a fixed control flow can be
expressed via TVAs as well. Assume that the transitions of
the system are uniquely labeled. For example, transi can be
labeled by i. In the Bakery example, the values of pc.1 and
pc.2 provide an appropriate labeling. Labels serve, besides
providing the means of identifying statements, as locations
of control. Note that a location can designate more than
one label at the same time. For example, if the control of
the Bakery protocol is at pc.1=sleeping, it might be also at
pc.2=trying. Let the auxiliary predicate l(i) be true iff the
control is at transi. For simplicity, denote the strengthened
guard of transi by guardi ∧ (

∨
rewr update). Accordingly,

the formula l(i) → (
∨

rewr update) is a TVA because ev-
ery update that might lead to location described by l(i) is
included in (

∨
rewr update). This is guaranteed by the ex-

ecution plan. It can be seen the formula is still 1-inductive
if our optimization of using earlier updates to strengthen a
guard is applied (see Section 3.5).

Our work differs from TVAs in that it is presented in the
context of strengthened transitions. Even though strength-
ened guards and TVAs are logically equivalent, their im-
plementation can entail different overheads as shown in our
case study. Furthermore, we use execution plans to derive
strengthened guards which can be automated or easily im-
plemented by the user.

Control flow-determinism. One might argue that an exe-
cution plan about the system does not exist or is unknown.
In fact, strengthened guards are useless in the former case.
However, we believe that a static sequence of actions in the
system’s execution can be observed for a variety of appli-
cations. For example, safety-critical embedded systems uti-
lize deterministic protocols like diagnosis, membership [16]
or startup [19] for predictability. We also think that execu-
tion plans can be, in many practical cases, easily determined
based on the system’s specification. For example, the exe-
cution plans of the Bakery protocol can be obtained from
its original description [11] without the need of understand-
ing how the protocol works: the specification of each pro-
cess is given as a sequence of actions which corresponds to
partial execution plans. In other cases, the implementation
restricts the unconstrained schedule of the high-level formal
description. For example, the compiler injects control flow
information of the hardware design with respect to the ab-

stract functional specification on which the formal analysis
is performed [18]. Therefore, the guards in the specification
can be strengthened if we know what the compiler does in
synthesizing the schedule. The automation of determining
the control flow is part of our future work.

Update rewriting. Although the implementation of fun is
kept open as future work, we speculate about some aspects
of its possible automation. Given an update upd, we look
for the result of fun(upd) to strengthen the guards in ac-
cordance with the execution plan(s). Call a variable in V ′

stable with respect to upd if its value remains unchanged
until the execution of the strengthened transition. Other-
wise, the variable is called unstable. Now, fun(upd) is the
identity function if all variables of V ′ appearing in upd are
stable. This means that upd can be used in the strength-
ened guard after the trivial syntactical rewriting described
in Section 3.3. Otherwise, the empty constraint (true) can
be used which corresponds to discarding upd. Decision pro-
cedures can be used to obtain more sophisticated solutions.
For example, unstable variables in upd can be replaced by
symbolic constants and automatic static analysis can be used
to derive a provably valid but non-empty constraint. In the
example of the Bakery protocol, considering the domain of
the variables, fun(y1′ = y2 + 1) = (y1 > 0) can be com-
puted without knowing the value of y2.

4. EXECUTION PLANS IN SAL: VERIFY-
ING A REAL PROTOCOL

As a proof of concept, we use execution plans to verify a
diagnosis protocol with the SAL model checker. The tech-
niques of strengthened guards, transition-validated asser-
tions and lemmas are compared. Our experiments show
that all techniques are able to prove the properties that are
non-inductive in the original model. However, additional
overhead is induced due to the manipulation of the model.
Using strengthened guards, the pure execution time of the
k-induction rule is the shortest among all applied techniques.

In the remainder of this Section, we first briefly describe the
subjected protocol and its implementation in the SAL lan-
guage (Section 4.1), then we present how different techniques
can be implemented to reduce the depth of k-induction based
on the a-priori known control flow of the system (Section
4.2). Finally, we compare the performance of these tech-
niques using the BMC model checker of the SAL environ-
ment (Section 4.3).

4.1 Diagnosis with Hybrid Faults
Diagnosis is a service that is able to locate faults in a system.
In our case study, we use a distributed diagnostic proto-
col applicable in synchronous environments3. The execution
model is that the nodes proceed through a parallel sequence
of rounds such that each round is split into communication
and computation phase. The algorithm is based on round-
based consensus with malicious (aka. Byzantine) faults [12].
The plain model of worst-case faults is augmented with other
less severe faults such as benign faults or symmetric value

3Communication based on message sending is assumed
where correct nodes are able to send and deliver a message
on time.



faults. A benign node executes the protocol but it is un-
able to send a message or sends wrongly formatted data. A
symmetric node is malicious faulty with the restriction that
it sends the same message to everyone. The benefit of the
hybrid fault model is that it entails enhanced fault toler-
ance with the same number of replicas. The protocol used
in this case study, called hybrid diagnosis (HD), executes
consensus on the local syndromes about the health status
of the system [20]. It guarantees that, under the fault hy-
pothesis, (i) all non-faulty nodes agree on the diagnosis of
the system (consistency), (ii) all benign faults are eventu-
ally detected (completeness) and (iii) non-faulty nodes are
never diagnosed faulty (correctness). The fault hypothesis
defines that the overall number of nodes N is greater than
(2a + 2s + b + 1) where a, s and b denote the number of
malicious, symmetric and benign faults, respectively.

The basic assumption of the protocol is, besides synchrony,
that distributed nodes can run computation and send/receive
messages in parallel with each other. This might not be the
case in systems where resources are shared to reduce cost.
Consequently, the protocol (e.g., [16]) and its formal model
must be modified to accommodate the conditions. We re-
mark that the latter is not always needed. For example, the
same model of the presented protocol can be used even if
the system uses a shared communication bus and if different
applications run on the same computer [4]. This is achieved
by using an abstraction and showing a bi-simulation between
the abstracted and the original models.

The protocol. The SAL language allows the user to define
modules which can be thought of as building-blocks of the
overall model. The model of the protocol contains two mod-
ules, one describing the fault model, the second defining the
protocol’s operations executed by the distributed nodes. As
every node is supposed to execute the same code, the mod-
ule defining the protocol is parameterized with the ID of the
corresponding node. We use SAL’s guarded commands to
identify the different stages of the protocol and to execute
the part of the code which is associated with that stage. Ad-
ditional stages are defined when auxiliary operations (e.g.,
fault generation) are being computed which cannot over-
lap with the protocol’s operation. In accordance with the
synchrony assumption, the modules are composed together
using SAL’s synchronous composition. This ensures that
transitions are executed in a lock-step manner, i.e., the exe-
cution stops unless an enabled transition can be selected in
every module and the selected transitions can be executed
following parallel execution semantics (non-conflicting up-
dates, etc.) [7]. Recall that the Bakery example of Section
1 used asynchronous composition, where only one transition
is selected and executed at each step of the model4.

The protocol HD is a sequential and periodic execution of
the following two rounds:

4We remark that SAL’s different composition semantics can
be considered as instructions for compiler about how the
transition relation is calculated.

Variable Stage Dependency Valid at stage

1-3ls_symm’ 0 fvec
(+0 w/ fvec_old)

1-3ls’[i] 0 fvec
(+0 w/ fvec_old)

fvec
sm’[i] 1 ls[1..N]

2-3

ls_prev[1..N]
(+0 w/ fvec_old)

chv’[i] 2 sm[i] 3,0,1
0,1-3fvec’ 3 fvec

(all w/ fvec_old)

Table 1: Variables and their dependencies in the
SAL model of the HD protocol: N is the number of
nodes, var[i] denotes var at node i and the primed
version of a variable means its next value.

Round 1

1. Sending workload (communication): every node i broad-
casts a message.

2. Local detection (computation): every node i diagnoses
the other nodes based on the messages received from
them and forms a local syndrome (ls[i]) indicating
the health status of each node. The jth value of this
vector is 0 if node j is diagnosed faulty and 1 if it is
correct.

Round 2

2. Global dispersion (communication): every node i broad-
casts its local syndrome.

3. Global assimilation...: the local syndromes received
from the other nodes, together with the syndrome ob-
tained in Round 1, are compiled into a syndrome ma-
trix (sm[i]). The jth row of the matrix is the local
syndrome received from node j.

4. ...and analysis (computation): Every node i computes
hybrid majority on the values of each column in the
syndrome matrix and derives a consistent health vector
(chv[i]).

The protocol uses a special form of majority function, called
hybrid majority, where wrongly formatted (i.e., semantically
incorrect) local syndromes and the node’s opinion about it-
self are omitted in the voting; the default outcome is “cor-
rect” if no value is in majority.

Table 1 depicts the variables that are used to encode HD in
the SAL language5. The different stages indicate the pro-
tocol’s steps and auxiliary operations. The current stage
is stored in a control variable called pc (program counter);
this variable is re-set to 0 when it reaches 3 to enable pe-
riodic execution. In addition, the following variables are
defined: the fault vector (fvec), its old value (fvec_old)

5The source of models in this Section are
available at http://www.deeds.informatik.tu-
darmstadt.de/peter/sal/sources. The model of the
HD protocol can be found under diagnosis.sal.



and a variable to store semantically incorrect but symmet-
rically disseminated local syndromes (ls_symm). The fault
vector is updated at the end of each round such that the
fault hypothesis is satisfied. It is assumed that, in each in-
stance of the protocol, a node can be faulty according to
at most one fault class. For example, it cannot be that a
node is benign faulty at round 1 and Byzantine during round
2. The variable ls_symm contains the local syndrome that
a symmetric faulty node sends to the other nodes. In our
experiments, we only verify systems with N < 6; therefore,
it suffices to have just one such a vector since s (the number
of symmetric faults) is at most one. Note that overlapping
instances of the protocol can be executed. This means that
in every communication round k instance A executes Round
2 and another instance B launches the protocol by executing
Round 1. Consequently, in our SAL model, the syndrome
matrix of node i (sm[i]) is not updated based on the local
syndromes of this round but on those from the last round
(ls_prev[1],...,ls_prev[N]).

Properties. We define all three properties of the HD proto-
col: consistency, correctness and completeness. Consistency
can be naturally defined as a state invariant because it re-
quires that the consistent health vector is consistent among
the nodes at the termination of each instance, i.e., at stage 3.
Since the protocol terminates after Round 2, liveness prop-
erties have to be verified with one round delay. Accordingly,
correctness requires that no node that was correct during
round (k − 1) is diagnosed as faulty in round k; complete-
ness means that every benign fault occurring in round (k−1)
must be detected at round k. It is possible to define correct-
ness and completeness as invariants as well, if we store the
fault vector of the previous round. For example, diagnosis
can be defined as follows (chm[i] corresponds to chv[i]):

diagnosis_completeness: THEOREM system |-
G(FORALL(l,m:nodes):pc=3 => (

fvec_old[l]=benign => chm[m][l]=0));

4.2 Inductive Invariants with Execution Plan
If the control flow of the system is a-priori known, the sys-
tem’s model can be modified such that the properties of the
system (expressed as invariants) are more likely to inductive.
The presented model of the HD protocol gives rise to a total
execution plan. This is because the protocol is fully deter-
ministic, the modules of the SAL model are connected via
synchronous composition and the auxiliary operations (the
updates of fvec and ls_symm) do not cause non-determinism
in the control flow. Given that one is implemented via four
stages, the jth transition in the execution plan is always the
transition guarded by stage j modulo 4. Note that, although
the existence of total execution plans requires that the con-
trol flow is deterministic, the data flow can contain non-
determinism. For example, our model non-deterministically
generates local syndromes of Byzantine nodes, the activation
of faults, etc.

Strengthened guards. We have implemented a model of
the HD protocol with strengthened guards. The complete
model is available in the source file diagnosisSG.sal. Now,

we discuss the outline of our implementation. The technique
of strengthened transitions is based on restricting the global
transition relation. In case of synchronously composed mod-
ules, the global transition relation can be derived from the
corresponding transitions of the modules. Since a module
is only allowed to update local variables (which might de-
pend on input variables), it is possible to strengthen the
guards “locally” in each module. For example, this is how
we strengthen the guard pc=3 with the assignment of chv

from the last transition (note that the update part of the
transition is empty because stage 3 is an auxiliary transi-
tion to update the fault vector in the fault module):

pc=3
%---- Guard strengthening STARTS --
AND chv=[[n:nodes] h_maj(sm)[n]]
%---- Guard strengthening ENDS ----
-->

We do not use SAL’s ELSE branch in the model to preserve
execution semantics. The program is forced to execute the
transition (at stage 0,1,2 or 3) determined by the execu-
tion plan. Otherwise, the program’s execution is blocked.
Once again, this does not happen in regular runs, i.e., when
the the program is started from a proper initial state. We
applied the optimization when updates that are not in di-
rect predecessors of a transition are also used to strengthen
the guard of that transition. Table 1 helps determining the
strengthened guards that can be used at different stages of
the protocol. The third column depicts the dependencies of
each state variable. An update of a variable can be used
to strengthen a guard until none of its dependencies is re-
updated. For example, chv is dependent of sm which is up-
dated at stage 1. Consequently, the update of chv at stage
2 can be used from stage 3 to stage 1 in the next round.
Furthermore, the updates of variables depending on fvec

can be used in guards even after fvec is updated because
its old version (fvec_old) is also available. Finally, we note
that this example of guard strengthening assumes the trivial
implementation of fun where fun(upd) = upd. This is be-
cause the execution plan is total and the optimization takes
the dependencies into account.

Transition-validated assertions. We have strengthened the
properties of the HD protocol with transition-validated as-
sertions that can be obtained through the total execution
plan. The model and its properties are available in the
source file diagnosisTVA.sal. For a fair comparison, we used
the same assertions that appear in the strengthened guards
of the previous model. For example, the following assertion
corresponds to the guards strengthened at stages 3, 0 and 1
with the update of chv.

pc/=2 => FORALL(m:nodes):
chm[m]=[[n:nodes] h_maj(sm_vec[m])[n]]

Note that auxiliary variables are used to refer to local vari-
ables of parameterized modules (e.g., sm_vec[i] corresponds
to sm[i]). The same model can be used for invariance check-
ing with lemmas. We defined a lemma called TVAs which is
comprised of the TVAs used to strengthen the properties.



Technique Depth EFA (s) UQ (s) BPCT (s) BFMC (s) BIF (s) SAT time (s) (*) Overall time (s)

- 7 0,11 0,07 0,01 0,23 0,48 0,38 1,46
SG 3 0,24 0,22 0,04 0,42 0,65 0,26 2,52

TVA 3 0,14 0,2 0,3 0,2 1,77 26,22 29,18
Lemma 3 0,15 0,21 0,3 0,2 0,83 9,44 (†) 11,17 + 1,59 (‡)

Table 2: Results of proving consistency of the HD protocol in a 4-node system by using sal-bmc (with Yices
SAT solver). Abbreviations: Expanding function application (EFA), unfolding quantifiers (UQ), Boolean
property conversion time (BPCT), Boolean flat module conversion (BFMC), building induction formula
(BIF) as the time to build the base formula plus the time to build the induction formula. (*) It is the sum
of Yices execution time for the base case and the inductive step. (†) The inductive step took 97% of SAT
time. (‡) The lemma TVAs was proven in 11,17 seconds at depth 1; the consistency property was proven in
1,59 seconds at depth 3. All data in this row correspond to the proof of the lemma.

4.3 Experiments

Reduced induction depth. We verified the properties of
the HD protocol in systems where N < 6 by using the mod-
els presented in the previous Section. For example, consis-
tency can be proven at depth 3 in the model with strength-
ened guards. The original model fails to prove the property
with the same depth and returns a spurious counterexample.
In our setting, the counterexample starts in a state at stage
0 where the fault hypothesis is violated by fault vector. In
addition, the local syndromes do not correspond to the fault
status of the system. Consequently, since the syndrome ma-
trix and the consistent health vector are computed based
on data that cannot appear in the assumed system, consis-
tency is violated. In the model with strengthened guards,
the transition at stage 0 is strengthened with the assign-
ments of the fault vector and the local syndromes. This
entails that runs similar to the previous one are ruled out
in the inductive step of 3-induction and the property can be
proven. We remark that strengthened guards might be use-
ful even if the property was not inductive. In fact, as a result
of guard strengthening the counterexample resembles more
a valid run and appear less “chaotic” than in case of the orig-
inal model and it helps the user to better understand what
goes wrong in the run. We expect that the other techniques
are able to prove consistency at the same depth. Indeed,
consistency strengthened with the established TVAs as well
as the original consistency property using our lemma could
be verified by 3-induction. In the following, we discuss how
the use of these techniques affect the performance of SAL’s
BMC model checker.

Performance issues. The experiments of verifying consis-
tency, completeness and correctness with different system
size showed similar trends. Table 2 depicts the results of
proving consistency for N = 4. The same induction depths
could be measured for completeness and correctness as well.
The experiments were run on a single processor of a double-
core Intel Xeon 5130 at 2 GHz with 4 GBytes memory.
In this case study, the properties of the protocol could be
proven even in the original model by increasing the induc-
tion depth to at least 7. Table 2 compares the time of ver-
ification with the different approaches. As we can see, the
original model is still the fastest (in terms of overall time)
in spite of the increased depth. However, in general, in-
creasing the depth might not be feasible or might not result
in an inductive invariant. We can also see that the SAL

implementation of strengthened guards (SG) outperforms
that with TVAs. We speculate that this is because of the
ability of strengthening the guards “locally”, i.e., within a
module based. It is very fast to prove consistency by using
the lemma; however, the lemma must be proven separately
which takes approximately six times more than the proof of
the property6. The modified models entail more time to ex-
pand functions (EFA) and to unfold quantifying operators
(UQ) because the strengthened guards and TVAs contain
both function application and quantifiers. The TVA and
lemma techniques spend more time converting the formulas
into a Boolean representation (BPCT) because they use a
modified form of the original property. On the other hand,
the transformation of the modules into Boolean formulas
(BFMC) takes the most time in the SG model because the
strengthened guards augment the transition system of the
original model. Our approach needs the shortest time among
the depth-reduction techniques to build the k-induction for-
mulas (BIF) and to run the SAT solver (SAT time).

5. CONCLUSION
We have presented an alternate technique for making invari-
ants inductive. The proposed framework is general allowing
the invention of customized solutions. We have implemented
a prototype solution which strengthens the guards of the
transitions based on the the assumption the sequence of the
executed transitions is known. We have reported the bene-
fit and the overhead of using this method to model check
a system that we develop in a parallel project. We re-
mark that the general technique is not restricted to standard
induction-based invariant checking [17] but can possibly be
used to improve the proof-quality of any method using k-
induction. For example, algorithms using fix-point iteration
to prove equivalence of circuits have been augmented with
k-induction to provide stronger completeness [3]. The re-
sulting algorithm can be further improved by using strength-
ened transitions. However, as our technique manipulates the
transitions, it is limited to induction schemes that work on
the unfolding of the state transition relation.

We believe that the usability of strengthened guards heavily
depends on the actual system. Therefore, we plan to apply it
for the verification of other systems as well. In future work,
we would like to elaborate the full automation of strength-
ened guards. The main issues are to automatically obtain
execution plans and to derive strong strengthened guards

6The lemma can be proven by 1-induction; in general, TVAs
are guaranteed to be provable via simple induction [13].



without user intervention.
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