
Sustaining Property Verification of Synchronous Dependable Protocols Over
Implementation∗

Péter Bokor1,2, Marco Serafini1, Áron Sisak2, András Pataricza2 and Neeraj Suri1

Technical University of Darmstadt, Germany1

{pbokor,marco,suri}@informatik.tu-darmstadt.de
Technical University of Budapest, Hungary2

{petbokor,sisak,pataric}@mit.bme.hu

Abstract

It is often considered that a protocol that has been ver-
ified for its dependability properties at the protocol level
maintains these proven properties over its implementation.
Focusing on synchronous protocols, we demonstrate that
this assumption can easily be fallacious. We utilize the ex-
ample of an existing formally verified diagnostic protocol
as implemented onto the targeted time-triggered architec-
ture (TTA). The cause is identified as the overlap mismatch
across the computation and communication phases in TTA,
which does not match the system assumptions of the proto-
col. To address this mismatch problem, we develop the con-
cept of a generic alignment (co-ordination) layer to imple-
ment the desired communication assumptions. The verifica-
tion of this layer ensures that the formally proved properties
of a protocol also hold over their varied implementation.

1. Introduction

To manage the complexity of formal verification of dis-
tributed protocols, a divide-and-conquer approach is often
advocated. For synchronous round-based protocols imple-
mented on the targeted time-triggered (TT) systems, a gen-
eral approach is to first verify the protocol based on its ab-
stract specification, and then to prove that, under specified
design constraints, the TT implementation of the protocol
preserves the verified properties. By first establishing that
the platform implements the system assumptions made by
the protocol, it is possible to prove a simulation relation be-
tween the abstract protocol definition and the model of the
TT implementation validating that the two models proceed
through the same sequence of system states [12]. The first
step must be repeated for each single protocol, whereas the
second can be done once for all, significantly reducing ver-
ification efforts.

∗Research supported in part by EC DECOS & ReSIST

In this paper we elaborate how the Time-Triggered Ar-
chitecture (TTA) [6] is able to support the execution of
a synchronous round-based protocol preserving the proto-
col’s fault-tolerance properties. Time-triggered systems can
be broadly defined as systems where all nodes have a syn-
chronized time basis and they execute desired operations at
specific times following an a-priori deterministic schedule.
We contrast TTA with other time-triggered systems that as-
sume more co-ordination among the nodes, thus facilitat-
ing a property preserving implementation of synchronous
round-based protocols.

In TTA, the nodes access a shared communication
medium using a Time Division Multiple Access (TDMA)
scheme to determine the time when a node is allowed to
send messages on the bus. This is in contrast with frame-
based TT systems (e.g., [5]), where nodes are assumed
to send messages via dedicated channels at approximately
the same time following a sequence of communication and
computation phases. The latter behavior directly imple-
ments the main assumption of synchronous round-based al-
gorithms1. In TTA, in order to minimize the latency of con-
trol applications, the computation phase of individual nodes
is staggered over the time of communication of other nodes
in the cluster. As a consequence, the constraints defined
for property preservation of frame-based TT implementa-
tion of synchronous round-based protocols [12] are not met
by TTA.

Contributions. To substantiate this claim, we consider a
formally verified, synchronous round-based diagnostic pro-
tocol and show that, in its original form, it fails to guarantee
the desired behavior in a TTA system. We use model check-
ing to obtain counterexamples violating the correctness of
the algorithm.

We then introduce a generic alignment layer concept that
can be used to simulate the communication properties as-
sumed by the protocol. The example of the diagnosis al-

1We use “protocol” and “algorithm” as synonyms, following the dif-
ferent terminology in the referred literature. Similarly, in some places,
dependability and fault-tolerance are used interchangeably.



gorithm and the TTA platform are used as a case study of
the general concept. In particular, it is shown how using the
alignment layer, the original round-based algorithm can sat-
isfy the desired fault-tolerance properties in the TTA model.

Overall, a framework is proposed to ease the verifica-
tion of abstract programs over their implementation. As a
general example, we prove that the alignment layer on top
of TTA yields the assumptions of synchronous, round-based
protocols, thus sustaining their original properties. The gen-
eral framework is not restricted to a specific class of pro-
tocols, neither to the alignment layer (which can provide
various co-ordination), nor to the underlying implementa-
tion platform. In fact, the time-triggered implementation of
round-based protocols over frame-based systems [12] and
over the TTA (as presented) can be treated as special cases.

If the alignment layer can be verified, the framework
not only ensures that the existing formal proof of a pro-
tocol automatically transforms to the protocol’s implemen-
tation, but also facilitates the design of new fault-tolerant
algorithms. During the formal analysis of the algorithm,
the implementation specific details need not be reflected in
the formal model, since the alignment layer guarantees that
the protocol’s assumptions are met. For example, instead
of explicitly modeling the TTA behavior (as in [1, 11]), an
abstract model can be defined based on the protocol’s as-
sumptions, which yields (i) a reduced size of the state space
(mitigating state space explosion in automated verification),
and (ii) a simpler and less error-prone design.

Organization. In Section 2, the frame-based and TTA
models of time-triggered systems are contrasted for their
implementation of round-based algorithms. In Section 3,
we perform formal analysis of a round-based diagnostic al-
gorithm to elaborate its correctness in both time-triggered
implementations. We also present the fault model and ver-
ify that the TTA implementation of the algorithm violates
the specified requirements. A message alignment layer is
proposed as a solution. Section 4 presents a framework to
formally verified implementation of abstract programs. We
prove that message alignment is able to provide the assump-
tions of round-based protocols, and validate the soundness
of the proposed framework via our case study. Section 5
discusses the benefits of the approach based on experimen-
tal data. In Section 6, the results are compared with related
work, and Section 7 concludes the paper.

2. Flavors of Time-Triggered Systems: Imple-
menting Round-Based Protocols

In [8], Lynch identifies a class of distributed algorithms,
where the nodes of the algorithm proceed through rounds,
thus, we call them round-based algorithms. Within a round
every node executes the following two phases: In the com-
munication phase, messages are sent to the other nodes,

ROUND r

X

O

node 1

node 2

node 3

node 4 O

Messages are 
sent at this time:

delivery

Communication
phase

By this time all messages
have been delivered

Job 1

Job 1

Job 1

Job 1

X

X

X

 
 

OO

O O

OO
Job 2

Job 2

Job 1 Job 3

Job 3

Job 2

Computation
phase

TI
M
E

D
P

sched rD

Figure 1. The frame-based TT model: Com-
munication and computation alternate

which deliver these messages; messages are computed by
the local message generation function. Next, in the compu-
tation phase, the local state of a node is updated by the state
transition function based on the messages received from the
other nodes. As it is assumed that nodes execute the differ-
ent phases in lock-step, we call such systems synchronous.
Systems assuming that concurrent actions execute at exactly
the same instant of real time (perfect synchrony) are also
termed untimed (as in [12]) reflecting that the notion of time
can be abstracted and, as such, is not needed.

However, synchronous systems in real applications can
achieve only a certain extent of symmetry, and the untimed
abstraction must be thus implemented. In the following sec-
tions we discuss how this abstraction is obtained in two dif-
ferent classes of TT systems using different communication
and computational paradigms.

2.1. Frame-Based Time-Triggered Systems

The frame-based class of TT systems (e.g., [5]) consid-
ered by Rushby in [12] is very close to the synchronous
round-based model of computation (Figure 1). Nodes pro-
ceed through rounds concurrently, and communication and
computation blocks can be globally separated in each such
round. Every node is allowed to send messages to the
other nodes, and every message from correct processes is
assumed to be delivered within bounded time. Computa-
tion begins after all nodes have sent the messages and all
messages have been delivered. Every node then executes
local jobs, which generate the messages to be sent in the
next round based on the collection of messages currently
available in the input channels. A job can be any applica-
tion running (distributed) on the nodes (e.g., implementing
clock synchronization).

As TT systems are synchronous, there are known upper
bounds on the execution time of jobs and on communica-

2



tion delays among correct nodes. Each node is equipped
with a local clock of known precision, i.e., the drift between
clock time and physical time is bounded. Although a clock
synchronization protocol is used to keep the local clock of
nodes close to each other, it cannot be guaranteed that they
show exactly the same time. Clock synchronization guar-
antees that the values of local clocks periodically converge
and the difference of local clock times (called the skew) is
bounded. As a consequence, different nodes start a syn-
chronized action at slightly different physical times (e.g.,
varying times of sending the messages in Figure 1).

The motivation of Rushby’s work [12] is to abstract the
details of (time-triggered) implementation of round-based
protocols, such as synchronization of local clocks, whilst
conducting formal analysis to verify correctness and fault-
tolerance. Rushby concludes that the formal analysis might
fail to identify the basic mechanisms of why the algorithm is
fault-tolerant, if the formal model of the algorithm contains
implementation-related details (like in [7], for example). In
order to establish a systematic framework, a simulation re-
lation is defined between the execution of a round-based
algorithm and its frame-based TT implementation, i.e., it is
proven that the implementation proceeds through the same
sequence of “global states” (the array of local states of the
nodes at each round) as the round-based algorithm.

According to Rushby’s model, each node initiates round
r at local time sched(r) and begins the communication and
computation phases after global fixed offsets respectively
called D and P (see Figure 1). To reproduce the lock-step
behavior assumed by synchronous round-based protocols,
these offsets must be large enough to allow each node the
time needed to complete one phase before any other node
initiates the next. The paper identifies necessary constraints
(on the offsets D and P , clock drift and skew, etc.) to guar-
antee the simulation relation. We show that this model,
while in accordance with frame-based TT systems, does
not match the communication and computation model of
the TTA.

2.2. Time-Triggered Architecture (TTA)

The TTA is also a time-triggered system but has different
communication and computation patterns than frame-based
systems. The scheduling of each node in the TTA model
is not required to follow a global parallel sequence of com-
munication and computation phases (Figure 2). The TDMA
access scheme assigns a different sending slot to each node
periodically, once in every TDMA round. This is called
global schedule with the convention that the ith sending
slot is assigned to node i. As the system is synchronous,
the messages sent by node i will be delivered by all other

ROUND r

slot 1 slot 2 slot 4

X

X

X

O

O O

O Onode 1

node 2

node 3

node 4

slot 3

X

O

O

O

Message broadcast 
(node 1) 

delivery

TDMA communication
(i.e., global schedule of message sending)

Job execution
(i.e., local schedule 

of computation)

By this time every node 
has delivered the sender's message

Job 1

O

O

O

O
Job 2

Job 3

Job 1 Job 2

Job 1 Job 2 Job 3

Job 1 Job 2

TI
M

E

Figure 2. The TTA model: Communication
and computation overlap

nodes within a bounded time2. Time division multiplexing
is needed, because TTA systems use a shared (duplicated)
bus. It is also assumed that messages are broadcast to all
nodes.

Besides the global communication scheduling, each
node has an internal node schedule determining when jobs
are executed. This schedule is independent of the TDMA
scheme, and it is computed to achieve optimal execution
using different measures (e.g., minimize error propagation
or execution time of a distributed application).

Note that the frame-based model do not apply to TTA
systems, as sched(r), D and P are not globally defined.
The communication phase of different nodes is staggered
over a TDMA round overlapped with the execution of
jobs (which corresponds to the computation phase). Con-
sequently, implementations of a synchronous round-based
protocols on TTA systems do not (in general) guarantee the
desired properties, as shown in the following section. In
[13] we present message alignment to remedy the overlap
of different phases in case of a round-based diagnostic and
membership protocol. We now show that the same mech-
anism can be used in TTA for the correct implementation
of any round-based algorithm. The intuition is to introduce
an additional latency in processing the messages, based on
the fact that all messages sent in round r − 1 are available
in every node at round r. In the following section, the ap-
proach is illustrated by an example protocol, and the results
are validated via model checking.

2Due to the drift and skew of the local clocks, and the latency of mes-
sage delivery, the global schedule is determined such that correct nodes
agree on the current slot.

3



3. Case Study: Verifying Inconsistency of a
Round-Based Diagnostic Protocol on TTA

In [16] the authors define and formally verify the
synchronous round-based algorithm Distributed Diagnosis
(DD)3. As discussed earlier, the fact that DD can be for-
mally verified implies that its frame-based implementation
also guarantees the verified properties [12]. We will use DD
to substantiate that the implementation of an abstract proto-
col on the TTA might not exhibit the desired properties.

Algorithm DD executes in two rounds, each split into
communication and computation phases:

Round 1 - Local Detection

1. Sending workload (communication): Every node
broadcast its workload message(s) generated by the
job(s) running on the node.

2. Local detection (computation): Every node (locally)
diagnoses the other nodes based on the incoming
messages and forms a local syndrome indicating the
faulty/correct status of each node.

Round 2 - Dissemination and Analysis

1. Global dispersion (communication): Every node
broadcasts its local syndrome.

2. Global assimilation (computation): The local syn-
dromes received from the other nodes, together with
the syndrome obtained in Round 1, are compiled into
a syndrome matrix. The ith row of the matrix is the
local syndrome received from the ith node.

3. Analysis (computation): Every node computes the ma-
jority among the values of each column of the syn-
drome matrix4 to derive the global health vector. Each
value of this vector indicates the faulty/correct status
(binary value) of the relative node.

In the following, the fault model and the desired proper-
ties of DD will be defined.

3.1. Fault-Tolerant Distributed Diagnosis

The properties of fault-tolerant protocols need to be
proven against a fault model. In a hybrid fault model, pes-
simistic fault modes are considered together with less severe
fault manifestations. As reported in many applications (e.g.,

3DD is chosen for its representativeness as a synchronous protocol, and
also given the public availability of its detailed specification and formal
verification.

4In fact, hybrid majority is computed, i.e., incorrectly delivered local
syndromes and the node’s opinion on itself are omitted in the voting; the
default is “faulty” if no value is in majority.

[13]), the classification of hybrid fault classes contributes
to a better fault coverage and a finer diagnostic resolution.
DD assumes a hybrid fault model, where no assumption is
made about malicious (or Byzantine) nodes (i.e., they can
send arbitrary messages), and benign nodes are always de-
tected by every correct node based on the erroneous/missing
messages sent by the faulty node (e.g., crash faults). If the
maximum number of malicious and benign nodes are re-
spectively denoted by a and b, the fault hypothesis (i.e., the
number of tolerated faults) of DD defines N > 2a + b + 1,
where a ≤ 1 and N is the overall number of nodes. For
more details about the fault model of DD, the reader is re-
ferred to [16].

The fault model of DD can be directly justified in the
TTA architecture. Symmetric faults are a consequence of
the bus topology, however, asymmetric faults (e.g., [1],[13])
and even Byzantine behavior [4] are also possible in TTA
implementations.

Diagnostic protocols usually require correctness (i.e.,
correct nodes are never diagnosed as faulty), completeness
(i.e., faults are eventually detected) and consistency. To
prove that DD (in its original form) is not correct under the
TTA, we show that consistency is violated.

Consistency All correct nodes agree on the global health
vector.

We remark that correctness and completeness are also
violated, however, for the sake of our argumentation we re-
strict ourselves to consistency.

3.2. Implementation Problems on the TTA

We show that DD, although being formally verified un-
der the untimed model [16], violates consistency in the
TTA. We use the SAL symbolic model checker [3] to an-
alyze DD and its modifications in the TTA. First a coun-
terexample is shown as a run in DD, such that a node is
diagnosed differently by two correct nodes (thus violating
consistency).

In the SAL model of DD in the TTA, we assume that
the diagnostic job is executed once in every TDMA round.
Accordingly, all nodes have the chance to send messages
between two executions of a diagnostic job. These mes-
sages are then used to set up the new diagnostic view. The
following abstraction is used: If the execution of a node’s
diagnostic job is scheduled after slot j, the messages sent
in the current round are available from nodes [1, k], where
k ≤ j. The parameter k depends on how messages are
delivered from the communication layer to the application
(e.g., considering the delay caused by error detection mech-
anisms). Similarly, the new message (as the output of the
diagnostic job) is available at the communication controller
from slot l on, where l ≥ (j + 1). The parameter l is pri-
marily determined by the execution time of the diagnostic

4



job. In particular, we considered the following special case,
where dj[i] indicates the scheduling of the diagnostic job
at node i. If dj[i]=j (j ∈ [0, N − 1]), the diagnostic job
of node i can read the messages from nodes [1, j] and the
new message is available to be sent from slot (j + 1) on.
dj[i]=0 means that the diagnostic job is executed after
the last sending slot of a TDMA round, and it can read data
from all nodes in the last round and send new messages in
the following round.

In the following examples we show that different node
schedules of the diagnostics jobs can result in inconsisten-
cies of the global health vector. Once again, the node sched-
ule of all applications running on the TTA cluster is calcu-
lated and optimized a-priori by a scheduler. Diagnosis is
possibly a low priority application, no assumption can thus
be made about the scheduling of diagnostic jobs. For sim-
plicity, we assume (Assumption 1) that the diagnostic job
is executed after the sending slot of the node within each
TDMA round (e.g., Job 2 in Figure 2).

The SAL model is called DD, and consistency is for-
mulated as an invariant using the temporal logic operator G.
The following theorem requires that the global health vec-
tor of any two correct nodes (ghv[i] and ghv[j]) are
always consistent:

consistency: THEOREM
DD |- G(FORALL(i,j,k:node):
(non_faulty(i) AND non_faulty(j) =>

ghv[i][k] = ghv[j][k]));

SAL fails to prove the theorem and produces the follow-
ing counterexample (N = 4). It can be seen that the node
schedule fulfills Assumption 1, since dj[i] ≤ i, for all i.
The SAL variable fv[i] indicates the fault status of node
i. For simplicity, it is assumed that faults are permanent. In
the counterexample, node 2 is benign faulty at round (r−1),
otherwise all nodes are correct. Consistency is violated, be-
cause node 1 disagrees with node 4 on the diagnosis of node
2.

Counterexample 1:
========================
...
%Node schedule of diagnostic jobs
dj[1] = 1
dj[2] = 2
dj[3] = 3
dj[4] = 0
...
%Fault vector in round r-1
fv[1] = non_faulty
fv[2] = benign
fv[3] = non_faulty
fv[4] = non_faulty
...
%Result of diagnosis at round r
ghv[1][1] = non_faulty
ghv[1][2] = non_faulty %INCONSISTENCY
ghv[1][3] = non_faulty

ghv[1][4] = non_faulty
...
ghv[4][1] = non_faulty
ghv[4][2] = faulty %INCONSISTENCY
ghv[4][3] = non_faulty
ghv[4][4] = non_faulty

Inconsistency is caused by the overlap of communication
and computation in TTA. As the diagnostic jobs running on
nodes 1 and 4 are scheduled respectively before and after
the sending slot of the faulty node (2), 1 detects the fault
later than 4. The run leading to inconsistent diagnosis at
round r is the following. Node 1 reads local syndromes sent
in round r−1. None of nodes 3 and 4 can report the fault in
round r−1, thus, they build a majority (N = 4). Therefore,
node 2 is deemed as non-faulty by node 1. On the other
hand, node 4 detects node 2 as faulty at round r and receives
another accusation from node 3. This is sufficient to deem
2 as faulty. Note that node 2’s self-syndrome is omitted in
the majority voting.

Read alignment We now introduce an alignment layer as
a remedy to the problem identified by Counterexample 1.
The reason why DD misbehaves in the TTA model is that
the diagnostic information of two successive rounds over-
lap. In fact, different nodes use diagnostic information re-
lated to different rounds depending on the time when diag-
nostic jobs are executed. This is possible due to the uncon-
strained node schedule.

A mechanism called read alignment is used to delin-
eate diagnosis of different rounds [13]. The main idea is
that every node buffers the messages sent by other nodes,
and computation is done based on messages that can be
consistently read by all jobs. Assume that a diagnostic
job reads the diagnostic messages {m1, ...,mN} from all
nodes, and the node schedule is defined by li with the
same semantics as dj[i]. It is assumed that messages mi

are updated in the order of sending, following the TDMA
scheme. To let all diagnostic jobs use consistent diagnos-
tic information (i.e., data of the same freshness), a read
alignment layer is assumed providing the following service:
Messages {m1, ...,mli} as read in the previous round, and
{mli+1, ...,mN} as read in the current round, are collected
by the alignment layer and sent to the node. Every time a
diagnostic job is executed, it invokes the message alignment
layer to access consistent diagnostic data, instead of reading
messages directly via the TDMA communication.

To rectify inconsistency of DD in the TTA, we install
the read alignment layer between the TTA communication
layer and the application layer (see Figure 3). Accordingly,
diagnostic jobs access data from the read alignment layer in
both rounds of the protocol: During local detection, every
node detects faults of other nodes based on incoming mes-
sages from the previous TDMA round, and local syndromes

5



are computed accordingly. During global assimilation, lo-
cal syndromes sent in the previous round are collected in
the syndrome matrix, which is used to calculate majority.

Further problems We augmented DD with the model of
the read alignment layer, removed Assumption 1 and ran
model checking again. As a result, consistency still cannot
be proven and the following counterexample is provided.

Counterexample 2:
========================
...
%Node schedule of diagnostic jobs
dj[1] = 1
dj[2] = 2
dj[3] = 3
dj[4] = 4
dj[5] = 4
...
%Fault vector in round r-2
fv[1] = non_faulty
fv[2] = benign
fv[3] = non_faulty
fv[4] = non_faulty
fv[5] = non_faulty
...
%Fault vector in round r-1
fv[1] = malicious
fv[2] = benign
fv[3] = non_faulty
fv[4] = non_faulty
fv[5] = non_faulty
...
%Result of diagnosis at round r
...
ghv[4][1] = non_faulty
ghv[4][2] = non_faulty %INCONSISTENCY
ghv[4][3] = non_faulty
ghv[4][4] = non_faulty
ghv[4][5] = non_faulty
...
ghv[5][1] = non_faulty
ghv[5][2] = faulty %INCONSISTENCY
ghv[5][3] = non_faulty
ghv[5][4] = non_faulty
ghv[5][5] = non_faulty

Prior to examining the given execution of the protocol,
observe that the number of nodes has been increased to 5
to tolerate one benign and one malicious node at the same
time. Note that Assumption 1 is violated, as node 5 al-
ways executes the diagnostic job before its sending slot
(dj[5]=4), which means that fresh diagnostic information
is sent. Consistency is violated as node 4 and 5 disagree on
the diagnosis of node 2 in round r.

The counterexample is the following: At round (r − 1),
local detection is done based on read aligned messages from
round (r − 2). As node 2 is faulty in that round, all correct
nodes build an updated local syndrome containing the ac-
cusation on node 2 (denote it by faulty(2)). According to
the node schedule, nodes 3 and 4 cannot immediately send

the updated local syndromes, thus, they send the prior local
syndromes referring to round (r−3) containing correct(2).
On the other hand, node 5 can immediately send the updated
local syndrome with faulty(2). Furthermore, the malicious
node 1 can send local syndromes containing correct(2) and
faulty(2) to node 4 and 5, respectively.

At round r, the local syndromes sent in round (r − 1)
are aggregated (read alignment) and used to calculate
the majority. Accordingly, node 4 collects the values
〈correct(2), x, correct(2), correct(2), faulty(2)〉 from
nodes 1 to 5 respectively (node 2’s opinion about itself is
denoted by ’x’, since it is not considered in the voting). The
diagnosis of node 2 obtained by node 4 through majority
voting is thus correct(2). On the other hand, node 5 re-
ceives 〈faulty(2), x, correct(2), correct(2), faulty(2)〉
and since no value is in majority, the default value
faulty(2) is adopted to diagnose node 2.

Send alignment In the example above, nodes 3 and 4
broadcast local diagnosis about node 2 referring to round
(r−3), whereas node 5 sends data from round (r−2), which
leads to inconsistency. Therefore, send alignment can be
used to delay the sending of fresh data if needed [13]. In
fact, if all nodes can send fresh data or, equivalently, none
of them can send fresh data (like in Assumption 1), such a
mechanism is not needed, since all data refer to the same
TDMA round. On the other hand, if li ≥ i (i.e., node i
cannot send fresh data) and lj < j (i.e., node j can send
fresh data), for some i and j, send alignment is needed to
guarantee consistency: At every round, node i forms and
immediately sends the local syndrome based on the mes-
sages received from the read alignment layer, however, node
j sends the syndrome based on the messages received in the
previous TDMA round, thus, delaying the broadcast of the
fresh local syndrome.

Accordingly, local syndromes assimilated and analyzed
at round r were all sent at the previous round (read align-
ment), and they all refer to round (r−2) or to round (r−3)
(send alignment). The layer incorporating both read and
send alignment is called the message alignment layer. Note
that the minimum delay imposed by the message alignment
layer is two TDMA rounds, which can be guaranteed if
li < i, for all i, and send alignment is not needed. In the
following section, we prove that any round-based algorithm
maintains its original requirements, if it is deployed on the
TTA platform augmented with the message alignment layer.

4. The Alignment Layer: Transformation to
Provide Equivalence

In this section, we propose a framework to formally
verify abstract programs over their implementation (Sec-

6



Implementation platform
(Time-Triggered Architecture)

Alignment layer
(Read- and send alignment)

Abstract specification + Assumptions
(Synchronous round-based protocols)

INCONSISTENCY
(counterexamples

via MC)

*
A

ss
um

pt
io

ns
(V

ER
IF

IE
D

)
*

VERIFIED

Figure 3. Verification of abstract programs
over their implementation

tion 4.1). As a general example, we show how the frame-
work applies to round-based, synchronous protocols imple-
mented over the TTA (Section 4.2). Finally, as a validation
of the overall approach, the results are demonstrated on the
example case study (Section 4.3).

4.1. A Framework To Verify Abstract Pro-
grams over Implementation

Figure 3 depicts the main elements of the proposed ver-
ification framework. Given the abstract specification of a
protocol together with the system’s assumptions (communi-
cation, synchrony, etc.), the protocol is to be implemented
on a specific platform such that the original specification is
not violated. The implementation platform possibly devi-
ates from the protocol’s assumption. In such cases an align-
ment layer is necessary. We propose to formally prove that
the layer on top of the given platform satisfies the assump-
tions. This is in contrast to formally verifying the compos-
ite model comprising the models of the protocol (with the
fault model) and the implementation platform. It is assumed
that the abstract specification is formally verified, thus, it is
free from design faults. Accordingly, the implementation
of new protocols on the same platform can be done with-
out verifying the alignment layer again. In Figure 3, our
prototype verification settings are written in brackets, i.e.,
model checking synchronous, round-based protocols over
the TTA. The next section proves that read and send align-
ment in TTA indeed guarantee the desired assumptions.

We remark that the implementation of round-based pro-
tocols on a frame-based, time-triggered platform similarly
conforms to the proposed framework. In this case, the align-
ment layer identifies necessary constraints posed on the
frame-based system, e.g., constraints on the skew and drift
of local clocks, which in turn relate to the applied clock syn-
chronization algorithm. The lock-step behavior of untimed
systems can be provably simulated, if these constraints hold
[12]. Finally, note that formal techniques applied by the
framework are not specified. In particular, we used model
checking to verify the abstract specification of the protocol.
In [12] theorem proving is utilized for the same purpose. In

both cases, the properties of the alignment layer are proven
manually.

4.2. A Proof: Message Alignment over TTA
Guarantees the Lock-Step Assump-
tion

In this section, we prove that the message alignment
layer ensures that the assumption of parallel alternation of
communication and computation phases at different nodes
is held on top of the TTA. Therefore, any round-based
algorithm sustains its properties if implemented over the
TTA. We use induction to show that the TTA implemen-
tation proceeds through the same sequence of states as the
round-based protocol, however, with a delay of one or two
TDMA rounds. This means that the TTA-implementation
of a round-based protocol with r rounds terminates after
2(r−1) (without send alignment) or 3(r−1) TDMA rounds
(with send alignment), depending on the node schedule5.
The system’s state is naturally defined as the array of local
states of every node (similarly to [12]).

We now formally define synchronous, round-based pro-
tocols termed as untimed systems after [12]. This mathemat-
ical description will be the base of the equivalence proof.
Note that TTA systems use broadcasting, hence, we restrict
to broadcast communication, as opposed to the general class
of synchronous, round-based protocols [8].

Definition 1. (Untimed system). An untimed system (UT
system in short) consists of a set of nodes P (denote N the
number of nodes) maintaining the set of states S, and a set
of messages M. Node i defines a state transition function6

ti : S × MN → S, and a message generation function
mi : S → M . A set of initial states is defined by SI ⊆ S.

Every node starts from an initial state. The system makes
the following two phases in lock-step, repeatedly in round
1,2, etc.: In the communication phase each node i gener-
ates a message (via mi) that are sent to the other nodes
(broadcast communication); in the computation phase node
i updates its next state (via ti) based on the messages re-
ceived in the current round. The global state of the system
at round r is the array of each node’s state, and it is denoted
by ut(r).

We now formally define the TTA-based implementation
of an untimed system. This means that the same functions
defining the protocol’s operational behavior are assumed.
However, the communication follows the TDMA scheme.
The alignment layer implementing read and send alignment
on top of the TTA is also included in the definition. Mes-
sages are received and sent via this alignment layer. In the

5In the initial round there is no receipt of messages, and similarly, no
messages are sent in the final round. Therefore, the overall number of
TDMA rounds is less than 2r and 3r.

6For simplicity, we assume that a node receives its own message.

7



mathematical description, we use a similar model to the one
introduced in [13]. A communication controller attached to
each node is responsible for sending and receiving the mes-
sages. The communication controller maintains interface
variables {m1, ...,mN}, where mi is the message last read
from node i. Interface variables are updated at every send-
ing slot i with the message sent by node i. Note that the
following model is also “untimed” in the sense that no no-
tion of (local) clocks appear in the definition (as opposed to
the definition of time-triggered systems in [12]). Although,
a TTA system is implemented based on synchronized local
clocks, these details are abstracted in our model, since we
assume that the TTA implementation is correct.

Definition 2. (TTA system). In the TTA system, P, S, SI ,
M, ti and mi are defined as those in the UT system. The
node schedule is defined by li ∈ [0, N − 1] for each node i.

Every node i starts from an initial state and executes the
following operations, repeatedly in TDMA round 1,2,etc.
Send mi(si,r) to the communication controller, if li < i, for
all i (si,r denotes the state of node i at round r). If li ≥ i,
send mi(si,r), otherwise send mi(si,r−1) (send alignment).
The communication controller of node i broadcasts the mes-
sage at slot i via the bus.

The values mj,r (j ∈ [1, N ]) are buffered storing the
message received from node j at round r. The next state
of node i is computed by applying read alignment: sr =
ti(si,r−1,m1,r−1, ...,mli,r−1,mli+1, ...,mN ). The global
state of the system at the end of round r is the array of each
node’s state, and it is denoted by tta(r).

Our main result is that we prove that the UT and the TTA
systems proceed through the same sequence of global states.
Note that the current state of a node in the TTA system
is computed based on the messages of the previous round
(read alignment), thus, imposing a delay of one round. In
addition, certain nodes use their previous state (rather than
using the current one) to generate the message to send, if
send alignment is needed. This yields an additional round
of delay.

The following theorem states that the UT and the TTA
system execute the same program, i.e., the abstract specifi-
cation of a synchronous, round-based protocol is simulated
by its time-triggered implementation. The proven equiv-
alence also verifies that the assumptions of the protocol
(such that strictly alternating sequence of communication
and computation) are realized by the implementation, and
the proposed framework is viable (Figure 3).

Theorem 1. If the initial states of nodes in the UT system
are the same as in the TTA system, the global state ut is
simulated by the global state tta with a delay of two TDMA
rounds, if there is a node i with li ≥ i, and with a delay of
one TDMA round otherwise:

tta(r) = ut(r − 1) or tta(r) = ut(r − 2)

Proof. The proof is an induction on the number of rounds.
Assume that tta(r) = ut(r − 1). Denote si,r−1 and s′i,r
the states of the ith node in the UT and TTA system, at
round r − 1 and r, respectively. The messages sent in
the UT system at round r − 1 are denoted by mi,r−1,
where mi,r−1 = mi(si,r−1). Assume that li < i, for
all i, send alignment is thus not needed. Therefore, the
message m′

i,r sent by the ith node in the TTA system
at round r is computed by mi(s′i,r). By definition, the
next state si,r of node i in the UT system is computed
by ti(si,r−1,m1,r−1, ...,mN,r−1). The next state s′i,r+1

of node i in the TTA system is computed by applying
ti to the messages received from the read alignment
layer, ti(s′i,r,m

′
1,r, ...,m

′
li,r

,mli+1, ...,mN ). From
the definition of li, the interface variables mli , ...,mN

have not been updated with the messages sent at round
(r + 1), thus mj = m′

j,r. From the inductive assumption,
mi,r−1 = m′

i,r, therefore si,r = s′i,r+1 and the inductive
proof follows.

Send alignment is needed, if li ≥ i for some i. In this
case, the messages sent at round r in the TTA system are
computed by mi(s′i,r−1). The reasoning is now similar to
the previous one, and tta(r) = ut(r−2) can be proven.

4.3. A Validation of the Framework: Model
Checking of DD over TTA

According to the proposed verification framework, it is
not necessary to build and verify the composite model. In-
stead, the formal analysis of the abstract specification suf-
fices. This approach can be justified if the model obtained
by composing the models of the DD protocol, the message
alignment layer, the TTA platform and the possible faults
can be verified by model checking.

In fact, we created the composite model by extending
DD. Technically, SAL’s input language supports the compo-
sition of modules, where each module is a functional build-
ing block of the larger model. In order to emphasize our
treatment of message alignment as a layer of the overall ar-
chitecture, the new SAL model is a synchronous compo-
sition of the following sub-modules: Every diagnostic job
executing DD is a module; the message alignment layer as
well as TDMA communication are also modeled as differ-
ent modules. The composed model is called DD aligned
and the SAL model checker was able to prove the following
theorem:

consistency: THEOREM
DD_aligned |- G(FORALL(i,j,k:node):
(non_faulty(i) AND non_faulty(j) =>

ghv[i][k] = ghv[j][k]));

8



N
consistency correctness completeness

UT TTA UT TTA UT TTA
4 1s 7m 1s 3m 1s 55s
5 3s 36h 25m 2s 2h 23m 2s 1h 30m
6 10s – 5s 13h 19m 5s 23h 57m
7 71s – 21s – 18s –

Table 1. The results of model checking DD:
Times of verifying the untimed system (UT)
and the composite model (TTA)

Accordingly, consistency of DD can be proven in the
TTA, however, as discussed in Section 3.2, only after the
installation of the message alignment layer.

5. The Efforts of Verification Based on Experi-
ments

One advantage of the proposed framework is that exist-
ing formally verified protocols provably sustain their prop-
erties over the implementation. Besides the re-usability of
established solutions, the framework also supports the de-
sign and verification of new protocols. Assuming that the
properties of the alignment layer are proven, the design and
verification can now be performed at the abstract level. The
benefit of this approach is two-fold:

(O1) The computational complexity of verifying the abstract
specification instead of the composite model can be
considerably less (even in the order of multiple mag-
nitudes). This is due to the possibly vast number of
conditional branches in the state space caused by the
modeling of faults and implementation-related details.

(O2) The handling of large (and complex) models possibly
yields additional complexity in the verification and/or
design of the protocol.

Table 1 depicts the results of model checking consis-
tency, correctness and completeness in the DD protocol.
Experiments were done based on the model of the untimed
system (UT) and the composite model (TTA) of DD, using
SAL’s Bounded Model Checker (BMC) installed on a 2.66
Ghz Intel processor with 2 GB memory, running Linux 2.6
kernel. No data is depicted in Table 1, if the model checker
could not prove the property due to state space explosion (a
timeout of 48 hours was used). It can be seen that the UT
model scales even if N ≥ 7, while the state space explodes
for relative small TTA models (N = 6). The UT model ex-
hibits a considerable gain, if the times of completed proofs
are compared (e.g., 3 seconds versus 36 hours in case of
consistency, N = 5). This growth of the state space in the
composite model is due to the large number of combinations
stemming from the possible node schedules, which have to
be considered by the model checker.

Regarding (O2), Rushby already pointed out that the
identification of key fault-tolerant mechanisms of dis-
tributed protocols might be tedious in a model containing
implementation details [12]. In particular, the identifica-
tion of such mechanisms is crucial to complete the proof,
if deductive reasoning (e.g., theorem proving) is used for
verification. Similarly, if the (possibly complex) formal
model of the implementation platform needs to be also cre-
ated, the design of the total model requires an experienced
user. Finally, the verification of the composite model can
affect the automation of the verification. For example, the
model checking of the composite model required user inter-
action, if SAL’s BMC model checker was used. The BMC
approach is based on k-induction which uses a parameter
(called depth) to prove a property. The depth can be usually
approximated by the longest acyclic path in the model. In
the UT model, the depth depends on the number of rounds,
which is constant (r = 2). The default depth could be thus
used. In case of TTA, on the other hand, the depth is also
determined by the number of slots, which varies with N ,
and the depth of k-induction has to be tuned accordingly.

6. Related Work

Considerable work exists on finding mechanisms that
guarantee safe execution of a program’s implementation. A
common goal is to ensure that native code provided by an
untrusted party can be executed by the code consumer (e.g.,
an operating system kernel) without violating its safety pol-
icy. Different approaches can vary on the time of perform-
ing the safety check of the executable code, thus, affecting
performance. For example, proof-carrying code (PCC) [10]
requires the code producer to provide the executable code
together with a proof of safety, which can be validated by
the code consumer at deployment time (once for all). Soft-
ware Fault Isolation [15], on the other hand, proposes in-
strumentation of the code and requires that safety is checked
at runtime. Note that we propose a design time approach to
ensure that the target architecture of a program is able to
provide the specified assumptions.

Model-based development is a well established
paradigm in software-engineering of embedded systems.
In this context, the alignment layer can be seen as a
transformation within an automatic code generator, whose
input is a high-level, executable model of the application,
and the output is the platform specific source code. In
fact, we proved the correctness of this transformation
containing the read and send alignment for round-based
algorithms. Further validation of the code generator can be
then performed using approaches like [14].

Assertion capabilities of programming languages is a
general technique in software development to detect faults
and provide information about their locations. As a spe-

9



cial case, formal specification languages (like SAL) that are
usually defined to support verification at early stages of de-
velopment (at design time) and at a high level of abstrac-
tion also introduce assertions. Run time approaches, on the
other hand, propose monitoring assertions during execution
and they often offer a simpler and more practical alternative
to formal proofs of correctness [2].

The conceptual basis of Timed Abstract Protocol Nota-
tion (TAP) shares significant similarities with our approach
[9]. TAP is a language for describing asynchronous, mes-
sage passing protocols, whose semantics is defined by the
abstract and concrete executions models, which are proven
to be equivalent. The first one is appropriate to formal rea-
soning about the protocol’s correctness, and the latter one
can directly compile into C code. The main difference to
our work stems from the synchrony assumptions of the sys-
tem. Asynchronous systems impose no assumptions on the
message delivery (e.g., timeouts), hence, the abstract de-
scription (TAP) can be directly implemented without requir-
ing an alignment layer.

7. Discussion and Conclusions

We analyzed the specification of a distributed diagnostic
protocol with respect to different time-triggered systems as
possible implementation platforms for it. Model checking
was used to verify inconsistencies between the properties
of the protocol’s abstract specification and the properties of
the implementation. We identified that the mismatch arises
as the implementation cannot directly guarantee the proto-
col’s assumptions, such as co-ordination between commu-
nication and computation.

As a solution, we have proposed creating an alignment
layer able to provide the abstract assumptions on top of the
selected implementation platform. The layer implements a
transformation of the platform’s characteristics and acts as
a wrapper to convey the desired assumptions to the nodes
running the distributed protocol. In particular, we have de-
fined message alignment to compensate the communication
pattern of the TTA platform, and to simulate the lock-step
assumption of the diagnostic protocol.

We have shown that the previous concept can be general-
ized within a verification framework, containing an abstract
program, the target implementation platform, and the trans-
forming alignment layer in the middle of the architecture.
In order to support an effective verification, the properties
of the alignment layer can be proven for a general class of
protocols. In our case study, we have proved that message
alignment provides the assumptions of any synchronous,
round-based protocols.

In future work, we aim at elaborating the application of
a similar framework to verify the implementation of asyn-
chronous protocols on partially synchronous systems.

References

[1] G. Bauer and M. Paulitsch. An Investigation of Membership
and Clique Avoidance in TTP/C. Proc. of SRDS, pp. 118–
124, 2000.

[2] L. A. Clarke and D. S. Rosenblum. A Historical Perspective
on Runtime Assertion Checking in Software Development.
SIGSOFT Softw. Eng. Notes, 31(3): pp. 25–37, 2006.

[3] L. de Moura et al. SAL 2. Proc. of CAV, pp. 496–500, 2004.
[4] K. Driscoll et al. Byzantine Fault Tolerance, from Theory to

Reality. Proc. of SAFECOMP, pp. 235–248, 2003.
[5] R. M. Kieckhafer et al. The MAFT Architecture for Dis-

tributed Fault Tolerance. IEEE Trans. Comput., 37(4): pp.
398–405, 1988.

[6] H. Kopetz and G. Bauer. The Time-Triggered Architecture.
Proc. of the IEEE, 91(1): pp. 112 – 126, 2003.

[7] L. Lamport and S. Merz. Specifying and Verifying Fault-
Tolerant systems. Proc. of FTRTFT, pp. 41–76, 1994.

[8] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[9] T. M. McGuire. Correct Implementation of Network Proto-
cols. PhD thesis, Dep. of Comp. Sci., The Uni. of Texas at
Austin, 2004.

[10] G. C. Necula and P. Lee. Safe Kernel Extensions without
Run-time Checking. Proc. of OSDI, pp. 229–243, 1996.

[11] H. Pfeifer, D. Schwier, and F. W. von Henke. Formal Verifi-
cation for Time-Triggered Clock Synchronization. Proc. of
DCCA—7, pp. 207–226, 1999.

[12] J. Rushby. Systematic Formal Verification for Fault-Tolerant
Time-Triggered Algorithms. IEEE Trans. Softw. Eng., 25(5):
pp. 651–660, 1999.

[13] M. Serafini, N. Suri, J. Vinter, A. Ademaj, W. Brandstaetter,
F. Tagliabó, and J. Koch. A Tunable Add-On Diagnostic
Protocol for Time Triggered Systems. Proc. of DSN, pp.
164–174, 2007.

[14] I. Stuermer, M. Conrad, H. Doerr, and P. Pepper. System-
atic Testing of Model-based Code Generators. IEEE Trans.
Softw. Eng., 33(9):622–634, 2007.

[15] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient Software-based Fault Isolation. In Proc. of SOSP,
pp. 203–216, 1993.

[16] C. Walter, P. Lincoln, and N. Suri. Formally Verified On-
Line Diagnosis. IEEE Trans. Softw. Eng., 1997.

10


