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Abstract—A prominent application of Wireless Sensor Net-
works is the monitoring of physical phenomena. The value of the
monitored attributes naturally depends on the accuracy of the
spatial sampling achieved by the deployed sensors. The monitored
phenomena often tend to have unknown spatial distributions
at pre-deployment stage, which also change over time. This
can detrimentally affect the overall achievable accuracy of
monitoring. Consequently, reaching an optimal (accuracy driven)
static sensor node deployment is generally not possible, resulting
in either under- or over-sampling of signals in space. Our goal
is to provide for adaptive spatial sampling. The key challenges
consist in identifying the regions of over- or under-sampling
and in suggesting the appropriate countermeasures. In this
paper, we propose a Voronoi based adaptive spatial sampling
(ASample) solution. Our approach removes unnecessary samples
from regions of over-sampling and generates additional new sam-
pling locations in the under-sampling regions to fulfill specified
accuracy requirements. Simulation results show that ASample
significantly and efficiently reduces the mean square error of the
achieved measurement accuracy.

Keywords-Wireless Sensor Networks; Adaptive Spatial Sam-
pling; Reconfiguration;

I. INTRODUCTION

The monitoring of physical phenomena constitutes a key
application of Wireless Sensor Networks (WSN). One of
the key metrics to assess the quality of monitoring is the
accuracy of the conducted measurements. The accuracy de-
pends on several aspects, with the prominent facets being:
network and phenomenon related. The main network related
aspects are the spatial distribution of sensor nodes (SN),
sensors accuracy and communication reliability. The central,
phenomenon-related aspects, include the temporal and spatial
distributions/dynamics of the phenomena of interest. The
former aspects can be considered by an appropriate design
and maintenance of the WSN. However, the latter aspects are
provided as ranges and hard to forecast, which complicates
the design and maintenance of the WSN. A worst-case-driven
uniform deployment is expensive, and may waste valuable
resources such as bandwidth and energy. Consequently, an ef-
ficient and flexible strategy is required to maintain the desired
monitoring accuracy depending on phenomenon-related and
network-related factors.

For specified accuracy requirements, such a strategy consists
of achieving efficient reconfiguration and maintenance options
in order to react to the varying physical phenomena. The
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network can be reconfigured by adjusting networks resources
on the basis of gathered profiles [4]–[6]. As the accuracy
of spatial monitoring strongly depends on the SNs spatial
distribution, the appropriate generation of spatial samples
through suppressing some [17]–[19] or adding some [12], [14]
is possible. There are two possible approaches for such spatial
sampling adaptation. The first approach aims at optimizing
the use of the resources already present in the network (self-
reconfiguration). The second approach exploits the possibility
of supplementing the network with additional SNs (mainte-
nance). The scope/extent of WSN reconfiguration techniques
depends on the available resources. In practical terms the
optimization of resource utilization entails repositioning of the
mobile nodes.

The challenge this desired adaptive spatial sampling poses
is to locally identify both over- and under-sampled regions. In
the regions of under-sampling, new sampling locations must be
chosen, to bring the WSN within the accuracy requirements,
while minimizing required resources. The redundant nodes
from the over-sampled regions can be relocated to these new
sensing locations. If the available resources are limited, then
new sampling locations should be selected so as to minimize
the unavoidable inaccuracy.

In the literature we identify some excellent initial efforts to
provide adaptive sampling. [17]–[19] focus on over-sampled
regions. [4]–[9], [12] provide centralized techniques for han-
dling under-sampled regions. As the monitored phenomenon
evolves, so must the WSN in order to sustain the fidelity of
its measurements. Failing to do so results in (a) waste of
resources in over-sampled regions and (b) lack of accuracy
in under-sampled regions. Consequently, there is a need for
a holistic approach that can identify both types of regions to
drive adaptive sampling, and perform it in a distributed manner
for meaningful adaptive reactivity in evolving WSNs.

A. Paper Contributions & Structure

This paper develops an efficient distributed technique for
identifying under- and over-sampled regions. Our proposed
approach (ASample) utilizes current measurement and SNs
placements, (a) to insert new sampling locations or (b) to
remove redundant spatial samples, in order to exactly meet
the accuracy requirements. Our approach is holistic as it is
valid for both over-sampling and under-sampling profiling.
Accordingly, it simplifies network-level decisions on moving
nodes from the over-sampled regions to the under-sampled



ones and for tuning the network sampling resolution according
to the changes in the monitored phenomena.

The paper is structured as follows. The related work is
discussed in Section II. Following the system model in Section
III, we present the problem formulation in Section IV. Section
V details the proposed adaptive spatial sampling (ASample)
technique as the paper’s main contribution. The evaluation of
ASample is presented in Section VI.

II. RELATED WORK

The majority of the existing adaptive spatial sampling
approaches assume centralized knowledge of the network
deployment. [4]–[10] collect the measurement data from the
network to model the monitored physical phenomenon. On
the basis of the model and the topology information, the new
sampling locations are chosen so that they reduce entropy of
the models. These form useful foundations to achieve high
monitoring accuracy. However being centralized they incur
high communication and energy overhead on resource limited
sensor nodes, in particular for handling evolving phenomenon.

Other approaches target adapting the distribution of SNs to
the distribution of the monitored phenomenon [12]–[14], or
increasing the sensing capabilities in the area of the increased
phenomenon activity [11]. [12]–[14] assume all network nodes
to be mobile. In [12] each node tracks in the centralized
manner the position of all other nodes. Nodes plan their move-
ment trajectory based on the principle of attracting forces. A
detected event is given an attracting potential and nodes travel
a distance proportional to the ”attracting” force. [13], [14]
discuss the case of fleets of mobile robots where clustering
is used to collect the local measurements and calculate the
model of a local phenomenon. The model is used to determine
the new sampling locations. The nodes move to the assigned
positions and the process is repeated. As the decision is
taken locally it is likely not optimal and requires an iterative
multi-step movement. That incurs a high energy overhead.
Our technique also takes local decisions, but the iterative
movements are virtual until final positions are settled. The
approach of [14] does not give accuracy guarantees.

[15] proposes a solution for the problem of the one-
dimensional adaptive spatial sampling for water temperature.
The goal of moving SNs on a line is to find the depth at
which water temperature changes rapidly. Each SN is given a
section to measure the variance of measurements at its ends.
If the variance is above a specified threshold, the section is
divided and the sub-sections are further evaluated. As the
solution applies only for one-dimensional spatial scenarios, it
has a limited application to the more common two-dimensional
physical WSN environments considered in our work.

[17]–[19] consider the case of over-sampling. [17], [18]
try to build the prediction models of the neighboring nodes
and if they are successful, the modeled nodes are put in the
sleep mode to save energy. [19] collects the data from a small
subset of sensors nodes at the sink. This information is used
to estimate the environment conditions of the monitored area.
On the basis of this information, the sink selects the regions

where additional nodes should be activated. This class of
algorithms does not consider the under-sampled regions. While
the reconfiguration options (putting SNs in sleep mode) are, at
an abstract level, valid for our approach, they cannot be easily
integrated with the under-sampling detectors. We provide an
approach valid for both over- and under-sampled regions.

[24]–[32] also present a variety of adaptive sampling
protocols, whose main objective is resource conservation by
adaptive sampling in the time domain. These works are not
directly related to the discussed problem.

The problem we are pursuing differs form the problem
of assuring sensing coverage [20]–[23], which assumes that
each SN can sense/detect an occurrence of some event in
the given sensing radius. The goal therefore is to deploy the
WSN so that each point of the area of interest is within the
sensing radius of at least one SN. These works handle the
network-related and ignore the phenomena-related aspects. On
the contrary, we consider the scenarios where the phenomena
change gradually over the monitoring area. The measurement
at a given sampling location corresponds exclusively to the
location where measurement was taken and has no defined
radius of its validity. The phenomenon between two points can
only be interpolated, thus bounding the difference between the
closest sampling points helps decrease the interpolation error.

III. SYSTEM MODEL

Conforming to the established WSN models, we assume a
WSN consisting of a large number n of resource constrained
SNs and a sink. The SNs have finite capacity battery power.
The communication range r is limited, and two neighboring
SNs can communicate only if the Euclidean distance between
them is smaller than r. The communication dominates the
imprint on the energy depletion of the SNs. We consider an
arbitrary spatial distribution of SNs in the deployment area.
We only assume that the full area is covered by these nodes
and the resulting WSN is connected. The SNs know their
position using on-board GPS receivers or alternative GPS-free
techniques of localization [1]. We consider cases where (a) all
nodes are static, (b) all nodes can move, or (c) a mix of static
and mobile nodes. Our approach implicitly tolerates sensor
node failures as this is equivalent to moving a node away
from its position or putting it in sleep mode. Message loss
will be explicitly considered while evaluating our approach.
We investigate arbitrary continuous two dimensional signals
in the sensor field.

IV. PROBLEM FORMULATION AND OBJECTIVES

For environmental monitoring applications it is crucial to
reconstruct the spatial distribution of the signal with an ac-
ceptable accuracy. This may be transformed into specifying
a desired maximally allowed value difference between any
two neighboring sampling points AccTH , which we refer to
by accuracy requirement. Therefore, it is important to bound
the value difference between the measurements of any SN
and its closest neighbors (in each direction on the plane) and
consequently to reduce the possible variations of the signal.
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Fig. 1. Variants of signal distribution

Consider three SNs A, B and C, located in each others
communication range (Fig. 1). Node A, B and C measure
values SA, SB and SC , respectively. We distinguish five,
among infinitely many, interesting possibilities for the signal
shape between A, B and C (curves 1 - 5 in Fig. 1).

If SB − SA > AccTH , then the accuracy requirement is
violated by all five signals. This can be easily detected if
nodes share their value with their closest neighbors. It is
now crucial to select supplementary sampling locations where
adding/relocating the SNs makes WSN adhere to the require-
ments of monitoring accuracy. The algorithm should minimize
the number of resources needed for the reconfiguration.

If SC − SA < AccTH the sample of Node B is redundant.
Therefore, our holistic technique should help identify such
redundant nodes, which can be used for the re-deployment
in under-sampled regions.

If SB −SA < AccTH , then the accuracy requirements may
still be violated by signals such as Signals 4 and 5. This situ-
ation can only be detected through additional measurements,
which implies a more dense pre-deployment of sensor nodes.
The detection of such local minima or maxima is not the focus
of our work. However, our work is applicable if such local
extrema can be detected.

Overall, our techniques react to the changes in the monitored
area as the result of dynamics of the phenomenon.

V. THE ADAPTIVE SPATIAL SAMPLING APPROACH

We first describe the necessary preliminaries concerning the
Voronoi diagrams as they form the basis for our approach.
Subsequently, we present an overview of our approach, and
then detail our profiling and reconfiguration techniques in
order to provide for adaptive spatial sampling.

A. Distributed Voronoi Construction

As our goal is to bound the difference in values between the
closest neighbors, we use the Voronoi diagram [2] approach to
determine a set of closest neighbors of each node. Across the
varied techniques for space tessellation, the Voronoi diagrams
offer a simple and efficient approach. The overall space S
occupied by SNs si, 0 < i < n is divided into Voronoi cells
(V Ci). Each (V Ci) contains SN and an area surrounding the
node. Each point belonging to the Voronoi cell is closest to
the SN si placed in cell than to any other SN (Eq. (1)), where
δ is a distance function.

V Ci(S, si) = {pϵRd | δ(p, si) < δ(p, sj), i ̸= j} (1)
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Fig. 2. Voronoi neighborhood

We define Voronoi neighbors (VG) as a set of SNs whose
Voronoi cells share the border with the Voronoi cell of node si,
which we call Voronoi edge. The Voronoi edge geometrically
corresponds to a line segment (Fig. 2 Voronoi edge between
Node C and Node V G4) or a half line (Fig. 2 Voronoi edge
between Node H and Node R) if the Voronoi cell is not
completely bounded by other neighboring nodes. We also
define a Voronoi polygon (V Pi) of node si as a set of its
Voronoi edges.

The construction of the full Voronoi diagram requires
O(n log n) operations [2] and may require also the global
knowledge of the WSN topology by each SN. Such strict
requirement makes construction of full Voronoi diagram im-
practical in the context of WSN. The cost of collecting
the global topology information by each SN or by the sink
renders this approach infeasible. Thus, for our algorithm we
use a heuristic proposed by [3]. This heuristic determines
Voronoi cell of each SN based on the information about the
position of their 1-hop and 2-hop neighbors, instead of using
the complete topology information. The use of only local
information sacrifices some accuracy of the created Voronoi
diagram for the reduced communication cost to construct it.
Not all of the positions of 2-hop neighbors may be relevant
for calculating the Voronoi diagram of a SN. To limit the
amount of information transmitted, the SNs may pre-compute,
which of their neighbors are relevant for submission as the 2-
hop neighbors, e.g. Node V G5 (Fig. 2) may omit transmitting
the position of Node H to Node C. Node V G5 knowing the
positions of V G4 and V G6 may conclude that Node H cannot
be a Voronoi neighbor of Node C.

B. Overview of our Approach

The first step towards an adaptive spatial sampling is for the
SNs to locally check the fulfillment of the accuracy require-
ments. It is important to perform this in an efficient distributed
manner as each redundant communication message reduces the
battery lifetime of the involved SNs. This detection is based
on the knowledge of SNs Voronoi diagram, which efficiently
models each SN closest neighborhood. Each SN evaluates
whether any of its Voronoi neighbors sensor readings violates
the required accuracy. In such case the SN decides to place a
virtual node (VN) at the Voronoi edge in order to separate the
Voronoi neighbors whose values variance violates the required
accuracy. The value of the VN is linearly interpolated and



the Voronoi diagram is rebuilt including the new VN. As the
approach is heuristic, the nodes are initially added as VNs,
as some of them may be redundant. The redundant VNs can
be removed so the SN proposes only the necessary sampling
locations. The process iterates until the accuracy requirements
are met by adding the VNs. For the situation of an evolving
phenomenon, the SNs update their data to maintain accuracy.

C. The Proposed ASample Approach

We now develop two algorithms - Algorithm 1 for adding
virtual nodes, and Algorithm 2 for removing redundant nodes
that collectively constitute the proposed ASample technique.

1) Adding Virtual Nodes to Under-sampled Regions: After
the Voronoi construction phase is completed, the SNs hold the
list of their Voronoi neighbors. The SNs evaluate the list in
search of nodes whose measurements differ from their own
measurement by more than the requested accuracy AccTH

(Algorithm 1, lines: 6-7). In case of detecting such disparity,
both SNs agree on adding the VN. The placement of the VN is
decided as follows. If the Voronoi edge separating neighboring
Voronoi cells is a line segment (Fig. 2 - Voronoi edge of
nodes C and V G5), then the VN is placed in middle of this
segment. The goal is to remove the Voronoi edge between the
Voronoi neighbors violating the required accuracy. Placing the
VN in the middle of the Voronoi edge maximizes the extent to
which added VN separates the neighboring Voronoi neighbors
(Alg. 1, line: 8). Otherwise, if the Voronoi edge is a half-line
(Fig. 2 - Voronoi edge of nodes H and R) then a VN is added at
the beginning of the half-line, as we cannot calculate the mid-
point of a half-line. Both SNs sharing a common Voronoi edge
will conclude the same decision of adding the VN. As we are
adding a virtual node, then we require one of these both nodes
to impersonate it. We refer to such a node as a Proxy node.
The second node is referred to as a Support node. It has to be
decided which node will assume the Proxy or Support role.
The simple solution is to choose as the Proxy node the SN
which has a lower measurement value. As both nodes know
each other values, they agree on the roles to assume.

Due to the heuristic nature of the Voronoi construction, the
Proxy and Support nodes may result in different views on a
common Voronoi edge. In this case, the Proxy node sends to
the Support node its proposition of the VN placement, with
its view on the Voronoi edge. If the views differ (Fig. 2 -
Node F view is segment V EF1V EF2, Node G view is segment
V EG1V EG2), then a new view is chosen so that it consist of a
section of line segments shared by both nodes. In this case that
corresponds to the view of segment V EF1V EG2as the edge.

Adding a single VN between two Voronoi neighbors may
not be sufficient to fulfill the accuracy requirement. This
situation may arise from two reasons. The first results from
the fact that the discrepancy between measured value may be
greater than the double value of the accuracy threshold. In
that case, placing the VN optimally between the Proxy and
Support nodes, such it assumes a measurement value exactly
between the values of Voronoi neighbors, still cannot resolve
the inaccuracy problem. The second situation arises when

the added VN still does not geometrically fully separates the
Voronoi cells of the Proxy and Support nodes.

Algorithm 1 Adding Virtual Nodes
1: var VoroNeighs=CreateVoronoi(self, 2 Hop Neigh);
2: while (!CheckAccuracyOK());
3:
4: function CheckAccuracyOK() : boolean
5: var VirtualNodes;
6: for all VN in VoroNeighs do
7: if abs(v(this) - v(VN)) > AccTH then
8: VirtualNodes.Add(middle(this.pos, VN.pos));
9: end if

10: end for
11: if VirtualNodes.Count > 0 then
12: VoroNeighs=CreateVoronoi(self,VoroNeighs ∪ VirtualNodes);
13: return FALSE;
14: end if
15: return TRUE;

Consequently, the algorithm continues to iteratively add
VNs until the accuracy requirements are met (Alg. 1, line: 2).
After adding the VNs, the Proxy and Support nodes include
the positions of the added VNs to recalculate the Voronoi cells
(Alg. 1, line: 12). The complexity of recalculating the Voronoi
cells may be reduced by considering only the positions of SNs
that (at the previous step of iteration) were already Voronoi
neighbors. An additional VN can only reduce the area of
Voronoi cell. In order to recalculate the inaccuracy, the VNs
also require to have some measurement value assigned. As the
VN is added at equal distance between the Proxy and Support
node, for this purpose their mean value is used.

It is also evident that the Voronoi neighbors of the Proxy
and Support nodes should be informed about added VNs. Both
Proxy and Support nodes calculate, which neighboring node’s
Voronoi neighborhood will be affected by adding VN and
only these SNs are notified. To further limit the amount of
transmitted information, the Proxy and Support nodes inform
only their set of closest common Voronoi neighbors. The
notification sent to selected Voronoi neighbor nodes includes
the position and the interpolated value of VN.

2) Removing Redundant Nodes from Over-sampled Re-
gions: As the described solution is based on a heuristic, it
may add more VNs than required. To minimize the use of
resources and the reconfiguration costs, it is desirable to find
the redundant VNs. In the case of a network composed of only
mobile nodes, it is important to find SNs which could move
freely while not violating the accuracy requirements of the
WSN. We describe here an algorithm that allows each node
to determine its redundancy status locally.

The candidate Node C to become redundant, iterates
through the list of its Voronoi neighbors (V Gi) (Alg. 2, line:
2). From Fig. 2 it is evident that by removing Node C, each
of the V Gi nodes Voronoi polygon will grow in size and gain
new Voronoi neighbors. Concluding from the property of the
Voronoi diagram, the new edges of extended polygons will be
created with the current neighbors of C. Therefore, for each
Voronoi neighbor, C calculates local Voronoi polygons using
the positions of the rest of the Voronoi neighbors (Alg. 2, line:
4). Next, for each Voronoi neighbor it checks whether any of



its new neighbors sensing measurement diverges more than the
required accuracy (Alg. 2, line: 5). If it is the case then Node
C cannot be removed (Alg. 2, line: 6). In case that the removal
of Node C does not cause local inaccuracy, further evaluation
takes place. Each node informs its Voronoi neighbors about
the possibility of its removal.

It may happen that, apart from Node C, some of its
Voronoi neighbors may conclude that they are also potentially
redundant nodes. At that point it is necessary to decide which
node ultimately will be designated redundant. We propose
here a criteria based on the estimated size of Voronoi cell
of each candidate node. We justify this approach on the basis
that the smaller the area of the Voronoi diagram (SN has to
have many closely placed neighbors), the less representative
is the sample and hence smaller is its impact on the overall
measurement accuracy. Therefore, each candidate node sends,
along with the notification about its potential redundancy, the
information about its Voronoi cell area. After sending the
notification, each node waits a pre-defined time twait for the
response from the neighboring nodes in the case any of them
declares itself redundant. If any node responds or the received
responses carry smaller area value then the node becomes
redundant status. It communicates to its Voronoi neighbors that
it will leave the network and should not anymore be considered
for calculating the Voronoi diagram. The nodes receiving this
information recalculate their Voronoi polygons. If the node
was the candidate node but got suppressed by a neighbor with
a smaller Voronoi cell area, then it recalculates its chances to
become redundant node. The process progresses as long as
any of the nodes are eligible for becoming a redundant node.

Algorithm 2 Removing Redundant Nodes
1: function CheckRedundancy() : boolean
2: for all VN in VoroNeighs do
3: VN NewVoroNeighs=CreateVoronoi(vn,VoroNeighs\this\VN);
4: for all VNh in vn NewVoroiNeighs do
5: if abs(v(VN) - v(VNh)) > AccTH then
6: return FALSE;
7: end if
8: end for
9: end for

10: return TRUE;

The relocation of SNs, taking only the accuracy constraints
under consideration, may lead to the break-up in the network
connectivity. To eliminate this threat, each SN also checks
whether its removal will disrupt the connectivity among its
Voronoi neighbors. As each SN already holds the list of
Voronoi neighbors and their locations, such connectivity check
is easy to execute. In Fig. 1 Node C can be safely removed
as all other Voronoi neighbors V Gi can communicate.

We also notice that in some boundary cases the repetitive
removal of the SNs may lead to the removal of the whole
region of the network. This happens when the SN to be
removed is in an area of local maximum or minimum of the
measured value. To avoid/prohibit this situation we do not
allow such nodes to be removed.

D. Coping with Dynamic Phenomena

The fulfillment of the accuracy requirements depends di-
rectly on the monitored phenomenon. Consequently, it is
evident that as the phenomenon is changing, the algorithm
requires a scheme to keep the data updated. We propose here
a simple approach which allows keeping the data consistent
and minimizes the SNs communication effort.

The accuracy requirements may be violated only when
the measurement difference between two Voronoi neighbors
(C, V Gi) exceeds AccTH . The constant notifications upon
changes in the measurement value (eg. measurement oscilla-
tion) would incur large communication costs. The SNs know
each other’s measurement values when for the first time they
collect the measurement and execute the evaluation. In order to
limit the amount of exchanged data, SNs only need to inform
about the substantial changes in the measurement values. On
the other hand, our scheme should avoid the situation when
the update does not take place despite the fact that accuracy
AccTH was already reached. Assume that v(C) < v(V Gi)
and the current difference in the measurement values equals
δv = |v(C) − v(V Gi)|. Node C sends the update to V Gi

when it decreases for γ = 0.5 × (AccTH − δv). That is the
highest possible value of γ for which we can be sure that
even if the v(V Gi) increases for the value of γ it would not
require a reconfiguration. This prevents the case where the
threshold AccTH is exceeded without having C or V Gi send
a notification to each other. In most of cases the δv will just
narrow with each update causing further updates. In order to
prevent this effect, γmin can be defined. Reaching the value
of γmin would already trigger a process of adding a new VN.

It is also possible that v(C) will increase while v(V Gi)
decreases. At first this process will reduce the δv but after
reducing it to zero δv will start growing. In this case γ should
be adjusted to γ = 0.5× (AccTH + δv).

When searching for the redundant SNs, it is not necessary to
use active data update as described. The active redundant SNs
will not violate accuracy requirements. Therefore, the update
can be relaxed to a desired frequency.

E. Reconfiguration Scenarios

The results produced by the ASample technique consist of a
set of points selected for additional sampling. Along with the
sampling locations, the trajectory connecting the Proxy and
the Support nodes where a sampling location was added in
between, can also be provided. At the given sampling point,
the interpolated value may be different from the real one.
To find the right position the mobile node may move along
the trajectory and stop upon reaching the position where the
measured value of the phenomenon equals the one which was
calculated by algorithm for the VN.

The reconfiguration requires dissemination of gathered in-
formation, which can be discussed only in context of usage
scenarios. At present we foresee three classes (Class 1 - 3) of
usage scenarios where ASample can come into play.

Class 1 assumes no mobility in the network. For this purpose
the SNs that detected violation of accuracy requirements



should send the gathered information to the sink using existing
in the network routing protocol.

Class 2 involves a WSN, where apart from static SNs,
mobile SNs (more powerful nodes e.g.: robots) are present
and navigate within the network in order to collect the
measurements. The mobile SNs equipped with their own
sensors can use the proposed sampling locations to optimize
path planning and increase sampling resolution. Mobile SNs
alternatively could also pick-up redundant static SNs and place
them in the proposed locations. The static SNs do not need
to route the locations information through the network, but
only to piggy-back it when transmitting sensor measurements.
In this scenario the ASample algorithm can be executed on
the mobile robots, instead of the resource limited SNs. The
robot collecting the measurements already holds the necessary
information to calculate each SN Voronoi diagram and to find
new sampling locations.

Class 3 involves network where a subset or all of SNs can
move. That kind of WSN can adapt its spatial resolution in self
organizing manner without involvement of outside operator.
Such a scheme requires from the redundant nodes to announce
their availability and from SNs detecting under-sampling to
request new sampling locations. For this purpose adapted
version of the [20] can be used. SNs use virtual quorum to
announce and request resources.

Additional problem may arise when the number of redun-
dant nodes is insufficient to provide for all requested sampling
locations. The problem may be resolved using adapted version
of the bidding algorithm proposed in [22]. Using this algorithm
the SNs requesting new sampling locations place their bids.
The value of the bid corresponds to the size of the area of the
VNs on behalf of which the SN acts as a proxy.

VI. PERFORMANCE EVALUATION

In this section, we describe the evaluation settings and the
metrics we have chosen for the evaluation. We evaluate the
algorithms complexity concentrating on their implementation
feasibility and the communication costs its execution incurs on
the WSN. We also present the evaluation results and discuss
their implications.

A. Evaluation Studies

Our evaluations settings are based on the reconfiguration
scenario classes introduced in Section V-E. We designed
five experiments. The first three correspond to the static
WSN scenario where no form of mobility is provided. These
experiments foresee supplementary deployment of additional
SNs in the locations proposed by the ASample algorithm.
The first experiment (Add all) deploys as many new SNs as
ASample suggests. It is to evaluate the efficiency of ASample
when sufficient resources are available. The second and third
experiments (Add 10% and Add 20%) add only additional 10%
or 20% new SNs (compared to the total number of SNs). If the
computed number of the required sampling locations is higher
than the available additional SNs, then the sampling locations
with the larger Voronoi cell area are deployed first. The forth

experiment (Move only) assumes a network where all SNs are
mobile. In this experiment, we move only the redundant nodes
to proposed locations. This evaluates the self-sustainability of
the WSN. The fifth experiment (Move & add) allows for both
moving of the redundant SNs and adding the additional SNs
if still some sampling location are not occupied. This scenario
tries to limit the amount of resources necessary to restore
the network fidelity. We use simulated model of physical
phenomena where its intensity p = f(d), depends on the
distance d to the center of the phenomenon. In our scenario, we
model the phenomena using several distributions: exponential,
pareto, normal and linear. Their parameters are adjusted that
in the network area they assume values in the range between 0
and the peak value of 100 units in the center of phenomenon.
We provide also an evaluation for the adaptability of ASample
to the changes in the phenomenon activity. For this purpose
we simulate the changes in the peak value of the phenomenon
between 30 and 100 units. Throughout all experiments (if not
stated otherwise) we fixed the deployment area to the size of
250×250m, the radio range to 25m and the number of SNs to
300. The parameters were chosen so as to generate a connected
WSN [33]. We use our stand-alone implementation to simulate
the ASample efficiency.

B. Evaluation Metrics

In order to quantify the accuracy enhancement of the
phenomenon monitoring, we use a mean square error (MSE)
based metric that we calculate as follows. We put a virtual
grid over the network deployment area. At the coordinates of
each vertex of the grid, we calculate the real value induced
by the simulated phenomenon and subtract from it the value
measured by the closest SN. We assume that the SN closest
to the sampling point gives the best estimate of the value.
For each simulation and proposed algorithm we calculate two
MSE values. The first is performed as described above, the
second (MSE30) applies only for the points where the value
of the measured phenomenon is higher than 30% of its peak
value. The reasoning behind the second value is to evaluate the
considered algorithm in the areas of the phenomenon activity.

C. Complexity Analysis

We consider both the computational and the message com-
plexity involved in the execution of ASample. The computa-
tion overhead is incurred primarily by the calculation of the
Voronoi polygon on basis of the set of neighbors locations.
For each location a bisectional line between the location and
SN is calculated - a relatively simple algebraic operation. For
each line then the possible intersection is checked against
the segments and the semi-segments constituting till now
calculated Voronoi polygon. In the worst case scenario there
are u2

2 operations, where u denotes the number of neighbors
of SN. On average there will be u×V Gcnt operations, where
V Gcnt is the final number of Voronoi neighbors. It should
be noted that for most of SNs (not detecting adherence to
the accuracy requirements) the calculation of Voronoi diagram
takes place only at the initialization.
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Fig. 3. Impact of communication range

Regarding the message complexity for the construction of
the Voronoi diagram, each SN locally broadcasts twice 1-
hop message. During the first broadcast the SN announces
its ID. During the second one, it sends the list of neighbors
which may be relevant for constructing its neighbors Voronoi
diagrams. If the list of neighbors is too long it may be split
into smaller ones containing the neighborhood information
concerning only particular nodes and then directly addressed
to proper nodes. SNs repeat this step only if a new SN is
added or removed in their neighborhood.

When agreeing on new sampling locations, only up to 2
messages need to be exchanged between Proxy and Support
nodes. Additional messages are sent only when the measured
values change such at the notification of neighbors is requested
to check for accuracy requirements.

D. Evaluation Results

Fig. 3 presents the results for all five described experiments
(Sec. VI-A) and additionally three random deployments (the
deployment of additionally 10%, 20% and the number of nodes
added in the first experiment) for the reference. The results
are presented for varied communication ranges, which have a
direct impact on the accuracy of the created Voronoi diagram.

The best performing is the first experiment (Add all) as it is
the only adding SNs and is not limited by their number. The
reference experiment Add all random, which adds the same
number of SNs but randomly, delivers the results, that in most
of cases offer 20% less MSE reduction. Increasing the number
of sampling points must lower the MSE value. As results show
ASample utilizes the additional SNs more efficiently than the
random approach. Pairs of experiments Add 10%, Add random
10% and Add 10%, Add random 10% show how efficiently
ASample utilizes limited resources. Each pair shows that the
reconfiguration executed using ASample preforms better by
providing lower MSE values. In case of the first pair the results
are approximately 10% and in case of the second pair up to
15% better than random deployment.

The strategies aimed at reducing the resource costs of
reconfiguration Move only and Move & add also reduce MSE
value but this is less significant as the number of sampling
points is lower.

Fig. 4 shows ASample reaction to different accuracy re-
quirement settings. As expected lower bound on difference in
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the values between neighboring SNs results in lower MSE
values. It comes at the cost of increased resource usage.
Adding the same number of SNs but randomly leads to higher
MSE values. Using the strategy of moving redundant SNs
significantly reduces the need for the new resources. When
the accuracy bound is set to a large value, ASample puts
up to 40% of the existing nodes in the redundant mode.
This results in higher MSE values, which are consequence
of lower accuracy requirements. We also show the impact of
message losses on the efficiency of ASample. The last two
experiments Add all (msg loss) and # Add all (msg loss)
show the MSE value reduction and number of nodes added in
environment where 20% of messages were lost. As a result, the
accuracy of constructed Voronoi diagrams suffers and hence
some violations of accuracy requirements are not detected.
Consequently, less VN are deployed thus providing lesser
reduction in MSE value compared to the lossless message
scenario.

Fig. 5 illustrates four pairs of experiments that show how
ASample handles different types of phenomena. Each pair
represents a different phenomenon distribution model (expo-
nential, normal, pareto and linear) and reduction of the MSE
values for the whole deployment area and the area where
activity of the phenomenon reached at least 30% of the peak
value. The curves of each pair are very similar, they differ only
by the fixed offset. The MSE values for the activity area are
better as the majority of SNs are added there. The exponential
distribution shows the most significant difference and the
reduction in the MSE values. This is because it represents
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the environment where the changes in the value show the
largest volatility. The exponential distribution demands the
highest number of SNs to add. On the other extreme, for the
normal distribution the difference between the MSE values
for the whole area and the activity region are negligible as
the phenomenon changes gradually. Still, the case of normal
distribution shows that ASample is able to significantly reduce
the MSE value of the network.

Fig. 6 shows how ASample adjusts to the changes in the
phenomenon. The Phenomenon-plot shows how the intensity
of the phenomenon changes over the course of the simulation.
The two curves Original MSE and Original MSE 30 present
how the absolute values of MSE change with the phenomenon.
It can be seen that for the low intensities of phenomenon
the original deployment may be sufficient, but as the phe-
nomenon develops and its volatility increases the accuracy
of measurements suffers. The two plots Add all and Add all
MSE30 show the MSE value with the additional sampling
points proposed by ASample. Initially, the MSE values slightly
rise but then saturate quickly and remain on a steady level. It
demonstrates the capability of the algorithm to maintain the
required accuracy.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented ASample, an efficient
distributed adaptive spatial sampling technique. Using only
local views, ASample is capable of detecting the regions
of under- and over-sampling. In case of the under-sampled
regions it proposes a set of new sampling positions and for
the over-sampled regions it discovers redundant sensors. Both
operations are executed in a unified manner. Such an holistic
approach allows for self-sustainability of WSN. As our simula-
tions show, our approach effectively and exactly maintains the
required accuracy of the measurement and allows fulfillment
of the stated accuracy requirements.

The Voronoi abstraction used for our techniques is a pow-
erful abstraction, which can be used beyond the presented
two-dimensional network deployment. In our ongoing work,
we investigate how with a limited effort our techniques can
be extended for application in the three-dimensional network
deployments. Hereby, the neighboring SNs instead of sharing
common edges, share common planes. Therefore, the addi-
tional sampling points can be found using the planes’ center
of gravity instead of a middle point of Voronoi edge.
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