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Abstract—The reliability of Wireless Sensor Networks (WSN)
is detrimentally impacted by unreliable wireless communication
and the finite energy of sensor nodes. An advocated approach for
assuring fault tolerant WSN is providing global k-connectivity.
This property guarantees that the failure of up to k - 1 sensor
nodes does not cause network partitioning. k-connectivity is a
well studied property of WSN including the aspects of topol-
ogy control, k-connected dominating set construction, controlled
deployment, relay nodes placement, and detection of level of
k-connectivity. In this work, we target the repair/maintenance
aspect of k-connectivity. Our goal is to allow the network to
provide localized, sustainable maintenance, which is capable of ef-
ficiently restoring/main-taining the WSN desired k-connect-ivity.
We present a fully distributed technique that is competitively
resource efficient to state-of-the-art approaches. Unlike existing
techniques, our approach also provides the necessary efficient
mechanisms to avoid network partitioning and the longer routing
paths caused by node failures. We present both analysis and
simulations to show the effectiveness and efficiency of our solution
to maintain high responsiveness.

I. INTRODUCTION

Wireless Sensor Networks (WSN) compromise sensing,

communication and computational operations. A typical WSN

consists of multiple battery powered autonomous sensor de-

vices for sensing and processing environmental attributes of

interest, and sharing this data wirelessly. These characteristics

allow for a wide selection of applications and high flexibility

for deployment. Unfortunately, the low reliability of wireless

communication and WSN nodes along with their bounded

batteries lifetimes frequently leads to failures, and conse-

quently the degradation of the overall system responsiveness

and resilience. Hence the need to provide for fault-tolerance in

WSN operations. A required condition for meaningful WSN

operations is the maintenance of network connectivity. An

established approach is to provide the so-called k-connectivity

property. The k-connectivity property guarantees that the re-

moval of up to k - 1 sensor nodes does not lead to network

partitioning (i.e., disconnection of one or more sensor nodes

from the rest of the network). An oft used approach to maintain

k-connectivity is to keep injecting new nodes whenever and

where needed. The design goal is to minimize the number

of added nodes without compromising the k-connectivity. A

popular approach for providing k-connectivity is to stock

selected sensor nodes constituting the backbone of the network

with up to k - 1 additional sensor nodes [2]. Alternatively,

missing links are reconnected using k-stocked intermediate

sensor nodes [1], [12]. This approach, although effective and

theoretically sound, unfortunately does not handle the case

when k co-located sensor nodes fail simultaneously, e.g., as a

result of an external physical force. In order to prevent such

situations, it is necessary for a k-connectivity algorithm to

guarantee that for each sensor nodes among its k alternative

paths, none of the these paths share the same sensor node

location. Another important requirement for the k-connectivity

algorithms (which is generally neglected) is to assure that the

use of alternative paths, in case of failures, does not sub-

stantially degrade the performance of the network. A typical

example is the failure of single sensor nodes which, while not

partitioning the network, significantly extend the length of the

routes resulting in higher latencies, frequent congestion and

higher energy overhead. Additionally, although the network

remains connected on the topology level, traffic rerouting may

be necessary causing temporary communication outages until

new routes are established.

Paper Contributions

In this paper, we propose a novel approach for runtime

repair and preservation of the global WSN k-connectivity. The

proposed strategy while requiring only localized information

significantly reduces the resource requirements compared to all

contemporary studies. Beyond maintaining the k-connectivity,

it also prevents the network from location bound failures by

elimination of single k-stocked links. For typical sink oriented

WSN traffic, our approach prevents the network performance

from degrading. The proposed technique, i.e., Distributed k-

Connectivity Maintenance (DKM):

• Efficiently restores and preserves the k-connectivity.

• Eliminates potential WSN disconnections by assuring k

(k ≥ 2) disjoint paths between each two sensor nodes.

• Provides k-connectivity along with guaranteeing that the

length of particular routes may become extended only up

to k - 1 hops.

• Is fully distributed in its operations.

Additionally DKM can function in localization free con-

text, while still providing k-connectivity and maintaining re-

sponsiveness. However, assuring the disjoint paths property

requires localization information.

We validate DKM properties with an extensive set of

evaluation studies and show DKM’s effectiveness at restoring

k-connectivity with low resource requirements.

The paper discusses related work in Section II. Following

the system model in Section III, we present the mainte-



nance/repair requirements in Section IV. Section V details the

proposed DKM technique as the paper’s main contribution,

with DKM’s evaluation in Section VI.

II. RELATED WORK

K-connectivity is a widely studied WSN feature spanning

topology control, k-connected dominated set construction,

controlled deployment, relay node placement, repair/main-

tenance, and level of k-connectivity level detection. In the fol-

lowing, we briefly discuss the limitations of these approaches

that we plan to address through our DKM approach.

Topology Control: Topology control strategies such as

[8], [9], [15], [17], [18] are based on adjusting the radio

transmission power of sensor nodes to those levels that pro-

vide k-connectivity within the closest neighborhood, and by

extension the global k-connectivity property. The utility of

these techniques is limited to the cases where the maximal

transmission level conditions for k-connectivity hold.

Controlled Deployment: k-connectivity can also be at-

tained by manual deployment of the entire network by deploy-

ing nodes at pre-computed locations [5], [6]. Unfortunately,

manual placement of hundreds or thousands of sensor nodes

is prohibitively complex and expensive.

k-Dominated Sets Construction: Techniques for con-

structing the k-dominated connected sets assume that the

establishment of k-connectivity in the considered topology is

possible [10], [11]. Therefore, the goal is to find k-connected

dominated sets consisting of a minimal number of sensor

nodes, from among already deployed sensor nodes. This

analysis approach cannot be applied directly for restoring k-

connectivity if the property does not appear in the topology.

k-Connectivity Detection: k-connectivity detection algo-

rithms [13], [14] aim to determine the attainable k-connectivity

for given topology. These techniques, while providing useful

information about the state of the network, do not offer

dynamic solutions for adjusting the topology to restore the

desired global k-connectivity property.

Relay Nodes Placement: Relay nodes placement al-

gorithms [16], [19]–[22] do not target providing actual k-

connectivity. These strategies aim at assuring that each sensor

node is connected to at least k reliable relay nodes and do not

address k-connectivity repair strategies.

WSN Maintenance: The repair/maintenance class of

strategies directly relate to our work. Current techniques

follow two distinct approaches: (a) Steinerization [1], [12], and

(b) minimum spanning tree (MST) [2]. In the steinerization

approach, the graph edges are sorted in weighting order, where

weight corresponds to the number of sensor nodes to deploy

in order to connect two sensor nodes. Then, the new graph

is created by adding the edges in the increasing order of

weight, checking after each added edge if the graph becomes

k-connected. For the optimization of the number of edges

after attaining k-connectivity, each edge in reversed order is

checked whether it can be removed without impacting the k-

connectivity. This approach is computation demanding and

shows limited scalability although the authors proposed a

distributed approach for creating local k-connectivity clusters

and then joining them on the same principle. Also the number

of sensor nodes required for redeployment is very high as

each added edge with weight (w > 0) requires adding

w ·k+2 · (k−1) sensor nodes. The goal of the MST approach

[2] is to decrease the number of resources needed and lower

the computation requirements. The optimizations are useful for

disconnected graphs. For achieving k-connectivity, the authors

propose to find an MST of the graph and to place additional

k − 1 sensor nodes at position of each none leaf sensor

node. This approach requires less supplemental resources than

[12]. Unfortunately, this approach exploits existing edges only

to a low degree resulting in high demand for resources in

absolute terms. Although the process of finding the MST

is less computation demanding than [12], it is a complex

operational procedure. Both techniques [2], [12] do not address

the problem of co-located sensor nodes and do not account for

maintenance objectives such as targeting shorter routes during

network reconfiguration, etc.

There also exist maintenance strategies that do not focus

on the establishment of the global k-connectivity property but

try to prevent/repair the partitioning by deploying additional

sensor nodes in endangered regions of the network [23], [24].

Another indirect approach to provide the maintenance is to

remove topology irregularities that lead to unbalanced resource

depletion throughout the network [25], [26]. Although the

approaches may be effective, they do not provide quantifiable

fault tolerance guarantees.

III. SYSTEM MODEL

Conforming to contemporary WSN models, we assume a

WSN consisting of n resource constrained sensor nodes and

a sink. The sink is a powerful sensor node connected to

infrastructure with unlimited energy supply. Hence, it can be

considered as a sensor node virtually stacked with an infinite

number of backup sensor nodes. Without loss of generality, we

assume that the sink is an arbitrary sensor node that is stocked

with at least k - 1 additional backup sensor nodes. The sensor

nodes have finite battery energy and usually possess limited

processing and storage capabilities. The communication range

R is limited and fixed for a given deployment. Two neighboring

sensor nodes can communicate directly - establish a link - only

if their Euclidean distance is smaller than R (it is noteworthy

that this implies that we consider symmetric/undirected links).

This communication dominates the imprint on the energy

depletion of the sensor nodes. We model the network as a

graph G = (V,E), V is the set of Vertices (nodes), E is the

set of Edges (existing links between nodes for the specified R).

We do not require sensor nodes to know their positions, but

available location information (e.g., as in [3]) can positively

influence the efficiency of our algorithms. We consider cases

where (a) all nodes are static, or (b) a mix of static and nodes

of controlled mobility. We assume that sensor nodes know

their hop distance to the sink, e.g., based on a shortest path

tree routing. Ni refers to the set of sensor nodes that are i hops

from the sink (i ∈ {0, 1, .., n}). N0 is the sink (or its equivalent



virtual co-located k sensor nodes). We consider sensor nodes

to be aware of their 1-hop neighboring sensor nodes, including

their position and hop distance to the sink. We do not consider

message losses as these are typically handled at the message

transport protocol level.

IV. DEFINITIONS AND REQUIREMENTS

We present the background concepts that represent the basis

of our k-connectivity maintenance technique.

Definition 1: A Sensor Node L is called a closer neighbor

of Sensor Node F if (a) L is a neighbor of F and (b) L has a

smaller hop distance to the sink than F.

Lemma 1: If each sensor node has at least k closer neigh-

bors then each sensor node has at least k independent paths

to the sink.

Proof: Consider Sensor Node F ∈ Ni, i.e., placed i-hops

from the sink. F has at least k neighbor nodes ∈ Ni−1 that are

1-hop closer to the sink than F itself. That means that F can

choose from k possible neighbors to send the data to the sink,

so at least k sensor nodes have to be removed to disconnect

F from all of Ni−2 nodes. For instance, each node ∈ N2 has

at least k paths to the sink. Therefore, by induction if F has k

paths to the Ni−1 then it also has k paths to the sink.

Lemma 2: If each sensor node in a WSN has k independent

paths to the sink, then there exist at least k paths between each

pair of sensor nodes and as the result the WSN is k-connected.

Proof: If each sensor node has k independent paths to the

sink, then (as we consider undirected graph/network) reverse

is also true, meaning that there exist k independent paths from

the sink to each of the sensor nodes. If each sensor node would

send data to each other sensor node over the sink then there

exist at least k independent paths that can be used for this

purpose. As we consider the sink as infinitely stocked node,

or at least k-stocked node, then the WSN is k-connected.

Definition 2: If Sensor Node F has an equidistant neighbor

H (with same hop distance to the sink) and H has a closer

neighbor K that is not a neighbor of F then we call K an

indirect closer neighbor. We call H a semi-closer neighbor.

Each equidistant sensor node can provide at most one indirect

closer neighbor and only if that indirect closer neighbor is not

already provided by other equidistant sensor node. We call the

set of all indirect closer neighbors of node F ICN(F) and the

set of all closer neighbors CN(F).

Definition 3: Support Nodes are any closer or indirectly

closer neighbors. The set of Support Nodes of Node F is

represented as SNS(F ) = ICN(F ) ∪ CN(F ).
Definition 4: The set of sensor nodes that depend on routing

support (towards the sink) of Sensor Node F are termed the

Dependent Nodes Set of F (DNS(F)).

Theorem 1: If each sensor node has k or more support

nodes (|SNS| ≥ k), then the WSN is k-connected.

Proof: If a sensor node F has j (less than k) closer

neighbors and at least k − j semi-closer neighbors each of

them providing one indirect closer neighbor, then |SNS| ≥ k.

For |SNS| ≥ k there has to be at least k nodes ∈ Ni−1 to

be removed in order to disconnect F from nodes ∈ Ni−2, i.e.,
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Fig. 1. Single link elimination

from the sink. Following the proof of Lemma 1 and concluding

from proof of Lemma 2 if each sensor node ∈ Ni has a

|SNS| ≥ k, then the WSN is k-connected.

In order to generalize the k-connectivity maintenance of our

solution, we define rF as the effective redundancy factor of

Node F. For classical k-connectivity approaches, rF is equal

to the number of sensor nodes stored at the location of F. We

assume a more generic approach where rF represents a variety

of resource redundancy types (but only single type at the time)

such as additional batteries, redundant hardware components

on the same node, etc. Accordingly, we consider that the values

of rF are not necessarily integer but real values.

Approach Requirements: In this work, we use the pro-

posed definitions, lemmas and Theorem 1 to design an efficient

k-maintenance technique. Our main requirement is to achieve

this goal with minimal supplemental resources measured by

the additional required rF to maintain k-maintenance. Our

second requirement is to maintain shorter routes from sensor

nodes to the sink in order to avoid degrading the WSN re-

sponsiveness. In order to better illustrate the problem, Figure 1

presents a WSN with marked Minimum Connected Dominated

Set (MCDS). The k-connectivity in this case is provided when

each of the sensor nodes belonging to MCDS is stocked with

k - 1 additional sensor nodes. As can be easily observed,

although k-connectivity is assured, a failure of even less than

k nodes from among those connecting pairs (A1; A2), (B1;

B2) or (C1; C2) may result in overly extended routing paths

from A1, B1 or C1 to the sink.

V. k-CONNECTIVITY MAINTENANCE

After an overview of our approach, we detail a tech-

nique for localized verification of the necessary conditions

to provide k-connectivity. Subsequently, we describe how to

deploy a minimal number of resources in order to restore

the k-connectivity property. We also present an optimization

mechanism to eliminate co-located links and discuss the self-

sustainablity aspect of the installed k-connectivity.

A. A Guide through our Approach

The key idea behind our approach is based on Theorem 1. If

each sensor node has at least k support nodes (i.e., |SNS| ≥ k)



where SNS(F ) not necessarily assumes an integer value, as

it is the sum of redundancy factors r of its members. Then

each node has at least k alternative/disjoint paths to reach the

sink, leading to that the WSN is k-connected. Accordingly,

sensor nodes require only localized knowledge to verify if

the condition (|SNS| ≥ k) is met. Every sensor node, for

which |SNS| < k should check if all of its supporting nodes

themselves fulfil this condition. If at least one member of

SNS does not meet the condition, then the node waits until

all of its SNS members themselves have at least k support

nodes. At that point each sensor node can locally try to resolve

the situation using a min-max approach. A node D sends the

preliminary request for adding k - z additional resources (rD)

to all of their SNS(D) members, where z = |SNS(D)|. The

SNS(D) members collect preliminary requests from all of

their children and calculate the minimum. The minimum is

sent as response to all the children that sent a request. Each

child selects from all the responses maximal value and sends

the commit request to the parent that submitted the maximum

response. After each such iteration at least one, but generally

most of the sensor nodes will get enough additional support

nodes to meet the condition of having k alternative paths.

B. Localized Estimation of k-Connectivity

The first step in DKM is for each Sensor Node X to calculate

the |SNS(X)|. If |SNS(X)| ≥ k then we call X a Resolved

Node (RN) otherwise Unresolved Node (UN). Algorithm 1

describes our distributed method for calculating |SNS(X)|.
X checks for each of its neighbors, the routing induced hop

distance to the sink. If the neighbor is placed farther from the

sink than X itself, then such a sensor node is ignored. Each

neighbor that is placed closer to the sink than X increases

|SNS(X)| by the resource redundancy factor rneighor of the

considered neighbor’s location. The neighbor identifier (ID) is

also added to a temporary set called closerNeigh to exclude

considering this node as indirect closer neighbor.

If a neighboring Sensor Node Y is equidistant to X then

the neighbors of Y are further investigated. If Y possesses

neighbors closer than X to the sink and not yet included in

closer-Neigh then these neighbors are added to closerNeigh

and they contribute to |SNS(X)| by the minimum of rY and

the sum of the marked closer Y’s resource redundancy factors.

After Algorithm 1 nodes can identify if they are resolved

(i.e., the resources of closer neighbors are higher than k) or

not. Unresolved nodes need to execute the resolving algorithm.

The message exchange cost of executing Algorithm 1 per

sensor node depends on allowed message size but, in general,

is limited to two messages. In order to execute the algorithm,

it is enough for each sensor node to inform its neighbors about

its ID, hop distance to sink and list of IDs of its neighbors

along with their resources whose hop distance to the sink

is smaller than its own. This process necessarily happens in

two steps, each requiring sending a single message. First,

each sensor node sends only its ID and hop distance. This

broadcast message is received by all direct neighbors in a

single transmission. Each sensor node receives the messages

from its neighbors and creates the list of neighbors whose hop

distance to the sink is smaller than its own. Next, each sensor

node sends a second message containing the constructed list.

After receiving this second message each sensor node has

sufficient information to perform Algorithm 1.

Algorithm 1 Local Connectivity Resolution at each node

1: function estimateLocalConnectivity(curNode) : float
2: var float closerResources = 0;
3: var set closerNeigh = ∅;
4: for all sn in curNode.Neighbors do

5: if sn.hop < curNode.hop then
6: closerNeigh ← closerNeigh ∪ sn; //add to SNS
7: closerResources += sn.resources;
8: else if sn.hop == curNode.hop then

9: var float indirectResources = 0;
10: for all snn in sn.Neighbors do

11: if snn.hop < curNode.hop and snn 6∈ closerNeigh then

12: closerNeigh ← closerNeigh ∪ snn; //add to SNS
13: indirectResources += min(sn.resources, snn.resources);
14: if indirectResources >= sn.resources then

15: break; //indirect neighbors cannot provide more resources
than direct ones

16: end if

17: end if

18: end for
19: closerNeigh ← closerNeigh ∪ sn; //add to SNS
20: closerResources += min(indirectResources, sn.resources);
21: end if

22: end for
23: return closerNeighCount;

C. Resolving Nodes

A sensor node, say F, initiates the resolving process when

the Local Connectivity Resolution Algorithm (Algorithm 1)

returns a value lower than the desired k. This means that F

needs to inform current members of SNS(F) about the required

resources to itself become a resolved node. Our resolving

process utilizes voting. First, the nodes whose complete SNS

is resolved, such as F, send the demand for the resources

as a vote request (vote representing the amount of missing

resources rF ). The SNS nodes gather the votes and sum them.

Simultaneously, they additionally calculate the minimal value

of votes (the minimal resources required to resolve at least

one node). The SNS nodes send response to their DNS (from

Definition 4, F ∈ DNS). Each DNS node (e.g., F) selects

from the responses (only from closer neighbors) the sender,

which responded with highest accumulated votes. The highest

accumulated vote indicates that this sender is the one that

is shared by most of sensor nodes and therefore stocking

it with additional resources will be profitable for increasing

local connectivity of unresolved nodes. This sender receives a

request for stocking additional resources equal to the minimal

vote that it received during voting. This measure guarantees

that, at each step, at least one sensor node becomes resolved to

progress the process and it minimizes chances of overstocking

the nodes.

We now detail the resolving algorithms (Algorithm 2 &

3) as two threads running at each sensor node (the actual

implementation does not require threaded execution, we just

use this abstraction for a better explanation of the algorithm).

Each sensor node can be a member of a DNS or a SNS of some



other sensor nodes. Algorithm 2 describes the sensor node

behavior while acting as a member of a DNS and Algorithm 3

the situation when the sensor node is a member of a SNS.

Algorithm 2 Resolve Node: As member of DNS

1: function resolveNodeThread(curNode, k)
2: while not checkIfSNSResolved(curNode, k) do
3: waitForNeighborNotification(); //wait until SNS is resolved, does not

involve sending any messages
4: end while

5: while estimateLocalConnectivity(curNode) < k do
6: var vote;
7: vote.value = k - estimateLocalConnectivity(curNode);
8: vote.sender = curNode;
9: for all sn in closerNeigh do

10: sendVote(sn, vote); //ask for resources
11: end for

12: var maxResponse;
13: for all response in collectResponses() do

14: if response.sender.hop < curNode.hop and

response.value > maxResponse then

15: maxResponse = response; //choose best bidder
16: end if

17: end for

18: sendSelection(maxResponse.sender);
19: end while

20: notifyNeighbors(”curNode resolved”);

Before F can start resolving its status, it checks whether all

of the members of its SNS are already resolved (Algorithm 2,

L. 2). Two situations are possible: (a) All members of SNS(F)

are resolved as a result of already available resources, (b) some

sensor nodes belonging to SNS(F) are not yet resolved and F

has to wait until they resolve their status. In Situation (a),

the algorithm may execute in parallel in several regions of

the WSN. Not resolved nodes notify their neighbors when

their status changes to resolved (Algorithm 2, L. 20), so the

sensor nodes whose SNS(F) is not completely resolved may

easily detect changes (Algorithm 2, L. 3). When all SNS(F) are

resolved F may start sending its votes. F calculates its vote by

subtracting the value of its local connectivity from the desired

k (Algorithm 2, L. 7). The vote is sent only to closer neighbors

as only those nodes will be considered for adding resources.

SNS(F) members collect the votes (Algorithm 3, L. 3) and

calculate their sum and value of the minimal vote (Algorithm

3, L. 6 - 7). After collecting all votes SNS(F) nodes send the

response to all of the voters (including F) (Algorithm 3, L. 10 -

12). F collects the responds and selects the responder with the

highest sum of votes (Algorithm 2, L. 13 - 17). Then, F sends

to this responder a request for adding additional resources.

SNS(F) members wait for maxDelay time for selections from

their DNS members. Once, they receive them, they increase

their r for the value of the minimal vote received in the

voting step (Algorithm 3, L. 13 - 15). After SNS(F) nodes add

resources, F re-evaluates its condition (Algorithm 2, Line: 5).

The message cost of each iteration (of the resolving node’s

algorithm) requires from DNS nodes the sending of two

messages (vote and selection messages) and from SNS nodes

only a single response message. The number of iterations is

limited and depends on the discrepancy between the current

and desired connectivity levels. In case of k-connectivity, at

each iteration the discrepancy is reduced by at least 1. Addi-
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Fig. 2. Single Link Elimination

tionally, the algorithm chooses for stocking those nodes whose

stock increases the benefits for possibly many unresolved

nodes. Pragmatically, k is generally a low number and the

maintenance action is required sporadically, the number of

message transmissions required for resolving nodes is small

and limited.

Algorithm 3 Resolve Node: As member of SNS

1: function voterDeamonThread(curNode, k)
2: while true do
3: var votes = collectVotes()
4: var response;
5: for all vote in votes do
6: response.value += vote.value;
7: response.minVote = min(response.minVote, vote.val);
8: end for

9: response.sender = curNode;
10: for all voter in voters do

11: sendResponse(vote.sender, response) //actually only single message
is sent as all recipients are direct neighbors

12: end for//wait maxDelay for selections
13: if collectSelections(maxDelay) != ∅ then

14: curNode.stock += response.minVote;
15: end if
16: end while

D. Avoidance of Bottleneck (Overlapping) Links

When the SNS of a sensor node (e.g., Q in Fig. 2)

consists of a single node (V) then it is necessary to add

an additional sensor node (Z) (extend the SNS) that is not

co-located/stocked with V. If V was stocked with additional

k − 1 sensor nodes, then although k-connectivity would be

provided, a single failure related to location (e.g., sensor nodes

burned, trampled under larger objects, stolen, etc.) could cause

immediate network disconnection. For this purpose, Z should

allow to forward data to the sink independent form the existing

single link (over V). Z itself should become k-connected. In

order to ensure k-connectivity of Z, it is enough to select a

new location that is intersection of enough of SNS(V) = {S,

P} such that their summed up stocks are at least equal to k.

From the possible location, the one that is placed farthest from

V but still in Q range should be selected.

E. Optimizing Required Resources

A sensor node, say X, may be over-provisioned following

Algorithm 3, i.e., if rX is larger than required by all nodes

∈ DNS(X) for maintaining k-connectivity. Subsequently, we

identify resource over-provisioning in order to ensure minimal



cost maintenance. The calculation of over-provisioning is

conducted as follows:

1) Each sensor node sends to its SNS nodes the value

indicating the difference between its local connectivity

and desired k (overK).

2) Each SNS node collects the overK values and calculates

their minimum value (overKmin). overKmin indicates

the amount of over-provisioned resources whose re-

moval would not cause a drop in local connectivity in

any of DNS nodes of SNS below k. Each SNS node

responds by sending to its corresponding DNSs a value

equal to calculated overKmin or number of its own

stoked resources less one.

3) DNS nodes receiving a response from their SNS se-

lect the sensor node (SNSB) that sent the highest

overKmin. If two sensor nodes send equal overKmin

then the node identifier (ID) breaks the tie. Each DNS

node sends the ID of its SNSB back to its SNS.

4) If all received IDs are equal to the ID of receiving node

than this sensor node can remove the proposed number

of stocked nodes.

In case of limited resources, the sensor nodes after cal-

culating missing resources could execute a bidding process

[4], where the weight of the bid corresponds to the closeness

to sink (to prevent partitioning close to sink, where it could

disconnect much larger part of the network) or to the |DNS|
of bidding sensor node.

F. Self-Sustaining k-Connectivity

If the scenario of supplying the WSN with additional

resources (e.g., batteries, sensor nodes, etc) is not possible

but the network contains mobile elements, the mobility can

be used for topology maintenance. We propose to rearrange

sensor nodes in order to sustain the k-connectivity in face of

failures. For this purpose, the WSN needs to identify sensor

nodes whose repositioning does not impair the k-connectivity

property. Each of the sensor nodes that do not belong to SNS

of any other node are called leaf nodes and can safely move to

the locations selected by DKM. Each removal of leaf nodes

creates potentially new leaf nodes. In Fig. 2, Sensor Node

U is a leave node as it does not belong to any SNS. When

U gets removed, then as consequence sensor nodes T and Q

become leave nodes, as they where members only of SNS(U).

The leave sensor nodes can be iteratively removed and used to

repair other parts of the network until remaining topology be-

comes k-connected. It is evident that as this process progresses

the deployment area accordingly shrinks. Therefore, the user

should balance the priorities between sensing coverage and

fault tolerance. If sensing coverage is given higher priority

then there should be assigned sensor nodes whose removal is

not permitted. This however may impair the self-sustainability

capacity of the algorithm as it may run out of resources.

G. Graph Balancing

A further scenario is where the end-to-end traffic is not

bound to the sink but is also desired between sensor nodes. We

H

J

L

Virtual

Sink

Fig. 3. Virtual Sink Selection

show that DKM also works in such scenarios. For this purpose

we revert to the original concept presented in [2], with a slight

modification. Instead of creating MST, we propose MCDS as

this results in selecting fewer sensor nodes, which needs to

be stocked but keeps the crucial property of MST for assuring

k-connectivity. Fig. 3 shows an example of WSN with marked

sub optimal MCDS using the algorithm described in [7]. We

use this algorithm as it allows distributed execution, but also

further techniques may equally be used to select MCDS nodes.

Having established the MCDS, we refrain from stocking k -

1 sensor nodes on the location of MCDS nodes as proposed

in [2]. Instead, we propose to select a virtual sink. A virtual

sink is a sensor node belonging to MCDS, which assumes role

of the sink under the condition of having stocked at least k

sensor nodes. The position of the virtual sink should be placed

possibly close to the geographic center of the deployment area,

so that the average hop distance to this sink is kept minimal

(in uniform networks), and so that in case of failures, when the

data has to be rerouted through the virtual sink the extended

routes will be kept possibly short. After finding the proper

virtual sink DKM proceeds as in the real scenario.

We propose the following strategy to establish the position

of the virtual sink. We allow the sensor node with the highest

ID (Fig. 3 sensor node H) to create the routing spanning

tree among the members of the MCDS set. As a result the

members of the MCDS set establish their hop distance to H.

The sensor node with the highest hop distance (Fig. 3 Sensor

Node J) in uniform network is placed at the border of the

deployment area. We allow now J also to start routing spanning

tree construction (over MCDS) so that the sensor nodes can

establish their hop distance to J. The sensor node with the

highest hop distance to J we mark as L (Fig. 3). L also starts

spanning tree construction among MCDS nodes. After this

step each sensor node has established the hop distance to both

opposing border sensor nodes J and L. In order to find the

center of the MCDS, we look for the sensor node, whose

value (hop(J)− hop(L))2 is the lowest. This sensor node we

select to function as a Virtual Sink. Although we execute the

spanning tree construction algorithm three times, the number

of the messages is kept low as in construction of the tree

participate only the MCDS nodes. Therefore, for the whole

process each MCDS node sends only three messages. It is



noteworthy that as our simulations have showed, the selection

of sink location at the center of the deployment area does not

increase or decrease the demand for the resources. Establishing

the virtual sink at a central location only serves the purpose

of decreasing (only in case of failures) hop distances in case

of sensor node to sensor node communication scenarios. For

the construction cost of MCDS we refer the reader to [7].

VI. PERFORMANCE EVALUATION

A. Evaluation Settings

We consider a WSN network consisting of sensor nodes,

with a communication range of R = 3m, deployed over

the area of 30m × 30m. We gradually change the number

of deployed sensor nodes from 230 (sparse scenario - low

initial k-connectivity) to 750 (dense scenario - high initial k-

connectivity) in order to measure the utility of DKM under

different network densities and initial conditions. For each of

these settings, we also vary the desired k from 2 to 10. We

choose these values to cover a wide range of real deploy-

ments and future application requirements. We performed an

additional study to measure the effectiveness of DKM under

varying initial conditions induced by changing communication

range. The number of deployed sensor nodes was kept at 350

sensor nodes and communication ranged was varied from 2.5m

to 10m. Also in this case the desired k-connectivity was varied

from 2 to 10. We executed all sets of simulation for two

situations. In Situation 1, with no localization available the

single link elimination step was skipped. In Situation 2, we

additionally handled bottleneck overlapping links and resource

over-provisioning. We use our stand-alone implementation to

simulate the DKM efficiency.

We compare DKM to the solution postulated in [2] based

on MST/MCDS approach and refer the readers to [2] for

comparison with [1]. The general conclusion from the com-

parison follows that the approach in [1] requires substantially

more sensor nodes to assure the k-connectivity. As the driving

metric we apply to measure the effectiveness of DKM is the

amount of resources required to be added in order to assure

desired k-connectivity. For this purpose, we execute DKM and

calculate the percentage increase in number of sensor nodes

in reference to the originally deployed network. We perform

the same operation for the MST/MCDS based algorithm.

B. Evaluation Results

Fig. 4 presents the demand for resources using the DKM

and MST/MCSD algorithms in function of the desired k-

connectivity. For the sparse topology (230 sensor nodes) the

trends of both algorithms show linear characteristics separated

by a margin starting at approximately 30% sensor nodes for k

= 3 and dropping to around 10% sensor nodes for k = 10. In

case of denser initial deployments (500 and 750 sensor nodes),

DKM changes to an exponential trend but with small enough

exponent to stay well below the linear trend of MST/MCSD

based solution for the whole spectrum of tested k-connectivity.

For higher densities, DKM requires around 50% less of initial

sensor nodes to add. This is due to the fact that an increase in
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density does not translate to reducing the number of members

of the MST/MCDS sets as compared to increasing the initial

connectivity of sensor nodes. DKM exploits this fact and tries

to reuse the already deployed sensor nodes in order to reduce

the demand for additional resources.

Fig. 5 presents the demand for resources for fixed value

of k and varying initial conditions. For each value of n

DKM outperforms the reference algorithm. The discrepancy

in performance for benefit of DKM rises with the rising

number of initially deployed sensor nodes n. The initial lower

discrepancy can be explained from the reasoning that in

initially sparse networks the DKM operates similar to the

MCDS/MST algorithm. Similarity in the discrepancy arises

because in sparse networks the spanning routing tree, which

DKM uses, has only few alternative parents for each sensor

node. As the density of network rises with higher number of

deployed sensor nodes DKM benefits from the availability of

multitude of supporting nodes in the routing tree.

Another important property of WSN is the wireless commu-

nication range R. Fig. 6 presents the ratio of added resources

in function of R for a fixed number of deployed sensor nodes

n = 350. For low values of R the network is sparse DKM

outperforms MCDS/MST based solutions. The performance

advantage of DKM rises with R but only up to approximately

R = 4m and then slowly converges close to 0%. For high

value of R (10m) in the considered scenario maximal hop

distance is very low and that explains the outperformance

of DKM, but also MCDS/MST involves only few additional

nodes, as sensor nodes have a high connectivity degree.

Finally, we evaluate the established average local k-

connectivity indicator using Algorithm 1. For each originally

deployed sensor node, we calculated |SNS| before and after
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executing DKM. Afterwards, we calculate the average value

for both cases. Fig. 7 shows the average local k-connectivity

indicator in function of originally deployed sensor nodes for

k ∈ {3, 5, 7}. The basic trend for the original topology of

WSN (no changes) is consistently linear and shows inherent

localized k-connectivity indicator for a network of a given

density. If k = 3, the trend only initially differs from base

trend and for network size n = 400 and denser it nearly

mergers. For the low values of k, the inherent k-connectivity is

sufficient to provide the requested fault tolerance. Therefore,

there is a limited need for additional resources so that the

local k-connectivity does not increase. It is different for larger

k ∈ {5, 7} where especially in initially sparse topologies

there is a low inherent fault tolerance. It is obvious that the

average local k-connectivity indicator has to increase to at

least the value of k, what explains the initial discrepancy from

the base trend. But as can be observed from lines (DKM(5)

and DKM(7)) the achieved local k-connectivity indicator is

only marginally higher than the requested k, confirming the

efficiency of DKM.

VII. CONCLUSIONS AND FUTURE WORK

We have presented DKM, an efficient distributed k-

connectivity maintenance technique. While using only local

views, DKM is capable of restoring the global k-connectivity

property. The presented solution, while not optimal, offers

substantially better resource utilization performance to the

state of the art. The algorithm also allows the detection of

redundant/spare sensor nodes that can be used for performing

maintenance. Mobile sensor networks can use this capability

for providing self-sustainability.

We plan to further increase the reuse of deployed resources.

Currently, DKM considers only 2-hop neighborhood con-

nectivity information for identifying closer and semi-closer

neighbors. Increasing the size of immediate neighborhood

information to further distances could potentially allow for

the identification of more redundancies in the connectivity.

Achieving these potential savings is at the cost of a higher

algorithm complexity and communication overhead.
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