
Map-based Support for Wireless Sensor Network
Simulation

Piotr Szczytowski, Abdelmajid Khelil, Neeraj Suri
Technische Universität Darmstadt, DEEDS Group, Germany

Hochschulstr. 10, 64289 Darmstadt, Germany
Email: {szczytowski, khelil, suri}@informatik.tu-darmstadt.de

Tel: +49 6151 16 {3414, 3414, 3513}
Fax: +49 6151 16 4310

Abstract— Wireless Sensor Networks (WSN) are receiving
growing attention in the research community. As simulation
is a frequently used approach also to test and validate
approaches, the simulation environments need to be able to
support the evolving WSN design schemes. While a growing
research trend in WSN is to address regions instead of single
sensor nodes, existing WSN simulation environments still do
not support modeling and design on this abstraction level.
In this context, we propose MAP++ as a framework that
extends the OMNeT++ network simulator. It provides a suite
of tools needed to support WSN simulations. In particular,
MAP++ supports map-based topology and scenario genera-
tion and evaluation. It also provides trace data visualization
and database powered analysis. The usability of MAP++ is
illustrated via examples of applications over each phase of
simulation development, i.e., modeling, design, implementa-
tion and performance evaluation, and case studies for map
construction algorithms. We show the utility of our tool
chain to enhance the common statistics-based trace analysis,
and to conduct algorithm evaluation and comparison.

Index Terms— Wireless Sensor Networks, Simulation, Map,
OMNeT++

I. BACKGROUND AND STATE OF THE ART

Wireless Sensor Networks (WSN) entail rapidly de-
veloping concepts in the fields of communication and
computing. The progress in sensor miniaturization is
increasingly leading to advanced monitoring/processing
capabilities. The increasing computing and communica-
tion capabilities provide growing flexibility through self-*
capabilities. For instance self-organization allows the sen-
sor nodes to be randomly deployed by distributing them
aerially over the target area. Overall, the scope of WSN
applications is growing very rapidly. Unfortunately, the
energy constrained lifetime with the main drain incurred
by wireless communication is still a major limitation for
WSNs.

The inherent redundancy of sensor nodes and the spatial
nature of the monitored physical phenomena results in
spatially correlated sensor readings, and indirectly also
the network properties such as energy distributions. The
natural abstraction to capture the inherent spatial corre-
lation of sensor nodes states is the map paradigm. A
Map is an aggregated view on the spatial distribution

Research supported in part by DFG GRK 1362 (TUD GKmM), EC
INSPIRE, EC CoMiFin.

of a certain attribute at a certain time. The literature
describes two main classes of maps, i.e., the choropleths
[1] and the isomaps [2], [3], [4]. The construction of the
map visually groups spatially correlated sensor nodes with
similar attributes values into regions. We define a region
by its border (a set of spatial points) and an aggregate
(e.g., average) of the attribute’s values obtained from all
sensor nodes located in the region’s area.

The map paradigm builds on the region principle
and therefore provides excellent modeling primitives for
WSNs. Global maps are created for the sake of network
monitoring (e.g., residual energy map [5]) or of event
detection (e.g., oxygen map [6], [7]). A promising direc-
tion consists in using maps to optimize protocols [8], [9],
detect [10] or track [11] event boundaries. These papers
highlight the map-based methodology as a powerful and
highly promising abstraction level. In [12], [13], we
propose the maps as the natural step towards a holistic
Map-based World Model and Map-based WSN design.

In most network simulators, both the design of topolo-
gies and the storing/representation of the trace data have
textual format. The expression of the spatial dependencies
in that form is both complex and limited. WSNs usually
involve large scale simulations, where manual preparation
of the multitude of topologies and simulation scenarios
is beyond simple textual representation. The common
solution to this problem is using text generation scripts
that create topologies following the simulator syntax. Un-
fortunately, techniques to verify and validate the created
topology are limited. A much more direct and effective
solution is doing visual validation.

The established OMNeT++ [14] simulation environ-
ment introduces the notion of the interactivity by of-
fering a visual editor for its topology format. However,
topology is only one feature of scenario generation. In
WSN further important features such as temperature’s
spatial and temporal distribution present a fundamental
part of scenario generation. OMNeT++ does not explicitly
support the generation and visualization of attributes of
the network and the physical world. The lack of support
for visualization is even more apparent in the case of trace
data. Currently, trace data is collected in a text file used
for statistical analysis. Usually, the analysis is completed
at sensor node or event level. This is tedious and does not



follow the region abstraction level as discussed earlier.
Alternately, visualization rendered as a map is a natural
approach for the discovery of spatial dependencies. The
map representation cannot fully replace the traditional
statistical approaches, which are more appropriate for
understanding the details of the concepts under investiga-
tion. However, the map-based simulation approach offers
considerable support for high-level designing and debug-
ging. The processing of data across series of simulations
requires the efficient extraction of relevant information
from complex traces with mixed content. The efficient
way of handling the large amount of data is to export it
to a relational database to process using a database engine.

In this paper, we extend our preliminary work [15]–
[17] and provide a map-based MAP++ framework that
provides the following contributions:

• Map-based topology generation support that simpli-
fies the modeling and scenario generation,

• Map-based trace data visualization support that iden-
tifies spatial dependencies for an efficient design and
debugging,

• Storing and processing of map-based trace data using
relational databases for an easy analysis and perfor-
mance evaluation.

The contributions are highlighted by set of case stud-
ies. In these case studies we evaluate set of algorithms
representative for WSNs to show the benefits of MAP++
framework.

The remainder of the paper is structured as follows.
In Section II, we briefly specify our system model.
In Section III, we review the existing simulation envi-
ronments for WSN, outline their limitations and state
our objectives. Section IV details the architecture and
implementation of our MAP++ to fill the gap of existing
simulation environments. In Section V, illustrations of
MAP++ application scenarios are presented. Section VI
investigates the framework performance and highlights
the usability of MAP++ through two representative case
studies.

II. SYSTEM MODEL

We consider a two dimensional WSN consisting of
stationary, resource-constrained sensor nodes with lim-
ited processing, storage and battery-capacity. Each sensor
node is capable of short range wireless communication
with a fixed transmission range. We focus on large
scale deployments involving hundreds or thousands of
sensor nodes. A sensor node measures a physical signal
(temperature, humidity, etc) or its status (e.g., its own
battery status) at a specified sampling rate. There also
exists one or more base stations (called sinks), which are
designated as resource-rich nodes serving as a gateway
between the WSN and users. We also allow for scenarios,
where sensor nodes are equipped with different set of
sensors, monitoring different phenomena.

III. WSN SIMULATION ENVIRONMENTS

The increasing interest in the WSN research has re-
sulted in the development of a variety of simulation

environments. TOSSIM [18] as a simulator for the com-
mon TinyOS platform [19] serves as a good example
of such environments. Its attractive feature is that code
developed for the simulator can be directly deployed on
real sensor nodes running TinyOS. The simulation is very
accurate on the node architecture level. Unfortunately,
these architecture details (e.g. module wirings) consume
much of simulation processing resources while providing
only limited impact on global properties of WSN. Conse-
quently, TOSSIM’s high level of details limits the simu-
lated network scale, rendering the simulator inapplicable
for large scale scenarios.

In addition to the development of new simulators, some
of the existing network simulators have been extended
to support WSN simulation. For instance, the established
NS-2 simulator [20] has been extended by the MannaSim
Framework [21] through developing a topography gen-
eration tool, modules simulating an antenna, and radio
propagation models. However, the acceptance of NS-
2 in the WSN community is limited due to its poor
scalability [22].

Further projects like [18], [23]–[28] deliver specific
libraries of components and algorithm templates leverag-
ing different aspects of WSN. Some of these tools offer
various forms of visualization. Unfortunately, the existing
libraries operate on message level and not on region/map
level.

OMNeT++ [14] also follows the approach of adapting
its features to use for simulation of wireless networks.
OMNeT++ is a component-based, modular, and event
discrete simulator. It is based on a generic and flexible
open-architecture, provides extensive graphic user inter-
face and is platform independent. These characteristics
make it especially suitable for highly efficient network
simulations. Owing to its modularity, and consequently
extensibility, it is receiving a growing usage in the WSN
community resulting in the implementation of mobile
and sensor frameworks for this simulator. For instance,
the Mobility Framework for OMNeT++ [29] is intended
to support wireless and mobile simulations using OM-
NeT++. It provides features such as sensor node mobility,
dynamic connection management and a wireless channel
model. A similar approach is presented in MiXiM [30],
which is prepared as a simulation framework with a
concise modeling chain for mobile and wireless networks.
While not yet implemented, it promises to deliver models
for mobile environments, sensor nodes and objects, radio
propagation models for multiple signal dimensions, phys-
ical layer models for modulation, coding and diversity
receivers, library of Medium Access Control (MAC) pro-
tocols and localization algorithms. Similarly, [31] extends
OMNeT++ by an advanced radio/channel model allowing
multiple transmission power levels, a physical process
model and a resource monitoring MAC protocol.

The authors of EYES WSN Simulation Framework [32]
and NesCT [33] investigated the possibility to merge
TOSSIM and OMNeT++ and provided necessary support.
The developed simulation environment profits from rich



TinyOS libraries as well as the increased efficiency and
extensive visualization provided by OMNeT++. EYES
uses maps for defining the failure probabilities of de-
ployed sensor nodes or marking the radio propaga-
tion obstacles. However, EYES does not support gen-
eralized maps. [34] presents a tool-chain for provid-
ing the parametrization, distributed execution and result-
postprocessing and debugging. Similar to our approach,
[35] provides offline visualization of traces. However, it
works on the node-level basis, not utilizing the facets
of spatial correlation of sensor nodes attributes. [35] is
limited to offline replaying of simulations and does not
provide support for scenario generation and evaluation.

The multitude of mentioned works confirms the rising
interest in developing the simulation environment for
WSN. Unfortunately, any project within the WSN com-
munity does not provide holistic support for map design
and modeling in simulation environments. Approaches
in other communities such as Space Time Toolkit [36]
provide advanced capabilities for integrating spatially
and temporally-disparate data within 2D or 3D display
domain. The lack of access to their source code renders
their integration with WSN simulations systematically
difficult. To the best of our knowledge we are the first to
provide a complete open source tool chain that considers
the inherent spatial correlations in WSN.

IV. THE MAP++ ARCHITECTURE

In the following, we describe the main elements of the
MAP++ framework architecture, their interdependencies
and interactions with the OMNeT++ simulator.

A. Overview of the MAP++ Architecture

Fig. 1 illustrates the MAP++ framework architecture
and the interactions with the OMNeT++ simulator. Sim-
ulation studies usually require a large number of sce-
narios to evaluate a wide spectrum of parameters. The
Scenario Generator is responsible for the generation of
the topologies designed by the user and supplemented
by simulation scripts for batch execution using varied
parameters. In order to provide generic solutions that
could be successfully combined with different simulation
engines, the framework requires a flexible and robust
way of tracing the data. The generation of trace should
be decoupled from the implementation of the simulation
modules. Therefore, we design a separate module, Trace
Module, which is independent from the rest of simulation
and delivers a well formatted Trace. To simplify the
process of configuring and embedding the Trace Mod-
ule into the simulation, the Trace Module Configurator
was developed. It provides the user interface, which
allows seamless setting of Trace Module parameters. The
OMNeT++ simulator executes the defined scenarios and
embedded trace modules produce the traces. Traces are
stored in XML format, which makes them suitable for
automated parsing and map-based representation. The
core functionality of representing the network using maps

is realized through the Visualization & Regioning module.
Visualization renders the map reflecting the trace data
and allows basic map operations. Regioning implements
additional map operations by providing the grouping of
the nodes based on their class membership. A class is
defined as a value range of the selected map attribute.
More accurate and statistical evaluation of trace data is
provided through the SQL Database Interface module. It
allows the import of XML formatted trace data into a
relational database and the querying of this data using a
database engine. The query creation is simplified by the
integration of the database module with the visualization
module and as result allowing the users to visually create
queries. Instead of manually typing the names of the
sensor nodes to which the query should apply, user can
select the appropriate for the query sensor nodes using
the map.

From the implementation viewpoint, the framework
consists of two distinct components, i.e., the Trace Mod-
ule and the MAP++ Tools.

Figure 1. MAP++ Architecture

B. The MAP++ Trace Module
The Trace Module is embedded into the simulation

environment as an instance of a simple module (object
class implementation unit) defined within the topology
file. The module is loosely coupled with the simulation
environment, imposing only limited amount of additional
work on simulator users. Its task is to periodically (period
can be arbitrary set by the user) query all simulation
modules of defined classes and store their selected pub-
lished attributes. We developed the Trace Module with
two objectives in mind. The first objective is for the
Trace Module to be independent from the implementation
of the simulation modules, as stated in the architecture
overview. The developer of the simulation modules does
not need to integrate the necessary traces into the modules
source code. The simulation module should only publish
the attributes required to track its state. This approach
allows to use the MAP++ framework even with already
existing simulations without need of making simulation
code changes.



The second objective is to maintain consistent and
reusable trace format. The traces format has to be con-
sistent for proper interpretation for visualization by the
MAP++ framework and their proper processing. We de-
cided to use the XML format, that fully meets these
requirements. The format’s self description characteristic
allows for automated import into relational database and
processing. An additional benefit is the simplified conver-
sion using stylesheet transformation to the desired format
for use with a wide range of tools.

In case of WSN scenarios, with multiple map attributes
of interest a separate instance of the Trace Module can be
initialized for each module class, allowing parallel track-
ing of different sets of network perspectives. For example,
if the network contains two different classes of modules
each equipped with different sensors (e.g. temperature and
humidity sensor nodes) then two instances of the Trace
Module are need (Fig. 1, k = 2), as each Trace Module
may trace only one module class. In case that a single
module class provides two or more sensors, then only a
single Trace Module is necessary for tracking.

C. The MAP++ Tool-Chain
The second component constituting the MAP++ frame-

work is a suite of tools for generation of simulation sce-
narios, configuration of traces, visualization and analysis
of simulation results.

Scenarios consist of topologies and batch scripts. The
static topologies are created by randomly assigning the
location for a specified number of sensor nodes within
the defined deployment area. The links are established
between the sensor nodes whose distance is shorter than
the transmission range. Topologies and sensor nodes
deployed in topology publish set of attributes, which
are varied using batch scripts. Scenarios are stored in
XML format and transformed by the provided stylesheet
to comply with the OMNeT++ file format. The use of
stylesheet transformation allows to adjust to the possible
future changes in the file format and provides means for
reusing the scenarios in different simulators for possible
comparative studies.

The visualization is created by loading the topology
definition and creating its two dimensional representation.
The area occupied by nodes is fragmented into Voronoi
[37] polygons, bringing the additional benefit of reflecting
the sensor nodes density (Fig. 2). The individual polygons
are filled with the shades of grey corresponding to the
value of the selected attribute.

The results analysis is conducted using a relational
database. The XML formatted trace allows automatized
import of the results. Pre-parsing of the data allows the
automation of the queries generation. The integration with
the visualization provides means for spatially correlated
queries, where queries are applied only to the nodes
within a selected geographic area.

V. MAP++ BENEFITS AND APPLICATIONS

We first present the main functionalities of the frame-
work at the different stages of the simulation process.

Figure 2. Voronoi-Based Map Visualization

Next, we describe how these functionalities can be ap-
plied. For this purpose, we present the main usage sce-
narios, i.e., modeling, design, debugging and performance
evaluation. To better illustrate the frameworks capabilities
and demonstrate its practical utility, we present two case
studies in Section VI.

A. Overview of Applications and Benefits

We identify three different stages of the simulation
process: Modeling, execution and results analysis. In the
following we present the MAP++ benefits at each stage.

In the modeling stage, MAP++ supports (a) the defini-
tion of the modules, (b) the generation of the topologies
(that use the defined modules), and (c) the creation
of scenario sets (on basis of the generated topologies).
The definition of a new module consists of the imple-
mentation of a new module class and defining the set
of class attributes. The implementation of attributes on
the developers side is limited to updating their value
inside the module source code. The topology generation
results in an automated creation of the topology files.
Scenario sets correspond to producing the initialization
files with sections describing varying values of published
attributes. The initial conditions (initial values of pub-
lished attributes) can be visualized and effectively defined
(spatially correlated initial values) using the visualization
tool.

Regarding the execution stage of the simulation, our
framework currently offers assistance in the form of
the Trace Module. However, we envision extending the
usability of the Trace Module in future. Conceptually,
the Trace Module could evaluate the maps at run-time.
That capability would allow definition of conditions to
which a set of actions could be assigned. For example on
detecting a certain event the frequency of taking snapshots
could be tuned or snapshots instead of being periodical
become event triggered. Further extensions would include
the real-time data visualization and streaming of traces
into a database.



The MAP++ support for result analysis consists of
the visualization and data processing using relational
database. The visualization is projected as a two dimen-
sional map, filled using shades of grey corresponding
to the value of the selected attribute at a given time
instant of the sensor nodes occupying the area. Basic
operations such as the creation of differential maps are
supported. Scrolling along the time axis displays the
progress of the simulated phenomena. The simulations
result in the creation of a large set of data. There is a need
for extracting ”significant” data from a large set of less
relevant data. Our framework provides a solution for this
problem by allowing the import of stored trace data into a
relational database (Fig. 3). The use of structured queries
allows an easy extraction of data of interest. As the trace
data is imported off-line, the use of database engine does
not generate the overhead while executing the simulation.
Current implementation is provided for Microsoft SQL
Server and MySQL open source database.

Figure 3. Database Interface

B. Modeling Stage

We illustrate the modeling capabilities of our tools
through the example of energy consumption modeling. As
a result of the WSN inherent sensor nodes redundancy, the
energy depletion tends to show high spatial correlation.
The sensor nodes located in close proximity of the sink
deplete their energy at a much faster rate [38], [39]. This
is due to the fact that besides their own operations, these
nodes forward most of the WSN traffic. Another case of
spatially correlated energy depletion is the spatial nature
of most of the monitored physical phenomena. In the
regions where the phenomena shows high activity, the
rate of sampling and transmission of samples usually is
increased to meet the required accuracy of monitoring,
resulting in an increased energy usage ratio.

The modeling starts with generating the topology cor-
responding to the assumed system model. Our framework
allows the setting of the communication range, size of the
sensor field, number of sensor nodes and topology type
(grid or uniform random). The creation of the scenarios
containing mixed types of sensors is supported by itera-
tively adding new module classes to existing topologies.

The topology generation is followed by the accurate
modeling of the phenomena to be monitored by the WSN.
As physical phenomena usually show spatial correlations,

the natural approach to model them is the generation of
the corresponding maps. The iterative generation of maps
for different scenarios (e.g. various distribution models)
followed by their comparison enables precise modeling.
MAP++ partially automates this process. Varying the
values of the topology properties allows batch generation
of scenarios. The visualized trace data simplifies the
investigation of their impact.

The form for designing batch execution currently sup-
ports three types of properties: Numerical, boolean and
string. In case of numerical values the user defines the
minimal, maximal values and the step (value by which the
parameter should be incremented) for generating values
range. For the string properties, the creation of a list of
values is possible. Boolean values are limited to select
between one of two constant values, or their variation. The
Add Batch function automatically generates all spectrum
of scenarios given the defined value ranges, while the Add
Single function enables the generation of single scenarios.

C. Design Stage

The most significant contribution of our MAP++ frame-
work is at the design phase. The visualization of maps
leads to a better understanding of design choices. The
designer can use our tools to test tentative solutions and
their preliminary performance. In the exemplary case of
energy monitoring, the visualization may show the regions
susceptible to partitioning, their shape and expected time
of occurrence. This knowledge results in the development
of valuable countermeasures for design or deployment.
For example, the threatened regions of the network can be
supplied with higher energy reserves, e.g., through denser
deployment of nodes. Considering also the visualization
of the physical phenomena such as temperature allows for
an interactive design of algorithms. Such a visualization
allows for a coarse-grained understanding of both prob-
lems and developed solutions. For example visualizing
the energy distribution of the network along the network
topology allows the identification of energy holes and
some of their properties.

A static snapshot does not provide enough insights
into the dynamics of the network. Therefore, the MAP++
visualization tools support smooth scrolling through the
trace data along the time axis. This procedure unveils
the causality of the events during the lifetime of the
network. An example could be the investigation of the
adaptability of a routing protocol to sensor nodes failures.
For this purpose the designer may create a connectivity
map, which visualizes the hop distance of each node to
the sink. The visualization of this map (small differences
in grey scale values show neighboring sensor nodes)
reveals when and how the routing adjusts to changes in
the network. Observing the network at the same time in
different perspective (e.g., energy and connectivity map)
points the cause of rerouting.

The impact of varying parameters becomes visible
when comparing the different scenarios at same time
indexes. Visualization allows loading several traces at



once and switching between their views, remaining at the
same time index.

Testing the solutions and countermeasures for the
identified problems requires the generation of additional
scenarios. These scenarios should not only vary the
simulator’s parameters but also the spatial distribution
of initial conditions. Manual text edition of the topol-
ogy is a demanding and error prone task. Additionally,
taking the spatial correlation of the initial values into
consideration makes the process of scenario definition
even more complex. Using the graphical interface and
network visualization at design time, it is easy to identify
and select neighboring sensor nodes and assign to them
attribute values in collective manner. In case of energy
monitoring the user can easily create the desired energy
distribution simulating higher energy densities in more
threatened regions.

MAP++ also allows for map-based tracing. Such a
trace gives the set of regions constituting the map for
a certain time interval and lists the regions splitting and
merging operations during that time. In order to set region
information we implemented a regioning technique. Our
Regioning algorithm logically groups neighboring sensor
nodes belonging to the same value class (defined values
range). Fig. 4(a) shows the value classes definition form.
The designer can set the number of the classes and the
range of the values defining the class membership. For
visualization purposes, every class is assigned a color,
which is used to represent it on the map (Fig. 4(b)).

(a) Regioning Settings (b) Regioning

Figure 4. Regioning in MAP++

D. Debugging and Performance Evaluation Stage
An important activity in the implementation of an

algorithm is debugging. The map perspective simplifies
the task of localization of a spatially correlated errors.

For example the energy distribution map can be used
to identify routing algorithm implementation errors. An
energy map showing the occurrence of energy holes at
unexpected locations, may indicate such routing imple-
mentation errors. The connectivity map offers additional

information about the nature of the problem, e.g., when
showing irregular hop distances to the sink.

The data aggregation errors can be identified by com-
parison of the ideal map with the one created by the
aggregation algorithm. Comparison is directly supported
by MAP++ and is achieved by creating the differential
map of both views. The values of two selected attributes
of each sensor node (e.g., real and aggregated value)
are subtracted from each other and the resulting value is
used for coloring the area occupied by the corresponding
sensor node.

Besides visualization, the trace data can be evaluated
using the MAP++ database interface. The query tool
searches the database for a set of changing parameters and
creates a list of their distinct values. The user may choose
the range of the values from the list in order to simplify
the creation of a database query. The selected values are
automatically encoded as a query string (Prepare Query
button, Fig. 3), so even users with limited knowledge of
SQL can use the database interface.

As mentioned before, the query tool is also integrated
with the visualization. To find the snapshot of interest,
the user may use the visualization for navigating to the
desired time index. Additionally, using the visualization
interface it is possible to select only the nodes that should
be addressed in the query. The query tool automatically
generates the query that uses current time index and
references only the selected nodes.

E. Usage Guidelines

For further illustration of the functionality offered by
MAP++, we present here a few guidelines for using the
framework. The MAP++ framework is mainly intended as
a support of WSN simulation. In particular, it is most suit-
able for algorithms/applications that directly or indirectly
exploit the space correlation of the events/measurment
in the network. Its main strength is a straight-forward
visualization of the distributions in space of attributes
(e.g., energy, temperature, route length, etc.) among sen-
sor nodes in form of a map. At the simulation planning
stage the visualization can be used to create simulation
scenarios by setting spatially correlated initial conditions
(initial energy/temperture distribution). At the post exe-
cution stage the visualization allows for comprehensive
evaluation of the spatial distribution of selected attributes
in the network. The visual operations on different perspec-
tives of the network uncover the correlations between the
attributes. These abstract view is supplemented by the use
of database engine for processing of data. That approach
allows easy extraction of detailed information from the
high level abstraction.

VI. MAP++ EVALUATION

We now demonstrate the powerful utilities of the devel-
oped MAP++ framework through two representative case
studies.

• Case Study 1 was chosen to demonstrate the advan-
tages that the map paradigm brings for simulation of



common WSN applications. It shows how the frame-
work supports an accurate but efficient evaluation of
the eScan - data collection algorithm.

• Case Study 2 highlights the capabilities of the
MAP++ framework for comparison of algorithms.

The results obtained from the case studies show MAP++
helps identify key algorithm properties that other existing
simulations tools were unable to provide. Finally, we
evaluate the framework with respect to its impact on the
scalability of OMNeT++.

A. Case Study 1 - Algorithm Evaluation

Using the example of eScan [5] we demonstrate the
utility of the MAP++ framework. To this end, we first
briefly describe eScan and then use the MAP++ visual-
izations to select the energy consumption model. Finally,
we investigate the performance of eScan and show results
that the original paper could not obtain.

1) Algorithm Description: The eScan [5] energy map
construction approach is based on polygon aggregation.
The sink disseminates the interest/query for a map to all
network nodes. The query is disseminated using flooding
to create a spanning tree rooted at the sink. This tree
is used to aggregate the attribute values while being
reported. A leaf node sends its raw value to its parent
node. An internal node (parent) gathers the input of all
its children, aggregates it with its value and forwards the
aggregate to its parent node and so on. The aggregation
consists of grouping sensor readings that meet a specified
criteria (being geographically adjacent and in the same
value range). The degree of aggregation is defined by the
tolerance parameter T, corresponding to the percentage
difference between potential attribute values to be merged.
The outcome of an aggregation operation is a list of
(spatial) regions. A region is a polygon that is defined
by the line spanning its border sensor nodes. At the sink
the aggregation results in a complete map. Sensor nodes
immediately reply with their current values on a query,
and later only do updates (update interval parameter
defined as the percentage value change, after which the
sensor nodes transmit an update).

2) Evaluation Settings: eScan has been evaluated for
three hotspot energy distribution models: Exponential,
pareto and normal. We easily visualize the resulting
energy maps using MAP++ in Figures 5(a), (b), (c)
respectively. In hotspot model, each sensor node n per-
forms sensing with a probability p = f(d), where d is
Euclidean distance of n to its closest hotspot epicenter.
Each sensing activity consumes a fixed amount of energy.
For simplification, we arbitrarily concentrate only on one
of the hotspot distribution models, namely the exponen-
tial distribution. To closely recreate the eScan original
scenario, as derived from its source code, we consider
a network of 270 sensor nodes spread uniformly over
the square area of size 30m x 30m. Sensor nodes have
a communication range of 3m. The hotspot epicenter is
located in the geographical center of the network area
(Fig. 5).

(a) Exponential Hotspot (b) Pareto Hotspot

(c) Normal Hotspot

Figure 5. Energy Map for Different Hotspot Energy Distribution Models

Using the MAP++ batch scenario generator we vary
the values of the tolerance and update interval parameters.
We generate a total of 6 scenarios for tolerance parameter
values of 5%, 10% and 25% and update interval parameter
values of 0.1% and 1%. We use a relative differential
map. This is a modified version of the differential map
discussed earlier in Section V as the best illustration of
the accuracy of the eScan algorithm. It is defined as a map
of percentage difference between measured and actual
energy values. To visually represent the map we define
the following grey shading schema. To the lowest obtained
value 0 (no relative error) we assign the white color. To
the maximum, defined as the maximum discrepancy for
all scenarios (in this case 30% relative error) we assign
the black color.

3) Evaluation Results: The comparison of Fig. 6(a)
and Fig. 6(b) shows no significant difference regarding
the accuracy of the algorithm as well the localization of
error concentration. The hotspot occupied area (hotspot
extent we simulated in first step in Fig. 5(a)) is filled only
with light shades of grey. Therefore, the use of higher
update interval would be advisable to reduce the number
of messages transmitted. The results presented in Fig. 6(c)
show that despite a higher tolerance value, the accuracy
of algorithm is still acceptable. The concentration of grey
shades is comparable with the two previous snapshots of
Fig. 5(a), 5(b). Fig. 6(d) shows that the tolerance is set
too high to compensate the inaccuracy introduced by a
higher update level. Significant differences between both
sub-figures are manifested by the occurrence of very dark
spots in Fig. 6(d). Fig. 6(e) shows that at 25% tolerance
value, the eScan map accuracy suffers significantly. This
performance degradation is amplified by an increase of



update interval value (Fig. 6(f)).

(a) Tolerance Value 5%, Update
Interval 0.1%

(b) Tolerance Value 5%, Update
Interval 1%

(c) Tolerance Value 10%, Update
Interval 0.1%

(d) Tolerance Value 10%, Update
Interval 1%

(e) Tolerance Value 25%, Update
Interval 0.1%

(f) Tolerance Value 25%, Update
Interval 1%

Figure 6. eScan: Accuracy for Different Simulation Scenarios

When analyzing the visualized results the important
added value of our approach becomes evident. In existing
approaches, the accuracy is averaged for the entire net-
work. In case of the map visualization the regions that
contribute mostly to the error can be easily localized. In
case of eScan the conclusion is obvious that the epicenter
of hotspot shows highest dynamics of the changes and
consequently highest relative and absolute errors.

B. Case Study 2 - Algorithms Comparison
In this case study, we show how the MAP++ frame-

work can be utilized to compare two algorithms to
construct maps in WSN, i.e., the eScan algorithm from
Case Study 1 and the Isoline algorithm [3]. Subsequently,
we describe the evaluation methodology and comparison
results.

1) The Isolines Algorithm: The Isolines algorithm [3]
represents an aggregation technique designed for map-
based collection and visualization of spatially correlated

data. It uses the notions of isolines. Isolines are lines
connecting the points of equal measurement value to
present specified data as a map. Nodes located between
two or more neighboring isolines are nodes that show
sensor values within the same class defined as ranges
(e.g., (0-10], (10-20]). The Isolines algorithm consists of
two main phases: (1) Sensor nodes detect the isolines
through inter-sensor-node beaconing, and (2) sensor nodes
that have detected an isoline send specified reports to the
sink, which is responsible for deriving the isolines from
the submitted reports. To detect the isolines, each node
compares its value with the one of its neighbors. If the
values belong to different value classes, then an isoline is
detected. In order to construct the isolines map at the sink,
sensor nodes that detect an isoline passing by, report their
sensor value/class and their location to the sink. In order
to reduce redundant reports and save node energy and
communication bandwidth, from two neighboring nodes
that have detected that an isoline is between them, only
that sensor node closer to the sink sends its report. The
isolines divide the network area into regions, and these
regions are shaded using grey scales.

The Isolines technique requires very limited processing
of data inside the network as opposed to the eScan
approach where nodes need to derive new polygon at
each aggregation step. Also the size of transmitted reports
by the Isolines approach is lower than in eScan. In the
Isolines approach the reporting senor nodes send only
their value and those of their neighbors. The eScan
approach also requires including the description of the ag-
gregated polygon. Moreover, the efficiency of aggregation
for eScan strongly depends on the routing spanning tree.
The Isolines approach accuracy is independent of network
topology. On this basis, we now qualitatively compare
the accuracy of data collection performed by eScan and
Isolines.

2) Comparative Study and Evaluation Settings: The
collection of data in the Isolines technique is simple,
however, the construction of the isolines at the sink
is a complicated geometric implementation. As MAP++
allows multi-level implementation, this helps compare
the selected features of the algorithms. As the described
Isolines concept is analogous to our Regioning technique
(Section V-C), thus instead of implementing the Isolines
algorithm, we use the Regioning technique to derive the
isolines and split the network area in regions. In order to
directly compare the accuracy of the Isolines and eScan
approaches, we selected the simulation parameters so as
to produce comparable results. We use the obtained raw
data from Case Study 1 and run the Regioning algorithm
with value ranges of 5% (e.g.: (0%-5%], (5%-10%]),
10% (e.g.: (0%-10%], (10%-20%]) and 25% (e.g.: (0%-
25%], (25%-50%]) of the peak hotspot value. We use
value ranges expressed as percentage of the peak hotspot
value, instead of absolute values, for easier comparison
with the eScan approach. For simulating Isolines we
do not consider the second parameter of Case Study 1
Update Interval, as reporting by Isolines is not delayed



and happens promptly after the node changes its region.
Therefore, we compare the Isolines results with lower
value of Update Interval of eScan. If not otherwise
mentioned, the rest of the evaluation settings remains the
same as in Case Study 1.

3) Comparison Results: We first derive the relative dif-
ferential maps showing the distribution of the inaccuracy
in the Isolines algorithm (Fig. 7). Contrary to the eScan
algorithm, the inaccuracy appears not only in the vicinity
of the hotspot but also spreads across the rest of the
network area. The figures, when compared to the relative
differential map of eScan, also clearly show that the
Isolines approach provides significantly lower accuracies
for analogous settings. It is especially apparent in case of
10% and 25% value ranges (Fig. 7 (b) and (c)).

(a) 5% Range Values (b) 10% Range Values

(c) 25% Range Values

Figure 7. Isolines: Accuracy for Different Simulation Scenarios

We compare both algorithms by generating the dif-
ferential map of the corresponding relative differential
maps of each algorithm. This simplifies pointing out
(a) which algorithm and (b) in which geographic area
outperforms the other one. For this purpose, we first
subtract the inaccuracy values of eScan from those of
Isolines (Fig. 8 (a), (c) and (e)) and shade the regions
where the results have positive values, meaning that the
Isolines inaccuracy is higher than that of eScan. Next, we
subtract the inaccuracy values of Isolines from those of
eScan (Fig. 8 (b), (d) and (f)). The white color marks the
regions where the other algorithm performs better. The
shades of grey show how much lower is the accuracy of
the given algorithm. The grey scale is the same for all
figures.

Comparing pairwise the figures (Fig. 8 (a) vs (b), (c) vs
(d) and (e) vs (f)) confirms that overall the Isolines algo-
rithm provides lower accuracy than the eScan algorithm.

For high resolution aggregation of 5% tolerance and range
values (Fig. 8 (a) and (b)), the results are similar. The next
two pairs show growing discrepancy between the eScan
and Isolines algorithms. The higher the tolerance and
range values, the more regions show higher inaccuracy
for the Isolines algorithm. The higher inaccuracies of
eScan concentrate close to the epicenter of the hotspot.
We explain this noticeable accuracy difference by the fact
that the eScan aggregation depends also on the spanning
tree of routing protocol. This dependency reduces the
scope of aggregation regions, forcing the transmission
of data, which under given accuracy may be deemed
redundant. Isolines better utilizes the aggregation potential
of neighboring regions, which comes at the cost of higher
inaccuracies. The few spots on the differential map show
better performance of the Isolines approach. This can be
explained by the fact, that some of the sensor nodes lie
at locations, where measurements are close to the middle
value of the defined value range.

These obtained results contradict the comparison results
stated by the authors of the Isolines technique. There are
several issues leading to this situation. The first is the
applied metric. We derive the differential relative map
as an inaccuracy percentage of the measured value. The
Isolines approach computes the average distance between
corresponding points obtained from no aggregation, iso-
line, and polygon aggregation as a metric. We measure ac-
curacy per node. The Isolines approach measures accuracy
for reconstructing the shape of the isoline. The metrics are
fundamentally different and show different qualities of
the algorithms. The second issue leading to contradicting
conclusions is the evaluation scenario chosen. We simu-
late the phenomenon with intensity values between 0 and
100 units at peak value, generating as result several layers
of isolines. The Isolines approach evaluates the case of a
single isoline separating two regions. In this case, even
the wide but properly tuned value range still allows proper
reconstruction of a single isoline. The scenario used in our
cased study requires more adaptability from the algorithm,
which, without prior knowledge, the Isolines approach
lacks.

C. Performance Evaluation of MAP++

With respect to the performance evaluation of MAP++
the most important factor is the additional simulation time
overhead generated by the Trace Module. This determines
the usability and the overall scalability of MAP++ and
its OMNeT++ environment. We use as a metric the ratio
between simulation time with and without MAP++ Trace
Module. We consider the impact of the number of sensor
nodes and the snapshots interval period.

Fig. 9(a) presents the relative execution time overhead
for varying number of sensor nodes (between 250 and
750) keeping the snapshot period at 200s of simulation
time. Overall, the time overhead remains fairly constant
and at approximately 5%.

Fig. 9(b) depicts the impact of changing snapshot
period from 50s to 800s of simulated time, for a fixed



(a) Tolerance and Range Value
5%, Isolines Inaccuracy

(b) Tolerance and Range Value
5%, eScan Inaccuracy

(c) Tolerance and Range Value
10%, Isolines Inaccuracy

(d) Tolerance and Range Value
10%, eScan Inaccuracy

(e) Tolerance and Range Value
25%, Isolines Inaccuracy

(f) Tolerance and Range Value
25%, eScan Inaccuracy

Figure 8. eScan and Isolines Inaccuracy Comparison

(a) Influence of Nodes Number (b) Influence of Sampling Period

Figure 9. MAP++ Performance

number of sensor nodes (500) on the execution time. The
choice of the snapshot period is strongly dependent on
the evaluated algorithm. The range we have chosen is
based on the properties of the evaluated eScan algorithm
and adjusted to its dynamics. In case of very short
periods values (50s), the snapshot activities dominate the
execution time (snapshots are taken more often than the
occurrence of simulation events related to the eScan)
resulting in a higher time overhead.

The results clearly show that impact of the overhead
on the performance of simulator is limited. Moreover, it
is possible to tune this impact by properly selecting either
size of the simulation (number of simulated sensor nodes)
or by adjusting the period at which snapshots are taken.

Another issue for the performance of MAP++ is the
file size of generated trace data. MAP++ generates files
of acceptable sizes. For example, a simulation consisting
of 500 snapshots of 750 sensor nodes, corresponds to a
20 MB trace file.

VII. CONCLUSIONS

In the field of the WSN research, maps are an intuitive
abstraction of the network. They expose the spatial nature
of the network attributes and allow addressing regions
instead of single sensor nodes. Layering the set of the
maps discloses the dependencies existing in the network.
The MAP++ framework constitutes a comprehensive set
of tools providing considerable support for the map ab-
straction. It supports all the main steps of network design
efforts starting with the user definition of the sensor
nodes, through generation of the topologies and scenarios
based on variation of simulation parameters. MAP++ also
supports the visualization of the results both in spatial
and time domain along with interactive comparison of
the maps and SQL based results analysis.

VIII. ACKNOWLEDGMENTS

We thank the authors of the eScan algorithm for pro-
viding us the source code of their implementation.

REFERENCES

[1] A. H. Robinson, J. L. Morrison, P. C. Muehrcke, A. J.
Kimerling, S. C. Guptill, Elements of Cartography. New
York: John Wiley & Sons, 1995, 6th Edition.

[2] Y. Liu and M. Li, “Iso-Map: Energy-Efficient Contour
Mapping in Wireless Sensor Networks,” in IEEE Inter-
national Conference on Distributed Computing Systems
(ICDCS), 2007, p. 36.

[3] I. Solis and K. Obraczka, “Isolines: energy-efficient map-
ping in sensor networks,” in IEEE Symposium on Comput-
ers and Communications (ISCC), 2005, pp. 379–385.

[4] X. Meng, T. Nandagopalz, L. Li, S.Lu, “Contour maps:
Monitoring and diagnosis in sensor networks,” Computer
Networks, vol. 50, no. 15, pp. 2820–2838, 2006.

[5] Y. Zhao, R. Govindan, D. Estrin, “Residual energy scan
for monitoring sensor networks,” in IEEE Wireless Com-
munications and Networking Conference (WCNC), 2002,
pp. 356–362.



[6] W. Xue, Q. Luo, L. Chen, Y. Liu, “Contour Map Matching
For Event Detection in Sensor Networks,” in ACM Special
Interest Group on Management Of Data (SIGMOD), 2006,
pp. 145–156.

[7] M. Li, Y. Liu, L. Chen, “Non-Threshold based Event
Detection for 3D Environment Monitoring in Sensor Net-
works,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), 2007, p. 9.

[8] Md. V. Machado, O. Goussevskaia, R. Mini, C. G.
Rezende, A. Loureiro, G. Mateus, J. Nogueira, “Data dis-
semination in autonomic wireless sensor networks,” IEEE
Journal on Selected Areas in Communications, vol. 23,
no. 12, pp. 2305–2319, 2005.

[9] O. Goussevskaia, Md. V. Machado, R. Mini, A. Loureiro,
G. Mateus, J. Nogueira, “Data dissemination based on the
energy map,” IEEE Communications Magazine, vol. 43,
no. 7, pp. 134–143, 2005.

[10] K. Ren, K. Zeng, W. Lou, “Secure and fault-tolerant event
boundary detection in wireless sensor networks,” IEEE
Transactions on Wireless Communications, vol. 7, no. 1,
pp. 354–363, 2008.

[11] R. Sarkar, X. Zhu, J. Gao, L. Guibas, J. Mitchell, “Iso-
Contour Queries and Gradient Routing with Guaranteed
Delivery in Sensor Networks,” in IEEE Conference on
Computer Communications (INFOCOM), 2008, pp. 960–
967.

[12] A. Khelil, F. K. Shaikh, A. Ali, N. Suri, “gMAP: an
efficient construction of global maps for mobility- assisted
wireless sensor networks,” in Conference on Wireless On
demand Network Systems and Services (WONS), 2009, pp.
189–196.

[13] A. Khelil, F. K. Shaikh, B. Ayari, N. Suri, “MWM: A
Map-based World Model for Wireless Sensor Networks,”
in Autonomics, 2008.

[14] “OMNeT++ Community Site,” http://www.omnetpp.org/.
[15] P. Szczytowski, A. Khelil, N. Suri, “POSTER: MAP++:

Support for Map-Based WSN Modeling and Design with
OMNeT++,” in OMNeT++ Workshop, 2009.

[16] “wSCoop: WIRELESS SENSOR COOPERATION,”
http://www.deeds.informatik.tu-darmstadt.de/dewsnet/.

[17] P. Szczytowski, A. Khelil, N. Suri, “Map-Based Modeling
and Design of Wireless Sensor Networks with OMNeT++,”
in SPECTS, 2009, pp. 162–169.

[18] P. Levis, N. Lee, M. Welsh, D. Culler, “Tossim: accurate
and scalable simulation of entire tinyos applications,” in
ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2003, pp. 126–137.

[19] “TinyOS,” http://www.tinyos.net/.
[20] S. McCanne and S. Floyd, “NS Network Simulator,”

http://www.isi.edu/nsnam/ns/.
[21] “Mannasim Framework,”

http://www.mannasim.dcc.ufmg.br/.
[22] Y. Xue, H. S. Lee, M. Yang, P. Kumarawadu, H. H. Ghen-

niwa, W. Shen, “Performance evaluation of ns-2 simulator
for wireless sensor networks,” in Canadian Conference
on Electrical and Computer Engineering, April 2007, pp.
1372–1375.

[23] J. Lessmann, T. Heimfarth, P. Janacik, “ShoX: An Easy
to Use Simulation Platform for Wireless Networks,” in
IEEE International Conference on Computer Modelling
and Simulation (UKSIM), 2008, pp. 410–415.

[24] D. Estrin, M. Handley, J. Heidemann, S. McCanne, Y. Xu,
H. Yu, “Network visualization with nam, the vint network
animator,” Computer, vol. 33, no. 11, pp. 63–68, 2000.

[25] T. Krop, M. Bredel, M. Hollick, R. Steinmetz,
“Jist/mobnet: combined simulation, emulation, and real-
world testbed for ad hoc networks,” in ACM international
workshop on Wireless network testbeds, experimental eval-
uation and characterization (WinTECH), 2007, pp. 27–34.

[26] G. Chen,J. Branch, M. J. Pflug, L. Zhu, B. K. Szyman-
ski, “SENSE: A Sensor Network Simulator,” Advances in
Pervasive Computing and Networking, pp. 249–267, 2004.

[27] S. Ahmed, M. Bilal, U. Farooq, N. Fazl-e-Hadi, “Perfor-
mance Analysis of various routing strategies in Mobile Ad
hoc Network using QualNet simulator,” in International
Conference on Emerging Technologies (ICET), 2007, pp.
62–67.

[28] A. Sobeih, W. Chen, J. C. Hou, L. Kung, N. Li, H. Lim,
H. Tyan, H. Zhang, “J-Sim: a simulation and emulation
environment for wireless sensor networks,” IEEE Wireless
Communications, vol. 13, no. 4, pp. 104–119, 2006.

[29] “Mobility Framework for OMNeT++,” http://mobility-
fw.sourceforge.net/.

[30] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P.T.
Klein Haneveld, T.E.V. Parker, O.W. Visser, H.S. Lichte,
S. Valentin, “Simulating Wireless and Mobile Networks in
OMNeT++ The MiXiM Vision,” in OMNeT++ Workshop,
2008.

[31] H. N. Pham, D. Pediaditakis, A. Boulis, “From Simulation
to Real Deployments in WSN and Back,” in IEEE Inter-
national Symposium on a World of Wireless Mobile and
Multimedia Networks (WoWMoM), 2007, pp. 1–6.

[32] “EYES WSN Simulation Framework,”
http://wwwes.cs.utwente.nl/ewsnsim/.

[33] “NesCT: A language translator,”
http://nesct.sourceforge.net/.

[34] T. Dreibholz and E. P. Rathgeb, “A Powerful Tool-Chain
for Setup, Distributed Processing, Analysis and Debug-
ging of OMNeT++ Simulations,” in OMNeT++ Workshop,
2008.

[35] J. Lessmann and T. Heimfarth, “Flexible Offline-
Visualization for Mobile Wireless Networks,” in IEEE
International Conference on Computer Modelling and Sim-
ulation (UKSIM), 2008, pp. 404–409.

[36] vast, “Space Time Toolkit,” http://vast.uah.edu/.
[37] F. Aurenhammer, “Voronoi diagrams - a survey of a fun-

damental geometric data structure,” ACM Comput. Surv.,
vol. 23, no. 3, pp. 345–405, 1991.

[38] X. Wu, G. Chen, S. Das, “On the Energy Hole Problem
of Nonuniform Node Distribution in Wireless Sensor Net-
works,” in IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (MASS), 2006, pp. 180–187.

[39] J. Li, P. Mohapatra, “An analytical model for the energy
hole problem in many-to-one sensor networks,” in IEEE
Vehicular Technology Conference (VTC), 2005, pp. 2721–
2725.

Piotr Szczytowski received his MSc in Computer Science in
2005 from Silesian University of Technology, Gliwice, Poland.
Since 2008 he is pursuing his PhD in Germany. Currently, he is
a Research Team Member at Technische Universitt Darmstadt,
Germany, in the Dependable, Embedded Systems & Software
Group. His main research interests include the areas of depend-
able wireless sensor networks and mobile ad hoc networks.

Abdelmajid Khelil received his MSc in Electrical Engineering
in 2000 and his PhD in Computer Science in 2007 from the
University of Stuttgart, Germany. Currently he is a Research
Team Leader at Darmstadt University of Technology, Germany,
in the Dependable, Embedded Systems & Software Group. His
main research interests include the areas of dependable wireless
sensor networks and mobile ad hoc networks, IT-security and
critical infrastructure protection. He leads the research activities
in several national, European and transatlantic research projects.
He is a member of SCS, ACS, GI and IEEE.



Neeraj Suri holds the TUD Chair Professorship in Dependable
Systems and Software at TU Darmstadt, Germany. His research
interests span the design, analysis and assessment of trustworthy
software and systems. His research activities have garnered
extensive support from the EC, German DFG, NSF, DARPA,
AFOSR, ONR, Microsoft, Hitachi, IBM, etc. He is a recipient of
the NSF CAREER Award, Microsoft and IBM Faculty Awards.


