
Map-Based Modeling and Design of Wireless
Sensor Networks with OMNeT++

Piotr Szczytowski, Abdelmajid Khelil, Neeraj Suri
Technische Universität Darmstadt, DEEDS Group

Hochschulstr. 10, 64289 Darmstadt, Germany
Email: {szczytowski, khelil, suri}@informatik.tu-darmstadt.de

Tel: +49 6151 16 {3414, 3414, 3513}
Fax: +49 6151 16 4310

Abstract—Wireless Sensor Networks (WSN) are receiving
growing attention in the research community. As simulation is
a frequently used approach to test and validate approaches,
simulation environments need to be able to support the various
WSN design schemes. Though the research trend in WSN is to
address regions instead of single sensor nodes, existing WSN
simulation environments still do not support modeling and
design on this abstraction level. In this context, we propose
MAP++ as a framework that extends the OMNeT++ network
simulator. It provides a suite of tools needed to support WSN
simulations. In particular, MAP++ supports map-based topology
and scenario generation and evaluation. It also provides trace
data visualization and database powered analysis. The usability
of MAP++ is illustrated via examples of applications over each
phase of simulation development, that is, modeling, design,
implementation and performance evaluation. A case study for
a map construction algorithm shows the utility of our tool chain
to enhance common statistic-based trace analysis.

Index Terms—Wireless Sensor Networks, Modeling and Visu-
alization, Map-Based Design, Performance Evaluation

I. BACKGROUND AND STATE OF THE ART

Wireless Sensor Networks (WSN) entail rapidly developing
concepts in the fields of communication and computing. The
progress in sensor miniaturization is increasingly leading to
advanced monitoring/processing capabilities. The local battery
energy source and wireless communication provide high flexi-
bility through self* capabilities. For instance self-organization
allows the sensor nodes to be randomly deployed by dropping
them aerially over the target area. Therefore, the scope of WSN
applications is growing very rapidly. Unfortunately, energy
constrained lifetime with the main drain incurred by wireless
communication is also the cause of the most serious limitations
regarding WSNs.

Sensor nodes inherent redundancy and spatial nature of the
monitored physical phenomena results in spatially correlated
sensor readings and indirectly in network properties, like
energy distributions. The natural abstraction to capture the
inherent spatial correlation of sensor nodes states is the map
paradigm. A Map is an aggregated view on the spatial distri-
bution of a certain attribute at a certain time. The literature
describes two main classes of maps, i.e., the choropleths [1]

Research supported in part by DFG GRK 1362 (TUD GKmM), EC INSPIRE,
EC CoMiFin.

and the isomaps [2], [3], [4]. The map construction groups
spatially correlated sensor nodes with similar attribute’s values
into regions. We define a region by its border (a set of spatial
points) and an aggregate (e.g., average) of the attribute’s values
obtained from all sensor nodes located in the region’s area.

The map paradigm builds on the region principle and there-
fore, provides excellent modeling primitives for WSNs. Global
maps are created for the sake of network monitoring (e.g.,
residual energy map [5]) or of event detection (e.g., oxygen
map [6], [7]). A promising direction consists in using maps
to optimize protocols [8], [9], detect [10] or track [11] event
boundaries. These papers highlight the map-based method-
ology as a powerful and highly promising abstraction level.
In [12], we propose that maps are the natural step towards a
holistic Map-based World Model and Map-based WSN design.

Our Contributions

In most of network simulators, both the design of topologies
as well as storing and representation of the trace data have
textual format. Expression of the spatial dependencies in that
form is both complex and limited. WSN usually involve large
scale simulations, where manual preparation of the multitude
of topologies and simulation scenarios is beyond simple tex-
tual representation. The common solution to this problem is
using text generation scripts which create topologies following
the simulator syntax. Unfortunately, techniques to verify and
validate the created topology are limited. A direct and effective
solution is visual validation.

The established OMNeT++ [13] simulation environment
introduces the notion of the interactivity by offering a visual
editor for its topology format. However, topology is only
one feature of scenario generation. In WSN other important
features such as temperature’s spatial and temporal distribution
present a fundamental part of scenario generation. OMNeT++
does not explicitly support the generation and visualization
of attributes of network and the physical world. The lack of
support for visualization is even more clear in case of trace
data. Currently, trace data is collected in a text file used for
statistical analysis. Usually, analysis is done at sensor node
or event level. This is tedious work and does not follow
the region abstraction level as discussed earlier. Visualization
rendered as a map is natural approach for the discovery of



spatial dependencies. Of course the map representation cannot
fully replace the traditional statistical approaches, which are
required for understanding the details of investigated protocols.
However, it offers considerable support for high-level design-
ing and debugging. The processing of data across series of
simulations requires extraction of relevant information from
complex traces with mixed content. The efficient way of
handling the large amount of data is to export it to relational
database and querying using database engine.

In this paper, we extend our preliminary work [14] and
provide a map-based MAP++ framework [15] that delivers
following contributions, which we highlight through a case
study:

• Extended topology generation, including setting of spa-
tially correlated initial conditions and batch script gener-
ation for simplifying modeling and scenarios generation

• Trace data visualization support that identifies spatial
dependencies for design and debugging

• Export to and processing of trace data with support of
relational databases for performance evaluation

The remainder of the paper is structured as follows. Section
II describes the assumed system model. Related work is
presented in Section III. Section IV details the architecture
and implementation of MAP++. In Section V illustrations of
application scenarios are presented. The framework perfor-
mance and usability is analyzed in Section VI and the paper
is concluded in Section VII.

II. SYSTEM MODEL

We consider a two dimensional WSN consisting of station-
ary, resource-constrained sensor nodes with limited processing,
storage and battery-capacity. Each sensor node is capable of
short range wireless communication with a fixed transmission
range. We focus on large scale deployments involving hun-
dreds or thousands of sensor nodes. Sensor nodes measure
the physical signal at given sampling rate (e.g. temperature,
humidity, as well as its own battery status). There also exists
one or more base stations (called sinks), which are designated
resource-rich nodes serving as a gateways between the WSN
and its operator users. We also allow for scenarios, where
sensor nodes are equipped with different set of sensors,
monitoring different phenomena.

III. WSN SIMULATION ENVIRONMENTS

The increasing interest in WSN research resulted in devel-
opment of a variety of simulation environments. TOSSIM [16]
being a simulator for the common TinyOS platform [17] serves
as a very good example of such environment. Its attractive
feature is that code developed for the simulator can be directly
deployed on the physical sensor nodes running TinyOS. The
simulation is very accurate on the node architecture level.
Unfortunately, these architecture details (e.g. module wirings)
consume much of simulation processing resources while pro-
viding only limited impact on global properties of WSN. Con-
sequently, they also put constraint on network scale, rendering
the simulator inapplicable for large scale simulations.

Also some of existing network simulators are becoming
adapted to support simulation of WSN. One of the exam-
ples is the established NS-2 simulator [18]. The MannaSim
Framework [19] provides such an extension by delivering the
topography generation tool, modules simulating an antenna,
and radio propagation models. However, till now the capabil-
ities of NS-2 simulator in the area of WSN are very limited
due to its limited scalability [20].

Projects like [16], [21]–[26] deliver rich libraries of compo-
nents and algorithm templates leveraging different aspects of
WSN and some of them offer various forms of visualization.
All of them are targeted for displaying the messages flows and
debugging rather than rendering the attributes distribution in
regards to map paradigm.

OMNeT++ [13] also follows the approach of adapting its
features to use for simulation of wireless networks. OMNeT++
is a component-based, modular, and event discrete simulator.
It is based on generic and flexible open-architecture, pro-
vides extensive GUI interface and is platform independent.
These characteristics make it especially suitable for highly
efficient network simulations. Owing to its modularity and
as consequence extensibility it receives a growing recognition
in the WSN community resulting in the implementation of
mobile and sensor frameworks for this simulator. Example of
such effort is the Mobility Framework for OMNeT++ [27],
which is intended to support wireless and mobile simulations
within OMNeT++. It provides features like sensor node mobil-
ity, dynamic connection management and a wireless channel
model. A similar approach is presented in MiXiM [28],
which is prepared as a simulation framework with a concise
modeling chain for mobile and wireless networks. While not
yet implemented, it promises to deliver models for mobile
environments, sensor nodes and objects, radio propagation
models for multiple signal dimensions, physical layer models
for modulation, coding and diversity receivers, library of MAC
protocols and localization algorithms. Also [29] builds up
on top of OMNeT++ delivering an advanced radio/channel
model allowing multiple transmission power levels, a physical
process model, and a resource monitoring MAC protocol.

Authors of EYES WSN Simulation Framework [30] and
NesCT [31] projects investigated the possibility to use
TOSSIM simulations in OMNeT++ and provide necessary ex-
tension for handling wireless networks. The simulation profits
from rich library of components written for TinyOS, increased
efficiency, and extensive GUI provided by OMNeT++. EYES
also uses maps, but only as mean of defining the failing
probabilities of deployed sensor nodes or modeling the radio
propagation by marking the obstacles. However, they are not
the attribute distribution maps. [32] presents the tool-chain for
providing the parametrization, distributed execution and result-
postprocessing and debugging. Similar to our approach, [33]
provides offline visualization of traces. The difference is that
[33] works on the node-level basis, not utilizing the fact of
spatial correlation of sensor nodes attributes. The tool is only
limited for offline replaying of simulations, and provides no
support for scenario generation and evaluation.



The multitude of mentioned works regarding WSN confirms
the rising interest in developing the simulation environment
for wireless networks. Unfortunately, no project within the
WSN community provides a holistic support for map design
and modeling in simulation environments. Approaches in other
communities like Space Time Toolkit [34] provide advanced
capabilities for integrating spatially and temporally-disparate
data within 2D or 3D display domain. Unfortunately, lack of
access to source code renders the integration with WSN sim-
ulations systematically difficult. To the best of our knowledge
we are the first to provide a complete open source tool chain
that considers the inherent spatial correlations in WSN.

IV. THE MAP++ ARCHITECTURE

Now we describe the main elements of the MAP++ frame-
work architecture, their interdependencies and interactions
with the OMNeT++ simulator.

A. Overview of the MAP++ Architecture

The presented problem and system model drive the MAP++
design. Fig. 1 explains the MAP++ framework architecture
and interactions between the framework and the OMNeT++
simulator. Simulation studies usually require a large number
of scenarios to evaluate a vast parameters domain. Scenario
Generator is responsible for generation of the topologies
designed by the user and supplemented by simulation scripts
for batch execution using varied parameters. The framework
requires flexible and robust way of tracing the data. The gen-
eration of trace should be decoupled from the implementation
of the simulation modules. Therefore, we design a separate
module, Trace Module, which is independent from the rest of
simulation and delivers well formatted Trace. To simplify the
process of configuring and embedding the Trace Module into
the simulation, the Trace Module Configurator was developed.
It provides the user interface, which allows seamless setting
of Trace Module parameters. The OMNeT++ simulator exe-
cutes defined scenarios and embedded trace modules produce
Traces. Traces are stored in XML format, which makes them
suitable for automated parsing and subsequently usable for
producing maps. The core functionality of representing the
network using maps is realized through the Visualization &
Regioning module. Visualization renders the map reflecting
the trace data and allows basic map operations. Regioning
allows further map operations by providing the grouping of
the nodes depending on their class membership, where a class
is defined as a value range of the selected map attribute. More
accurate and statistical evaluation of data is provided through
the SQL Database Interface module. It allows the import of
XML formatted Trace data into the relational database and
the querying data using database engine. The query creation
is simplified by integration of database module with the
visualization module, where users may visually create queries.

From the implementation viewpoint, the framework consists
of two distinct components, i.e., the Trace Module and the
MAP++ Tools.

Fig. 1. MAP++ Architecture

B. The MAP++ Trace Module

The Trace Module is embedded into the simulation environ-
ment as an instance of a simple module (object class imple-
mentation unit) defined within the topology file. The module
is loosely coupled with the simulation environment, imposing
only limited amount of additional work on simulator users.
Its task is to periodically (period can be arbitrary set by the
user) query all simulation modules of defined classes and store
their selected published attributes. We developed the Trace
Module with two objectives in mind. The first objective is for
the Trace Module to be independent from the implementation
of the simulation modules. The modules developer should not
be required to integrate the necessary traces into modules
source code. The module should only publish the attributes
required to track its state. This approach allows to use the
MAP++ framework even with already existing simulations
without need of making simulation code changes.

The second objective is to maintain consistent and reusable
trace format. The traces format has to be consistent for proper
interpretation for visualization by the MAP++ framework
and their proper processing. We decided to use the XML
format, that fully meets these requirements. The format’s self
description characteristic allows for automated import into
relational database and processing. An additional benefit is
the simplified conversion using stylesheet transformation to
the desired format for use with a wide range of tools.

In case of WSN scenarios, with multiple map attributes of
interest, for each of the module classes, a separate instance
of the Trace Module can be initialized, allowing parallel
tracking of different sets of network perspectives. For example
if network contains two different classes of modules each
equipped with different sensor (e.g. temperature and humidity
sensor nodes) then two instances of Trace Module are need,
as each Trace Module may trace only one module class. In
case that single module class provides two or more sensors,
then only single Trace Module is necessary for tracking.



C. The MAP++ Tools

The second component constituting the MAP++ framework
is a suite of tools for generation of simulation scenarios,
configuration of traces, visualization and analysis of simulation
results.

Scenarios consist of topologies and batch scripts. The static
topologies are created by randomly assigning the location for
defined number of sensor nodes within defined deployment
area. The links are established between the sensor nodes whose
distance is shorter than the transmission range. Topologies and
sensor nodes deployed in topology publish set of attributes,
which are varied using batch scripts. Scenarios are stored in
XML format and transformed by the provided stylesheet to
comply with OMNeT++ file format. The use of stylesheet
transformation allows to adjust to the possible future changes
in the file format and provides means for reusing the scenarios
in different simulators for possible comparative studies.

The visualization is created by loading the topology defini-
tion and creating its two dimensional representation. The area
occupied by nodes is fragmented into Voronoi [35] polygons,
bringing the additional benefit of reflecting the sensor nodes
density (Fig. 2). The individual polygons are filled with the
shades of grey corresponding to the value of the selected
attribute.

The results analysis is provided using the relational
database. The XML formatted trace allows automatized import
of the results. Pre-parsing of the data allows the automation of
the queries generation. The integration with the visualization,
provides means for spatially correlated queries, where queries
are applied only to the nodes within a selected region.

Fig. 2. Voronoi-Based Map Visualization

V. MAP++ BENEFITS AND APPLICATIONS

In this section, we first present main functionalities of the
framework at different stages of simulation process. Then we
describe how these functionalities can be applied. For this

purpose we present the main usage scenarios, which include
modeling, design, debugging and performance evaluation. To
better illustrate the framework’s capabilities we use an OM-
NeT++ implementation of the eScan algorithm [5]. eScan is an
efficient energy map construction algorithm based on polygon
aggregation. A detailed case study using this algorithm is
described in Section VI-A.

A. Overview

We identify three different stages of the simulation process:
modeling, execution and results analysis. In the following we
present the MAP++ benefits at each stage.

In the modeling stage MAP++ supports the definition of
the modules, generation of the topology consisting of defined
modules and creation of scenario sets. The definition of a
new module consists of the implementation of a new module
class and defining set of class attributes. The implementation
of attributes on the developers side is limited to updating
their value inside the module source code. The topology
generation results in an automatized creation of the topology
files. Scenario sets correspond to producing the initialization
files with sections describing varying values of published
attributes. The initial conditions (initial values of published
attributes) can be visualized and effectively defined (spatially
correlated initial values) using the visualization tool.

Regarding the execution stage of the simulation, our frame-
work currently offers only assistance in the form of the Trace
Module. However, we envision extending the usability of
the Trace Module in future. Conceptually, the Trace Module
could evaluate the maps at run-time. That capability would
allow definition of conditions to which a set of actions could
be assigned. For example on detecting a certain event the
frequency of taking snapshots could be altered or snapshots
apart from being periodical become event triggered. Other
possibility of extending the framework functionality at this
stage would be the run-time data visualization and real-time
streaming of traces into a database.

The MAP++ support for result analysis consists of the
visualization and data processing using relational database.
The visualization is projected as two dimensional map, colored
using shades of grey corresponding to the value of the selected
attribute at a given time instant of the sensor nodes occupying
the area. Basic operations like creation of differential maps are
supported. Scrolling along time axis displays the progress of
simulated phenomenons. The simulations result in the creation
of a large set of data. There is a need for extracting significant
data from a large set of less relevant data. Our framework
provides a solution for this problem by allowing the import of
stored trace data into a relational database (Fig. 3). The use of
structured queries allows an easy extraction of data of interest.
Current implementation is provided for Microsoft SQL Server
and MySQL open source database.

B. Modeling Stage

We illustrate the modeling capabilities of our tools through
the example of energy consumption modeling. As a result



Fig. 3. Database Interface

of the WSN inherent sensor nodes redundancy, the energy
depletion tends to show high spatial correlation. The sensor
nodes placed in close proximity of the sink deplete their
energy at a much faster rate [36], [37] as, besides their own
operations, they forward most of the WSN traffic. Another
case of spatially correlated energy depletion is the spatial
nature of most of the monitored physical phenomena. In
the regions where the phenomena shows high activity, the
reporting frequency has to be adjusted to meet the required
accuracy of monitoring, resulting in an increased energy usage
ratio.

Modeling starts with generating the topology corresponding
to the assumed system model. Our framework allows the
setting of the communication range, size of the sensor field,
number of sensor nodes and topology type (grid or uniform
random). The creation of the scenarios containing mixed types
of sensor nodes is supported by iteratively adding new module
classes to existing topologies.

The topology generation is followed by accurate modeling
of the phenomena to be monitored by the WSN. As physical
phenomena usually show spatial correlations, the natural ap-
proach to model that is the generation of the corresponding
maps. The iterative generation of maps for different scenarios
(e.g. various distribution models) followed by their compar-
ison enables precise modeling. MAP++ partially automates
this process. Varying the values of the topology properties
allows batch generation of scenarios. The visualized trace data
simplifies investigation of their impact.

The form for designing batch execution currently supports
three types of properties: numerical, boolean and string. In
case of numerical values the user defines the minimal, maximal
values and the step (value by which the parameter should
be incremented) for generating values range. For the string
properties, the creation of a list of values is possible. Boolean
values are limited to select between one of two constant val-
ues, or their variation. The Add batch function automatically
generates all spectrum of scenarios given the defined value
ranges, while the Add Single function enables the generation
of single scenarios.

C. Design Stage

The most significant contribution of our MAP++ framework
is at the design phase. The visualization of maps leads to
a better understanding of design choices. The designer can

use our tools to test tentative solutions and their preliminary
performance. In the exemplary case of energy monitoring, the
visualization may show the regions susceptible to partitioning,
their shape and expected time of occurrence. This knowledge
results in the development of valuable countermeasures for
design or deployment. For example, the threatened regions
of the network can be supplied with higher energy reserves,
e.g., through denser deployment of nodes. Considering also
the visualization of the physical phenomena such as temper-
ature allows for an interactive design of algorithms. Such a
visualization allows for a coarse-grained understanding of both
problems and developed solutions. For example visualizing the
energy distribution of the network along the network topology
allows the identification of energy holes and some of their
properties.

A static snapshot does not provide enough insights into the
dynamics of the network. Therefore, the MAP++ visualization
tools support smooth scrolling through the trace data along
the time axis. This procedure unveils the causality of the
events during the lifetime of the network. An example could
be the investigation of the adaptability of a routing protocol
to sensor nodes failures. For this purpose the designer may
create a connectivity map, which visualizes the hop distance
of each node to the sink. The visualization of this map (small
differences in grey scale values show neighboring sensor
nodes) reveals when and how the routing adjusts to changes
in the network. Observing the network at the same time in
different perspective (e.g.: energy and connectivity map) points
the cause of rerouting.

The impact of varying parameters becomes visible when
comparing the different scenarios at same time indexes. Visu-
alization allows loading several traces at once and switching
between their views, remaining at the same time index.

Testing the solutions and countermeasures for the identified
problems requires the generation of additional scenarios. These
scenarios should not only vary the simulator’s parameters but
also the spatial distribution of initial conditions. Manual text
edition of the topology is a demanding and error prone task.
Additionally, taking the spatial correlation of the initial values
into consideration makes the process of scenario definition
even more complex. Using the graphical interface and network
visualization at design time, it is easy to identify and select
neighboring sensor nodes and assign to them attribute values
in collective manner. In case of energy monitoring the user can
easily create the desired energy distribution simulating higher
energy densities in more threatened regions.

MAP++ also allows for map-based tracing. Such a trace
gives the set of regions constituting the map for a certain
time interval and lists the regions splitting and merging oper-
ations during that time. In order to set region information we
implemented a regioning technique. Our regioning algorithm
logically groups neighboring sensor nodes belonging to the
same value class (defined values range). Fig. 4(a) shows
the value classes definition form. The designer can set the
number of the classes and range of the values defining the
class membership. For visualization purposes, every class is



assigned a color, which is used to represent it on the map
(Fig. 4(b)).

(a) Regioning Settings (b) Regioning

Fig. 4. Regioning in MAP++

D. Debugging and Performance Evaluation Stage

An important activity in the implementation of an algorithm
is debugging. The map perspective simplifies the task of
localization of a spatially correlated errors.

For example the energy distribution map can be used to
identify routing algorithm implementation errors. Energy map
showing occurrence of energy holes at unexpected locations,
may indicate such routing implementation errors. The connec-
tivity map offers additional information about the nature of the
problem, when showing irregular distances to the sink.

The data aggregation errors can be identified by comparison
of the ideal map with the one created by the aggregation
algorithm. Comparison is directly supported by MAP++ and
is achieved by creating the differential map of both views. The
values of two selected attributes of each sensor node (e.g. real
and aggregated value) are subtracted from each other and the
resulting value is used for coloring the area occupied by the
corresponding sensor node.

Besides visualization, the trace data can be evaluated using
the MAP++ database interface. The query tool searches active
database for a set of changing parameters and creates a list
of their distinct values. The user may choose the range of
the values from the list in order to simplify the creation of
database query. The selected values are automatically encoded
as a query string (Prepare Query button, Fig. 3), so even
user with limited knowledge of SQL may use the database
interface.

The query tool is also integrated with the visualization. To
find the snapshot of interest, the user may use the visualization
for navigating to the desired time index. Additionally using
the visualization interface it is possible to select only the
nodes that should be addressed in the query. The query tool
automatically generates the query that uses current time index
and references only the selected nodes. An example is the

evaluation of the localized accuracy of eScan as we discuss in
Section VI-A.

VI. MAP++ EVALUATION

First, we demonstrate MAP++ framework powerful utilities
through a case study. Next, we evaluate the framework with
respect to its impact on the scalability of OMNeT++.

A. Case Study

Using the example of eScan [5] we demonstrate the utility
of the MAP++ framework. In the following we first briefly
describe eScan. Next, we use the MAP++ visualizations to
select energy consumption model. Finally, we investigate the
performance of eScan and show results that the original paper
could not show.

(a) Exponential Hotspot (b) Pareto Hotspot

(c) Normal Hotspot

Fig. 5. Energy Map for Different Hotspot Energy Distribution Models

The eScan energy map construction approach is based on
polygon aggregation. The sink disseminates the interest/query
for a map to all network nodes. The query is disseminated
using flooding creating a spanning tree rooted at the sink.
This tree is used to aggregate the attribute values while being
reported. A leaf node sends its raw value to its parent node.
An internal node (parent) gathers the input of all its children,
aggregates it with its value and forwards it to its parent node.
The aggregation consists in grouping sensor readings that meet
a certain criteria (being geographically adjacent and in the
same value range). The degree of aggregation is defined by
the tolerance parameter T, corresponding to the precentral
difference between potential attribute values to be merged.
The outcome of the aggregation is a list of (spatial) regions.
A region is a polygon that is defined by the line spanning



its border sensor nodes. At the sink the aggregation results
in a complete map. Sensor nodes reply with their current
values immediately on query and later only with necessary
updates (update interval parameter defined as the precentral
value change, after which the sensor nodes transmit an update).

(a) Tolerance Value 5%, Update Inter-
val 0.1%

(b) Tolerance Value 5%, Update In-
terval 1%

(c) Tolerance Value 10%, Update In-
terval 0.1%

(d) Tolerance Value 10%, Update In-
terval 1%

(e) Tolerance Value 25%, Update In-
terval 0.1%

(f) Tolerance Value 25%, Update In-
terval 1%

Fig. 6. Accuracy for Different Simulation Scenarios)

eScan introduces three hotspot energy distribution models:
exponential, pareto and normal, which we easily visualize
using MAP++ in Figures 5(a), (b), (c) respectively. In this
models each sensor node n has a probability p = f(d), where
d is distance to the closest hotspot, that n and its neighboring
sensor nodes preform sensing, which consumes fixed amount
of energy. For simplification we arbitrarily concentrate only
on one of distribution models, namely the exponential distri-
bution. To closely recreate the eScan original scenario, derived
from its source code, we consider a network of 270 sensor

nodes spread uniformly over the square area of size 30m x
30m. Sensor nodes have a communication range of 3m. The
hotspot epicenter is located in the geographical center of the
network (Fig. 5).

Using the batch scenario generator we vary the values of the
tolerance and update interval parameters. We generate in total
6 scenarios for tolerance parameter values of 5%, 10% and
25% and update interval parameter values of 0.1% and 1%.
We use relative differential map, which is modified version
of the differential map that we discussed earlier in Section
V, as the best way of illustrating the accuracy of the eScan
algorithm. It is defined as a map of percentage difference
between measured and actual value of energy. Coloring the
map requires definition of an appropriate color schema. To the
lowest obtained value 0 (no relative error) we assign the white
color. To the maximum, defined as the maximum discrepancy
for all scenarios (in this case 30% relative error) we assign
the black color. Values between minimal and maximal values
are colored in shades of gray. We use the same color schema
for each visualization.

The comparison of Fig. 6(a) and Fig. 6(b) shows no signifi-
cant difference regarding the accuracy of the algorithm as well
the localization of error concentration. The hotspot occupied
area (which extent we simulated in first step in Fig. 5(a)) is
filled only with light shades of grey. Therefore, the use of
higher update interval could be advised to reduce number of
messages transmitted. The results presented in Fig. 6(c) show
that despite higher tolerance value the accuracy of algorithm
is acceptable, the concentration of light shades of grey is
comparable with two previous snapshots. Fig. 6(d) shows that
the tolerance is set too high to compensate the inaccuracy
introduced by increased update level and significant differ-
ences between both sub-figures are manifested by occurrence
of very dark spots in Fig. 6(d). The last set of figures (Fig. 6(e)
and Fig. 6(f)) shows that at 25% of tolerance value the eScan
map accuracy significantly suffers, and the negative effect is
amplified by an increase of update interval value (Fig. 6(f)).

When analyzing the visualized results the important added
value of our approach becomes evident. In original results the
accuracy is averaged for the entire network. In case of the
map visualization the regions that contribute mostly to the
error can be easily localized. In case of eScan the conclusion
is obvious that the center of hotspots show highest dynamics
of the changes and consequently highest relative and absolute
errors.

B. Performance Evaluation of MAP++

With respect to performance evaluation of MAP++ the most
important factor is the additional simulation time overhead
generated by the Trace Module. This determines the usability
and the overall scalability of MAP++ and its OMNeT++
environment. We use as a metric the ratio between simulation
time with and without MAP++ Trace Module. We consider
the impact of the number of sensor nodes and the snapshots
period.



(a) Influence of Nodes Number (b) Influence of Sampling Period

Fig. 7. MAP++ Performance

Fig. 7(a) presents the relative execution time overhead
for varying number of sensor nodes (between 250 and 750)
keeping the snapshot period at 200s of simulation time. We can
easily conclude that the time overhead remains fairly constant
and equal to approximately 5%.

Fig. 7(b) depicts the impact of changing snapshot period
from 50s to 800s of simulated time, for a fixed number of
sensor nodes (500) on the execution time. The choice of
the snapshot period is strongly dependent on the evaluated
algorithm. The range we have chosen was based on the
properties of evaluated eScan and adjusted to its dynamics.
In case of very short periods values (50s), the snapshot
activities dominate the execution time (snapshots are taken
more often than simulation events related to the eScan take
place) resulting in a higher time overhead.

Another issue for the performance of MAP++ is the file size
of generated trace data. MAP++ generates files of acceptable
sizes. For example, a simulation consisting of 500 snapshots
of 750 sensor nodes, corresponds to a 20 MB trace file.

VII. CONCLUSIONS

In the field of the WSN research, the maps are the intuitive
abstraction of the network. They expose the spatial nature of
the network attributes and allow addressing the regions instead
of the single sensor nodes. Layering the set of the maps
discloses the dependencies existing in the network. MAP++
framework constitutes a comprehensive set of tools providing
considerable support for the map abstraction. It supports all
main steps of design effort for the network. Beginning with
the user definition of the sensor nodes, through generation of
the topologies and scenarios based on variation of simulation
parameters. Continuing with the visualization of the results
both in spatial and time domain, interactive comparison of the
maps, and ending with the SQL powered results analysis.

VIII. ACKNOWLEDGMENTS

We thank the authors of the eScan algorithm for providing
us the source code of their implementation.

REFERENCES

[1] A.H. Robinson et al. Elements of Cartography. John Wiley & Sons,
New York, 1995. 6th Edition.

[2] Yunhao Liu and Mo Li. Iso-Map: Energy-Efficient Contour Mapping in
Wireless Sensor Networks. In IEEE ICDCS, page 36, 2007.

[3] I. Solis and K. Obraczka. Isolines: energy-efficient mapping in sensor
networks. In IEEE ISCC, pages 379–385, 2005.

[4] X. Meng et al. Contour maps: Monitoring and diagnosis in sensor
networks. Computer Networks, 50(15):2820–2838, 2006.

[5] Y. Zhao et al. Residual energy scan for monitoring sensor networks. In
IEEE WCNC, pages 356–362, 2002.

[6] W. Xue et al. Contour Map Matching For Event Detection in Sensor
Networks. In ACM SIGMOD, pages 145–156, 2006.

[7] M. Li et al. Non-Threshold based Event Detection for 3D Environment
Monitoring in Sensor Networks. In IEEE ICDCS, page 9, 2007.

[8] Md.V. Machado et al. Data dissemination in autonomic wireless
sensor networks. IEEE Journal on Selected Areas in Communications,
23(12):2305–2319, 2005.

[9] O. Goussevskaia et al. Data dissemination based on the energy map.
IEEE Communications Magazine, 43(7):134–143, 2005.

[10] K. Ren et al. Secure and fault-tolerant event boundary detection in wire-
less sensor networks. IEEE Transactions on Wireless Communications,
7(1):354–363, 2008.

[11] R. Sarkar et al. Iso-Contour Queries and Gradient Routing with
Guaranteed Delivery in Sensor Networks. In IEEE INFOCOM, pages
960–967, 2008.

[12] A. Khelil et al. MWM: A Map-based World Model for Wireless Sensor
Networks. In Autonomics, 2008.

[13] OMNeT++ Community Site. http://www.omnetpp.org/.
[14] P. Szczytowski et al. POSTER: MAP++: Support for Map-Based WSN

Modeling and Design with OMNeT++. In OMNeT++ Workshop, 2009.
[15] DEWSNet Dependable Embedded Wireless Sensor Networks. http://

www.deeds.informatik.tu-darmstadt.de/dewsnet/.
[16] P. Levis et al. Tossim: accurate and scalable simulation of entire tinyos

applications. In ACM SenSys, pages 126–137, 2003.
[17] TinyOS. http://www.tinyos.net/.
[18] S. McCanne and S. Floyd. NS Network Simulator. http://www.isi.edu/

nsnam/ns/.
[19] Mannasim Framework. http://www.mannasim.dcc.ufmg.br/.
[20] Yunjiao Xue et al. Performance evaluation of ns-2 simulator for wireless

sensor networks. In Canadian Conference on Electrical and Computer
Engineering, pages 1372–1375, April 2007.

[21] J. Lessmann, T. Heimfarth, P. Janacik. ShoX: An Easy to Use Simulation
Platform for Wireless Networks. In IEEE UKSIM, pages 410–415, 2008.

[22] D. Estrin et al. Network visualization with nam, the vint network
animator. Computer, 33(11):63–68, 2000.

[23] T. Krop et al. Jist/mobnet: combined simulation, emulation, and real-
world testbed for ad hoc networks. In WinTECH, pages 27–34, 2007.

[24] G.Chen et al. SENSE: A Sensor Network Simulator. Advances in
Pervasive Computing and Networking, pages 249–267, 2004.

[25] S. Ahmed et al. Performance Analysis of various routing strategies
in Mobile Ad hoc Network using QualNet simulator. In ICET, pages
62–67, 2007.

[26] A. Sobeih et al. J-Sim: a simulation and emulation environment for
wireless sensor networks. Wireless Communications, IEEE, 13(4):104–
119, 2006.

[27] Mobility Framework for OMNeT++. http://mobility-fw.sourceforge.net/.
[28] A. Köpke et al. Simulating Wireless and Mobile Networks in OMNeT++

The MiXiM Vision. In OMNeT++ Workshop, 2008.
[29] H. N. Pham et al. From Simulation to Real Deployments in WSN and

Back. In IEEE WoWMoM, pages 1–6, 2007.
[30] EYES WSN Simulation Framework. http://wwwes.cs.utwente.nl/

ewsnsim/.
[31] NesCT: A language translator. http://nesct.sourceforge.net/.
[32] T. Dreibholz and E. P. Rathgeb. A Powerful Tool-Chain for Setup, Dis-

tributed Processing, Analysis and Debugging of OMNeT++ Simulations.
In OMNeT++ Workshop, 2008.

[33] J. Lessmann and T. Heimfarth. Flexible Offline-Visualization for Mobile
Wireless Networks. In IEEE UKSIM, pages 404–409, 2008.

[34] vast. Space Time Toolkit. http://vast.uah.edu/.
[35] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental

geometric data structure. ACM Comput. Surv., 23(3):345–405, 1991.
[36] X. Wu, G. Chen, S. Das. On the Energy Hole Problem of Nonuniform

Node Distribution in Wireless Sensor Networks. In IEEE MASS, pages
180–187, 2006.

[37] J. Li, P. Mohapatra. An analytical model for the energy hole problem
in many-to-one sensor networks. In IEEE Vehicular Technology Con-
ference, pages 2721–2725, 2005.


