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Abstract

A key feature in fault injection �FI� based valida�
tion is identifying the relevant test cases to inject�
This problem is exacerbated at the protocol level where
the lack of detailed fault distributions limits the use of
statistical approaches in deriving and estimating the
number of test cases to inject� In this paper we develop
and demonstrate the capabilities of a formal approach
to protocol validation� where the deductive and com�
putational analysis capabilities of formal methods are
shown to be able to identify very speci�c test cases� and
analytically identify equivalence classes of test cases�

� Introduction

Computers that support critical applications uti�
lize composite dependable and real�time protocols to
deliver reliable and timely services� the high �and of�
ten unacceptable� costs of incurring operational dis�
ruptions being a signi�cant design consideration� Due
to inherently large state�space covered by these pro�
tocols� the conventional veri�cation and validation
�V�V� techniques incur prohibitive costs in time
needed for their testing� One commonly used vali�
dation technique is that of fault injection� Although
a wide variety of techniques and tools exist for fault
injection 	
�� the limitations are the actual coverage of
the state space to be tested� In this respect� the chal�
lenges are to develop a comprehensive and complete
suite of test cases over the large operational state space
and be able to identify a limited number of speci�c
and realizable tests� Thus� if mechanisms existed that
could determine the speci�c set of conditions �cases�
on which the protocol inherently depends� the e�ec�
tiveness of the overall FI based validation would be
signi�cantly enhanced�

Towards these objectives� in 	

� we had introduced
the use of formal techniques for speci�cation and V�V
of dependable protocols� and the process of incorpo�
rating implementation information into formal veri��
cation� The intent was to utilize formal veri�cation
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information to aid construct FI experiments for pro�
tocol validation� Particularly� we introduced two data
structures� Inference Tree and Dependency Tree� to
represent protocol veri�cation information� with these
structures having capabilities for symbolic execution
and query processing� respectively�

In this paper� we develop our formal approach in�
troduced in 	

�� Speci�cally� we �a� explore the de�
ductive and computational analysis capabilities of our
formal�method�based query processing mechanisms�
�b� highlight the capabilities of our approach through
a case study of a composite dependable� real�time
protocol where we have been able to identify �aws
in the analysis� and also ascertain speci�c test cases�
and �c� analytically identify equivalence classes of test
cases of in�nite size�

The organization of the paper is as follows� Sec�
tion � provides a background of our formal approach
for pre�injection analysis introduced in 	

�� Section �
overviews the fault�tolerant real�time scheduling pro�
tocol that we utilize to demonstrate the e�ectiveness
of our approach� Section � outlines our formal ap�
proach for identifying speci�c test cases to validate
the protocol under consideration� We conclude with a
discussion in Section ��

� Formal Pre�Injection Analysis

In 	

� we introduced a formal approach for pre�
injection analysis to determine fault and activation
paths that would guide the FI�based validation of de�
pendable protocols� In this paper� we develop the use
of formal techniques identify test cases �pre�injection�
to provide a FI toolset for it to construct a FI ex�
periment� i�e�� guide the selection and construction of
speci�c FI experiments� We provide a brief review of
our basic approach of 	

� prior to detailing our test
identi�cation process in Sections � and �� We also re�
fer to 	

� for a discussion on the impact of refs� 	
���
in the development of our formal approach�

In 	

�� we developed two novel data structures� In�
ference Trees �IT� and Dependency Trees �DT�� to en�
capsulate protocol attributes generated over the for�



mal speci�cation and veri�cation process to identify
system states and design�implementation parameters
to construct test cases� For both IT and DT� we utilize
the fact that fault tolerance protocols are invariably
characterized by decision stages leading to branches
processing speci�c fault�handling cases 	
� �� �� �� 
���
This is a key concept behind validation� which tries to
investigate all the possible combinations of branching
over time and with parametric information�

We review the basic features of IT and DT struc�
tures prior to discussing their use in identi�cation of
test cases in this paper� For a detailed discussion on
the IT and DT� we refer the reader to 	

��

��� Inference Trees� Symbolic Execution

The IT is developed to depict the inference �im�
plication� space involved in a protocol� Each node
of the tree represents a primitive FUNCTION of the
protocol� Associated with each node is a set of CON�
DITIONALS which dictate the �ow of operation to
the subsequent ACTION as de�ned for the protocol�
and the INFERENCE space which details the possi�
bility of operations� assertions� and�or usage of event�
conditional variables which can be inferred from the
operation speci�cation� Fig� 
 depicts an IT for a ma�
jority ����� voter� We emphasize that the generation
of the IT is iterative �see block on top right in Fig� 
��
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� The Inference Tree for a ��� Voter Protocol

Although� the IT visually outlines the protocol op�
erations� it does not in itself provide any FI informa�
tion� The DT structure� described next� utilizes the
IT generated inferences to facilitate query mechanisms
that get used to identify test cases�

��� Dependency Tree� Query Engine

The DT is generated by identifying all functional
blocks of a protocol� and ascertaining the set of vari�
ables that directly or indirectly in�uence the protocol

operation� Deductive logic used by the veri�er is ap�
plied to determine the actual dependency �or lack of
it� of the function on each individual variable� thus
determining the actual subset of variables that in�u�
ence the protocol operation� Fig� � depicts the DT for
a multiple round consensus protocol�
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Figure �� The Dependency Tree � Consensus Example

��� Nuances of the IT�DT Approach

The objective of our veri�cation process is to guide
the selection of appropriate queries to be posed in the
DT� The set of conditionals in the IT are not �xed on
a priori basis� Each round of iteration can generate
constraining conditions which in turn get re�ected as
new conditionals� This initial set of conditionals serve
as an actual �or speculative� list of variables for the
DT� At each iteration� the dependency list is pruned
as one progresses along a reachability path� In the
absence of any new conditionals being added� the de�
pendency list of the DT is monotonically decreasing�
In case new conditionals are speci�ed� variables which
were pruned earlier from the dependency list may re�
appear in the next DT iteration�
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primary DTFeedback to IT

CONDITIONALS

Primary DT

DT offshoots

Query/Deduction

Details incorporated

Figure �� Spawning of the Primary DT



The primary DT represents a given level of spec�
i�cation detail incorporated in the IT� At any stage
of query processing if an inconsistency arises� or an
incompleteness is found� and accordingly a new set of
information is added� the primary DT can have sec�
ondary DT o�shoots as needed� as illustrated in Fig� ��
The deductions from the spawned DTs are then� as
needed� fed back to the parent DT� The overall func�
tion dependencies can be used as feedback to specify
conditionals in the IT� We emphasize that the DT may
not fully represent all possible variable dependencies
as it will always be limited to the amount of opera�
tional information actually modeled into the formal
speci�cation� At any desired level� the elements of the
current dependency list provides us with a �possibly�
minimal set of parameters which guides formulation
of the FI experiments via all permutations and com�
binations� and ideally should generate speci�c �or a
family of� test cases� We repeat that our intent is pre�
injection analysis in identifying speci�c test cases� The
actual FI experiments are implemented from these test
cases based on the chosen FI toolset�s��

We stress that the IT�DT approach strengthens
both veri�cation and validation by making these two
processes iterative �over varied implementation detail
levels�� Fig� � represents the general process of FI
experimentation using the IT and DT approach�
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Figure �� Generating the FI Experiments

The following steps are utilized in our approach to
aid the FI process� �a� outline protocol operations and
establish formal speci�cation of the protocol� �b� per�
form initial veri�cation to demonstrate that the spec�
i�cation conforms to the system requirements� follow�
ing this� �c� generate the IT�DT utilizing the veri��
cation information to enumerate the execution paths
and establish the dependency of the operations on the
design variables� and �d� propagate through the DT

to identify and select parameters and�or functional
blocks to identify test cases for FI�

With this background� we now elaborate our
IT�DT based process of ascertaining speci�c test cases
through a case study�

� A Case Study � FT�RT Scheduling
We have selected the fault�tolerant rate monotonic

algorithms �FT�RMA� as they are representative of
a large class of composite dependable� real�time pro�
tocols� FT�RMA was developed in DCCA 	�� and a
modi�ed journal version in 	��� Over the process of
using these protocols 	�� �� to show viability of our
formal V�V approach� we have been able to identify
test cases that actually make the FT�RMA protocols
of 	�� �� fail� We �rst introduce the RMA 	
�� proto�
col on which FT�RMA 	�� �� is based� Given our space
constraints� we refer the reader to 	
�� �� �� for details�

��� Rate Monotonic Algorithm
The Rate Monotonic Algorithm �RMA� 	
�� is a

fundamental scheduling paradigm� Consider a set
of n independent� periodic and preemptible tasks
��� ��� � � � � �n� with periods T� � T� � � � � � Tn and
execution times C�� C�� � � � � Cn� respectively� being ex�
ecuted on a uni�processor system where each task must
be completed before the next request for it occurs� i�e��
by its speci�ed period� A task�s utilization� Ui� is thus
Ci�Ti� The processor utilization of n tasks is given by
U �

Pn
i��

Ci

Ti
� The RMA is an optimal static prior�

ity algorithm for the described task model� in which a
task with shorter period is given higher priority than
a task with longer period� A schedule is called feasible
if each task starts after its release time and completes
before its deadline� A given set of tasks is said to be
RM�Schedulable if RMA produces a feasible schedule�

A set of tasks is said to fully utilize the processor
if �a� the RM�schedule meets all deadlines� and �b� if
the execution time of any task is increased� the task
set is no longer RM�schedulable� Given n tasks in the
task set with execution times Ci for task �i� if Ci �
Ti�� � Ti �i � f
� n� 
g� and Cn � �T� � Tn� then
under the RM algorithm� the task set fully utilizes the
processor� The following theorem provides a su�cient
condition to check for RM�schedulability�

Theorem � �L�L Bound ����� Any set of n peri�
odic tasks is RM�schedulable if the processor utiliza�
tion is no greater than ULL � n��

�

n � 
�� �

The classical RMA does not address the issues of
fault tolerance� In the next section� we describe an
approach proposed in 	�� to provide for fault tolerance
by incorporating temporal redundancy into RMA�



��� FT Rate Monotonic Algorithm
The FT�RMA approach 	�� describes a recovery

scheme for the re�execution of faulty tasks� including
a scheme to distribute slack �i�e�� idle time� in the
schedule� and derives schedulability bounds for set of
tasks considering fault�tolerance through re�execution
of tasks� Cases with a single or multiple faults within
an interval of length Tn�Tn�� are considered� Faults
are assumed to be transient such that a single identi�
�ed faulty task can be re�executed by a backup task�

A recovery scheme that ensures re�execution of a
task must satisfy the following conditions�

C�S��� There should be su�cient slack for any
one instance of any given task to re�execute�
C�S	�� When any instance of �i �nishes execut�
ing� all slack distributed within its period should
be available for the re�execution of �i in case a
fault is detected�
C�S
�� When a task re�executes� it should not
cause any other task to miss its deadline�

The recovery scheme proposed in 	�� being�
The faulty task should re�execute at its own priority�

The following lemmas show the proof of correctness
of this approach�

Lemma � ����� If backup task utilization �UB��
UB � Ci�Ti� i � 
� � � � � n� then �S�� is satis�ed� �

Lemma 	 ����� If C�S�� is satis�ed� and swapping�

takes place� then C�S	� is satis�ed� �

Lemma 
 ����� If C�S�� and C�S	� are satis�ed�
and the faulty task is re�executed at its own priority�
then C�S
� is satis�ed� �

A FT�RMA utilization bound was computed to
guarantee schedulability in the presence of a sin�
gle fault� This schedulability bound was derived as�
UFT�RMA � ULL�
 � UB�� where UB is equal to the
maximum of all tasks utilizations �UB � max Ui��

However� this recovery scheme of 	�� may fail in
meeting a task�s deadline� even though a given task
set satis�es UFT�RMA bound� A modi�ed recovery
scheme is presented in 	�� as�
In the recovery mode� �r will re�execute at its own
priority� except for the following case� During recovery
mode� any instance of task that has a priority higher
than that of �r and a deadline greater than that of �r
will be delayed until recovery is complete�

After this brief introduction to FT�RMA� we now
detail our IT�DT based process for identifying test
cases for the V�V of FT�RMA�

�The slack is shifted in time by being swapped with the task
s
execution time if no fault occurs�

� FT�RMA� The Formal V�V Process
We initiated the formal veri�cation of FT�RMA

to establish the correctness of the proposed solutions
based on the assertions provided in the hand analysis
of FT�RMA 	�� ��� It is important to note that the
veri�cation process only establishes the correctness of
assertions� and does not by itself identify the explicit
cause of a veri�cation inconsistency�

��� Veri�cation� Identi�cation of Flaws in
FT	Rate Monotonic Algorithm

Our initial step was to formally specify� and verify
the FT�RMA protocols 	�� ��� Since in 	�� the authors
had modi�ed the recovery scheme of 	�� �see end of
Section ����� our initial interest was to explore the ca�
pability of the formal process to identify a cause due
to which a recovery task fails to meet its deadline�
The main e�ort in formal speci�cation was devoted in
formalizing various assumptions on task and system
models� system requirements� the scheduling policies�
fault assumptions� and recovery schemes and associ�
ated conditions they must satisfy�

We initiated our e�orts towards veri�cation of FT�
RMA �i�e�� to ensure that conditions C	S
�� C	S�� and
C	S�� in Section ��� are satis�ed� by attempting to
prove putative theorems re�ecting expected behaviors
of the protocol operations� With the initial veri�ca�
tion and subsequent interactive usages of IT�DT �dis�
cussed in the next section�� we found out that the
scheme of 	�� fails to ensure schedulability of lower
priority tasks and thereby violates the C	S�� stated
in Section ���� This particular �aw was not discov�
ered earlier by the authors of 	�� ��� With the same
conditions being imposed on a task set and permit�
ting changes in the priority of the recovery task� we
were also able to discover that the modi�ed recovery
scheme 	�� also fails� The process of identifying the
causes behind these �aws appear in the subsequent
sections� i�e�� the test cases�

��� Visualization� IT�DT for FT	RMA
The objective of the formal veri�cation and repre�

sentation of veri�cation information in the IT struc�
ture �Fig� �� is to guide the selection of appropriate
queries to be posed in the DT� It is important to note
that the selection and formal representation of queries
to be posed is still an interactive process� Automating
this process is ongoing work�

The various assumptions on task characteristics�
utilization bound� task ordering in the schedule� and
the feasibility criteria for the task set are re�ected

�The complete speci�cations
 and issues pertaining to the
automation of the formal processes
 for RMA and FT�RMA are
at http���eng�bu�edu��suri�specs�specs�html�
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in the CONDITIONAL� space of RMA� Under a no�
fault condition �for the given task set� the utiliza�
tion bound and the feasibility conditions are satis�
�ed� and are indicated in the INFERENCE space�
The conditions for successful re�execution of a faulty
task� namely� C	S
�� C	S�� and C	S�� of Section ����
and various conditions on fault�tolerant schedulability
bound� backup utilization� time between two faults�
faulty task and recovery criteria are speci�ed in the
CONDITIONAL space of FT�RMA� The feasibility
test under single fault case gets re�ected in the IN�
FERENCE space of FT�RMA indicating that the task
set meets the UFT�RMA bound but the schedule is
not feasible� Based on the formal representation of
backup utilization and backup slot distribution over
a speci�ed period� veri�cation of recovery conditions
also indicated that C	S
� is satis�ed but C	S�� is not
as indicated by C�S�	
 in Fig� ��

The above observation led us to pose queries in our
query engine� the DT structure� to identify the exact
dependencies of C	S��� During the �rst phase of query
processing in the DT �Fig� �� at Level 
 we inferred
that C	S�� is not satis�ed� Further we posed query �at
Level �� to determine the actual dependencies of C	S��
on di�erent parameters� With the priority of recovery
task being �xed� the DT deduction declared depen�
dencies on slack length and task�s period �as deadline
depends on task�s period�� Next� we posed the query
to check whether there is enough slack reserved for the
re�execution of the faulty task� Based on the de�ni�
tion of backup utilization and backup slots length cal�
culation� the IT�DT con�rmed that there was enough

�Represented as C�feasibility�� C�Bound�
 etc� in Fig �
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Figure �� The DT for FT�RMA � Phase I

slack available in the schedule� These �agged discrep�
ancies in Lemma � as C	S�� should have been satis�ed
if there was enough slack reserved in the schedule and
swapping had taken place� This observation led the
primary DT to o�shoot two DT�s at Level � to iden�
tify the exact conditions on which satisfaction of C	S��
depends on� The left branch of the DT basically went
through the proof of Lemma 
� and as a �nal deduc�
tion indicated that there was enough slack reserved
for re�execution of the faulty task� These con�icting
observations revealed that the backup slots reserved
for re�execution may not be available for that purpose�
thereby contradicting the statement in Lemma 
� This
information is then re�ected in the IT �Fig� �� as infer�
ence C	S
� being marked as X � indicating that as per
Lemma 
� C	S
� may not be true� The right branch of
the DT incorporated the speci�cation for slack length
calculation based on number of invocation of di�er�
ent tasks and their execution times� We next posed
the query in the DT to determine whether backup uti�
lization has any e�ect on the slack length calculation�
and it turned out that there is none� We then posed
the query� Level �� to ascertain whether there is slack
available in the schedule before the task�s deadline�
The DT deduced that there is not enough slack avail�
able for the faulty task to re�execute� This deduction
con�rmed that the claim in Lemma � is �awed� At
this stage the inconsistency in the FT�RMA has been
�agged� though the cause behind it is yet to be deter�
mined� i�e�� the test cases�

��� Identi�cation of Speci�c Test Cases
Observing these discrepancies highlighted by the

DT� we started the second phase of the DT � Fig� ��
We incorporated the conditions in the DT to re�ect
full utilization of the processor by a task set� We
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Figure �� The DT for FT�RMA � Phase II

queried to determine the parameters on which the
least natural slack length in the schedule depends on�
Next� at Level �� we posed a query to determine any
correlation of the chosen task set to the de�nition of
fully utilized task set� As it turned out that except for
the lowest priority task� all other tasks in the set meet
the criteria� We then con�rmed whether the execu�
tion time of the lowest priority task is less than the
maximum possible value of Cn� In case of the low�
est priority task being faulty� to be able to re�execute
successfully under full utilization condition� its execu�
tion time should not exceed ��T� � Tn���� At Level
�� the query deduced that this condition is not satis�
�ed for the given task set� With the execution time of
the lowest priority task� Cn� being ��T� � Tn��� � �
�� � � can be considered as small as possible� such
that

P
i Ui � UFT�RMA� we next posed a query to

determine whether such a task set is RM�schedulable
under the following two fault conditions� �a� the low�
est priority task n is faulty� and �b� the second low�
est priority task n � 
 is faulty� The faulty task is
re�executed at its own priority while recovering� We
inferred that for the �rst case the faulty task is not
able to re�execute and complete successfully� For the
second case� the lowest priority task cannot �nish be�
fore its deadline due to the re�execution of the second
lowest priority task� This led us to conclude that the
proofs of Lemma � and also Lemma � in the hand�
analysis failed to consider the case of full utilization
of the processor by a task set�

We point out that with these set of conditionals
and with the second lowest priority task� �n��� being
faulty� the modi�ed recovery scheme of 	�� fails to en�
sure schedulability of the lowest priority task� �n� as
will be illustrated in Section ����

We emphasize that cases to be tested are derived
by queries related to discrepancies between the lev�
els� In this case� the discrepancies arose in the �rst
phase of the DT related to the availability of slack for
re�execution� Phase II of the DT probed further into
this issue� The propagation through the DT �phase II�
outlines the set of conditionals those corresponding to
full utilization of the processor by a task set which
a�ected the availability of slacks for re�execution of
the faulty task� Furthermore� these set of condition�
als were enough to pinpoint the insu�ciency of the
UFT�RMA bound �Level ��� Thus� the failure of query
at Level � results in this query essentially being the
test case� i�e�� the test case is�

Ci � Ti�� � Ti� � i 
 � i � n� 
�

Cn � ��T� � Tn��� ��� �
�

such that
X

i

Ui � UFT�RMA

We stress the fact that for validating scheduling
protocols� identi�cation of a fault case is similar to
identifying a task set which would violate the basis of
the protocol operations� We elaborate and illustrate
these �ndings in the following section� Note that this
test case will form the basis of constructing a FI ex�
periment using a chosen FI toolset�

��� Identi�ed Test Case E
ectiveness
As discussed in the previous section� conditions for

full utilization of the processor is a guiding factor to
validate the proposed schemes of FT�RMA� Let us
consider� a set of � periodic tasks� f��� ��� ��� ��g� with
their respective periods being �� ���� � and �� and the
deadline of each task being equal to its period� Uti�
lizing Eq� 
� the execution times are then computed
as shown in Table ���� Thus� the values of UB � ULL
and UFT�RMA� as expressed in Sections ��
 and ����
are ���� ������ and ������� respectively� Note that
the value of C� is upper bounded by the execution
time such that the corresponding total processor uti�
lization is equal to UFT�RMA� Thus� the execution
time of ��� C�� can have any numerical value� satis�
fying 
 � C� � 
��
��� As a test case� we choose C�

as 
��
� Thus� the total processor utilization by the
task set is ������� Since the total processor utiliza�
tion by this task set is less than UFT�RMA ���������

�It is important to mention that any values for n and periods
T�� � � �Tn can be considered for illustration purposes
 provided
the resulting task set satis�es Eq� 	�

�The upper bound of C� is
�
UFT�RMA �

P
�

i��
Ci�Ti

�
T�


which equals 	��	���



with recovery schemes of 	�� ��� a single fault should
be tolerated by re�execution of the faulty task�

�i Ci Ti Ui � Ci�Ti
�� ��� � ��	��
�� ��� ��� ��				
�� 	�� � ���
�� 	��	 � ��	���

Let us �rst consider the fault�free case� The re�
sulting schedule without considering backup slots is
depicted in Fig� �� In subsequent timing diagrams of
the RM�schedule of the task set� � ji denotes the jth

instance of task �i�
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Figure �� RM�Schedule of � tasks

We now illustrate the schemes 	�� �� to distribute
slack to the schedule using FT�RMA� The backup task
can be imagined to be occupying backup slots between
every two consecutive period boundaries� where a pe�
riod boundary is the beginning of any period� Thus�
the length of backup slot between the kth period of �i
and lth period of �j is given by UB�lTj � kTi�� where
there is no intervening period boundary for any sys�
tem task� For the given task set with UB � ���� the
lengths of backup from � to T� is ���� from T� to T� is
��
� from T� to T� is ��
� from T� to T� is ���� from T�
to �T� is ���� and so on� The resulting schedule with
inserted backup slots is depicted in Fig� 
�
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Figure 
� RM�Schedule of � tasks with backup slots

In the event when no fault has occurred� the backup
slots are swapped with the computation time and the
resulting schedule would be similar to Fig� ��

Using the identi�ed test case �Eq� 
� derived from
the DT� we now illustrate the shortcomings in the re�
covery schemes of FT�RMA 	�� ��� The �rst exam�
ple demonstrates two cases where the original recovery
scheme 	�� fails to guarantee the schedulability under
fault condition� and then the second example high�
lights a �aw in the modi�ed recovery scheme 	���
Note �� Two cases where the original recovery
scheme 	��� the faulty tasks re�executes at its own pri�
ority� is found to be �awed�

Case �a� The lowest priority task misses its dead�
line if a fault had occurred during its execution and it
had re�executed�

Let �� be a faulty task� ��� ��� �� and also ��
swapped their respective execution time slots with the
backup slot B�� �� �nishes at ���
� and since no other
higher priority tasks are ready� it is allowed to re�
execute at its own priority� The recovery task �r� only
gets to execute for ��

 time units utilizing backup
slot B� of length ��� time units and a natural slack of
length ��

� During the time interval 	�� ��� the exe�
cution of recovery task �r� gets preempted by higher
priority tasks and hence� never gets to complete its
execution before time �� Fig� 
� illustrates this fact�
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Figure 
�� Task � misses its deadline

We now relate this to our �ndings through the
IT�DT approach� as per Lemma 
� with backup uti�
lization UB being ���� there exist backup slots of total
length 
�� time units within ���s period� Also� per
Lemma �� with backup slots of length 
�� time units
being present and swapping being done� enough slack
should have been available for successful re�execution
of ��� which is not the case here� This is the discrep�
ancy which was highlighted by DT queries in Phase I�
Case �b� The lowest priority task misses its dead�

line due to re�execution of a faulty higher priority task�
Let �� be a faulty task� As per the recovery scheme�

it re�executes at its own priority� The recovery task
�r� preempts ��� and causes the deadline of �� to be
missed� It can be observed from Fig� 

 that �� exe�
cutes for only 
�� time units and still would be needing
���
 time units to complete its execution�
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Figure 

� Task � misses its deadline

Case �b� highlights the �aw in Lemma � where it
was proven that a lower priority task would not miss
its deadline due to re�execution of a higher priority
task� Moreover� as we will demonstrate next� the mod�
i�ed recovery scheme is �awed too�



Note 	� A case where the lowest priority task misses
its deadline if a fault had occurred in one of higher
priority tasks� and the modi�ed recovery scheme ��	
has been used for re�execution�

Consider the same task set as described above� Let
�� fail and re�execute at its own priority� This causes
�� to miss its deadline� Note that during ���s recovery�
no other higher priority tasks are ready� therefore� ��
would maintain its priority and will complete success�
fully� As depicted in Fig� 

� �� would utilize backups
and execute for 
�� time units and still would be need�
ing ���
 time units before time ��

It is important to mention that the IT�DT based
approach enabled us to identify and construct a spe�
ci�c case which highlights �aws and inconsistencies in
both recovery schemes	�� �� of FT�RMA�

��� Identi�cation of Equivalence Classes
A key idea in FI�based experimental analysis of sys�

tem dependability is to identify the equivalence class�

in order to reduce the number of faults to be injected
in the system� It was shown in 	
�� that when the fault
population is in�nite or extremely large and each fault
equivalence class is of �nite size� the usefulness of this
concept is minimal and may not yield any bene�t� In
this study� we have identi�ed two equivalence classes�
�a� the lowest priority task in the task set �constructed
as per guidelines described in Section ��
� is the faulty
task� and �b� the second lowest priority task in the task
set is the faulty task� As shown in Section ���� with
di�erent values for C�� we can have an in�nite number
of task sets generated� Thus� each of our equivalence
class has �conceptually� in�nite number of fault cases�
Moreover� any periodic n�task set satisfying Eq� 
 suf�
�ces for any of these equivalence classes�

As a comparative analysis of our technique with
conventional approaches� we would like to point out
that FT�RMA protocols have been through extensive
simulations and random FI� and still these fault cases
were not identi�ed� Typically� for simulations� task
sets are randomly generated� The execution of all
tasks in the set including re�execution of the faulty
task is observed for a predetermined length of time
�generally� it is taken to be a least common multiple
�LCM� of tasks� period�� Due to its obvious lacking in
considering factors for the full utilization of the pro�
cessor� a task set thus generated by this method has
a low probability that it would belong to one of two
equivalence classes� Even if we were able to generate
a similar a�ecting task set� that would belong to one
of our equivalence classes�

�Ascertaining if speci�c fault cases are equivalent in their
capability of stimulating the system under test�

� Conclusions and Future Work
We have established how formal techniques can be

used to abstract large state space involved in proto�
cols and to guide�supplement the conventional FI ap�
proaches� We have demonstrated the e�ectiveness and
e�ciency of our IT�DT based approach through an ex�
ample of FT�RMA where we have been able to iden�
tify very speci�c test cases� and analytically identify
equivalence classes of test cases�

A current limitation of our formal approach is the
need of an interactive mechanism to e�ectively pose
deductive queries in the DT to obtain a conclusive
result� Currently� we are investigating the classes of
protocols where the formal approach will be e�ective
in identifying and selecting parameters to construct
test cases� We are also automating and interfacing
the IT�DT generation and iteration process to other
existing FI toolsets 	
�� Overall� we believe that we
have shown the strength and viability of formal tech�
niques for test case identi�cation�
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