Modular Composition of Redundancy Management Protocols in
Distributed Systems: An Outlook on Simplifying Protocol Level Formal
Specification & Verification™

Purnendu Sinha
ECE Dept.
Concordia University
Montréal, Canada
sinha@ece.concordia.ca

Abstract

In recent years, formal methods (FMs) have
been extensively used for verification and validation
(VEV) of dependable distributed protocols. Over
our studies in utilizing FMs for V&V, we have ob-
served that a number of protocols providing for dis-
tributed and dependable services can often be for-
mulated using a small set of basic functional prim-
itives or their variations. Thus, from the formal
viewpoint, the objective of this paper is to intro-
duce techniques, utilizing concepts of category the-
ory, that could effectively identify and reuse basic
formal modules in order to simplify formal specifi-
cation and verification for a spectrum of protocols.

1 Introduction

In a dependable distributed environment, redun-
dancy in the physical or temporal domain is a well
established approach for providing reliable services.
For dependable systems, the ability to correctly de-
tect, diagnose, and recover from errors becomes a
significant design consideration for protocols han-
dling each of these specific tasks. Typically, the
design and testing of dependable distributed pro-
tocols involves investigating the large number of
state space and possible execution paths in the
protocol operations. The conventional techniques,
utilizing simulation and prototyping over selected
sample cases, are severely limited in handling com-
plex protocol operations. As formal methods [3]
provide an extensive support for automated and
exhaustive state explorations over the formal ver-

*Supported in part by TFR, NSF CAREER CCR
9896321 (Suri) & FRDP Grant of Concordia Univ. (Sinha)

Neeraj Suri
Dept. of Computer Engineering
Chalmers University
Goteborg, Sweden
surt@ce.chalmers.se

ification based analysis of operations of a given
protocol, in [14, 13] we introduced a formal meth-
ods based approach to specifically identify perti-
nent test cases to guide the experimental valida-
tion process. Over these studies, we observed that
most protocols that provide for dependable services
required us to model just a few basic functional
primitives for its testing. Thus, our objective from
the formal viewpoint is to investigate whether these
functional primitives can be formally characterized
for their subsequent reuse in specifying and verify-
ing generic distributed dependable protocols. For
example, formalizing a complex protocol could be
made easier if guidelines could be provided as per
the reuse of the formal specification and verifica-
tion of individual functional building blocks of the
overall protocol. Hence, to support our philoso-
phy of “reuse of primitives”, our specific objectives
here are to develop a modular approach for proto-
col composition through:

e Identifying building blocks within the class of
redundancy management protocols,

e Highlighting and addressing issues involved in
block interactions and inter-dependencies.

e Utilizing concepts of category theory to de-
velop guidelines for protocol composition and
construction of libraries of formal specifica-
tions (and associated verification) of catego-
rized building-block protocols.

We begin with highlighting the distinction of
our approach towards modularization from other
“building block” approaches.

Related Work: Modularization is a well-
known technique for simplifying complex software
systems [1, 2, 5, 6, 8, 10, 15]. We have observed
that most of the approaches [5, 6, 10, 15] focus
on implementation aspects of the composition of
a protocol from micro-protocols developed for spe-
cific services. Among other approaches [1, 2, 8]
have provisions for formal reasoning to ascertain
configurations against system specifications. Our
approach utilizes category theory based concepts to
define interfaces for basic modules which a protocol
designer can use and be aware of at the time of se-
lecting modules to configure complex protocol-level
operations. We envision that the proof of correct-
ness of the composite protocol can be established
utilizing the proof constructs being developed for
these basic building blocks.

Organization: Section 2 introduces a cate-
gory theory based approach for modular compo-
sition, and presents our building block approach
to formal specification and V&V of dependable
protocols. Sections 3.1 through 3.5 highlight at-
tributes of constituent building blocks of redun-
dancy management protocols Utilizing these build-
ing blocks, Section 3.6 presents hierarchical compo-
sition of a fault detection, isolation and reconfigu-
ration (FDIR) protocol to illustrate our modular
approach. We conclude with a discussion in Sec-
tion 4.

2 The Building Block Approach to
Protocol Composition and V&V
In this section, we present a formal frame-
work which utilizes concepts of category theory
to facilitate a rigorous and consistent composition
out of system building-block protocols. Figure 1
depicts our general approach for formal-method-
based V&V of dependable distributed protocols.

Building Blocks

[Theories of Time
& Failure Models

Communication | Voting/Conver-

System Models Primitives gence Functions

Building Blocks Specification and Verification

Consistency of Specification Across Building Blocks

LEVEL

‘ Synergistic Formulation of Dependable Distributed Operations ‘

‘ Protocol Verification ‘

‘ Protocol Validation ‘

Figure 1: A General Framework

We note that agreement, synchronization, and

detection are essential functional primitives for de-
veloping most dependable applications. Over our
studies, we have observed that the following four
primary protocol building blocks, namely: (a) sys-
tem models, (b) failure models, (¢) communication
primitives, and (d) voting/convergence functions
are typically being used in developing most fault-
tolerant services. We will discuss these in detail in
Section 2.2. We next discuss applicability of cat-
egory theory concepts to modular composition of
spectrum of dependable protocols.
2.1 Category-Based Modular Composition
We have adapted calculus of modules based on
categorical concepts [4, 9, 11] in simplifying formal
verifications. We first define few general terms; for
details, the reader is referred to [4, 11].

o Signature: A signature SIG = (S, OP) consists of a
set S, the set of sort, and a set OP, the set of constant
and operation symbols.

o Specification: A specification SPEC = (SIG, AX)
consists of two parts: the signature SIG and a set of
axioms AX which describes the behavior of the system
as well as constraints on the environment.

o Specification Morphism: A specification morphism
m : SPEC1 — SPEC?2 from a specification SPEC1
to a specification SPEC2 maps any element of the
signature of SPEC1 to an element of the signature
of SPEC?2 that is compatible. Moreover, m must be
such that image of any axiom of SPEC1 is a theorem
of SPEC2.

In order to define module specifications, we uti-
lize the notion of push-out operation from the cat-
egory theory. Given specifications A and B, and a
specification R describing syntactic and semantic
requirements along with two morphisms f and g,
the push-out operation gives specification P which
contains A and B (See Figure 2).

p
Figure 2: Push-out

Formally, given specification morphism f : R —
A and g : R — B, a specification P together with
specification morphisms h: A - Pand k: B — P
is called push-out (of f and g), if we have ho f =
k o g, where o denotes composition. Furthermore,

for all specification P’ and morphisms A’ and £’
such that h' o f = k' o g, there exists an unique
morphism v : P — P’ such that wo h = k' and
uwok = k'. The specification P is the complete
description of the module.

In general, protocols utilize services rendered

by other protocols, and extend their services to
be used in conjunction with other protocols to
achieve the overall desired objective. In this re-
spect, specifications A and B can constitute inter-
faces of the module. Specification B could declare
attributes/operations that must be imported from
other modules, and similarly, specification A could
declare attributes/operations that can be exported
to other modules. It is to be emphasized that in-
teraction or relationship between the modules are
expressed by means of morphisms, and categori-
cal operations assist constructing larger modules
resulting from these interactions.
Composition: In order to capture the protocol
or module interactions, we propose a composition
scheme. Under this scheme two modules are inter-
connected via export and import interfaces. The
push-out of two modules is the resulting specifi-
cation of the composed module. Figure 3 depicts
the composition operation. Here, Module 1 imports
via specification B; whatever Module 2 exports via
specification As. The compatibility of the param-
eters (or semantic constraints) is governed by the
morphism s. Furthermore, the following property
must be respected: tog; = fo2 0s. In this case, the
resulting module is (R, Ba, A1, P1,2), where P o is
the push-out of P; and P» over Bj.

fe

@

B P; F,1,2

Figure 3: Composition involving single import

For more complex protocols, a module may im-
port parameters from several different modules,
and also the specification consisting of syntactic
and semantic requirements may compose of sev-

eral different small specifications. Figure 4 depicts
a general overview of the scheme. Here, the im-
port specification By of Module 1 contains elements
which B, imports from Module 2 and elements im-
ported by By. If two different modules share some
attributes, then a new module is constructed which
contains attributes or actions common to the two
modules, and module morphisms are defined to al-
low such associations. Essentially, the goal here
is to decompose global properties into elementary
lemmas provable in basic modules, and translate
these lemmas along morphisms to obtain the de-
sired properties. We will highlight nuances of this
scheme when we discuss the modular composition
of the FDIR protocol in Section 3.6.

R Rb

\ /'2

! [E— .\
"13 Rl , !

| Module 1
s v ¥
a b
N\
t
Bl Py
R2—>A2
Module 2

B P P1,2

Figure 4: Composition involving multiple imports

We emphasize that a categorical-based approach
is presented to assist a protocol designer to choose
constituent modules and test for their compatibil-
ity as part of the selection process. With this back-
ground, we now highlight the salient features of ba-
sic building blocks mentioned on the top most level
in Figure 1.

2.2 Basic Building Blocks
System Models

Within a typical model of distributed systems,
the synchrony of the system relates to assumptions
made about the time bounds on the performance
of the system. We outline pertinent aspects of syn-
chrony through characterizing its functions as a
module given below. We will utilize this format
of “module” throughout the paper.

Module Name: Synchronous System®
Module Attributes:

!Our approach directly extends to asynchronous, timed-
asynchronous and quasi-asynchronous models as well.

o For a chosen message type, transmission and processing
delays are bounded by a constant d; this consists of the
time it takes for sending, transporting, and receiving a
message over a link.

o Every process p has a local clock €, with known
bounded rate of drift p > 0 with respect to real-time.
That is, for all p and all ¢t > ¢,

(14t < GO=Colt) _

N (g 1+p)

where Cp(t) denotes p’s local clock time at real-time ¢.

o The clocks of correct processors are monotone increas-
ing functions of real-time and the resolution of pro-
cessors clocks is fine enough, so that separate clock
readings yield different values, i.e., t1 <tz > Cp(t1) <
Cp(t2)~

Failure Models

A failure model specifies how a faulty compo-
nent can deviate from its specification. For fault
diagnosis, the processor fault classes considered in
the literature are transient, intermittent, or per-
manent. These common fault classes characterize
errors which occur in the data domain. Another
classification of faults is based on the perturbations
that occur (and are being detected) in the time do-
main. The classes, from strongest to weakest, are
fail-stop faults, crash faults, omission faults, timing
faults, and Byzantine faults.

Communication Primitives

Generally, communication protocols utilize a
datagram service which allows the transmission of
messages along links between a pair of nodes in a
point-to-point communication network. The data-
gram service has omission or performance failure
semantics.

Voting/Convergence Functions

Redundancy implies having multiple system en-
tities execute the same task, and compare their
outputs. The primary redundancy technique em-
ployed for detecting errors has been duplication. If
at least three processors are involved (e.g., TMR),
the comparison can be performed through majority
voting (e.g. 2-out-of-3). [See Section 3.1]
2.3 Basic Blocks — Protocol Specification

After having outlined the basic primitives or
building blocks, the next step is to formally specify
these basic primitives identifying their export and
import interface, and their associated morphisms.
Based on these primitives, we have to construct
specifications for system building blocks inherently
being used in redundancy management protocols.

We stress the fact that explicit declaration of ex-
port and import interfaces of a module specification
facilitate us to establish the consistency of the re-
quirements across these modules to avoid any con-
flicting specifications.
2.4 Protocol Verification

As category theory allows composition of a
larger module specification from small module
specifications, we exploit this modular structure to
simplify formal verification. For each component in
module interactions, the goal is to define specifica-
tion morphisms capturing different nuances. Also,
there is a need to show that the image of any ax-
iom from a source specification is a theorem in the
goal specification along the morphism(s) connect-
ing them. Hence, we decompose global proper-
ties into elementary lemmas provable in more ba-
sic specifications, and these lemmas are translated
along morphisms to the global description.
2.5 Protocol Validation

For completeness, we briefly discuss protocol val-
idation aspects of our building block approach. We
utilize our developed representation structures (re-
fer to [14, 13] for details) to encapsulate proto-
col attributes generated over the formal specifi-
cation and verification process to identify system
states and design/implementation parameters to
construct test cases.

3 Redundancy Management Operations

Having thus far outlined our category theory
based modular approach, we now focus on char-
acterizing each functional building block used in
the redundancy management procedures. Once
a chosen system model and associated fault/error
model is established, the empirical formulation of a
generic redundancy management protocol involves
the following procedures:

e Specifying the procedures for assimilating
varied information obtained from the re-
dundant system entities, and disseminating
(and pruning) it to obtain a value(s) usable
in subsequent protocol operations, i.e., vot-
ing/convergence etc.

e Characterizing the specific operational fea-
tures, within the chosen system models, that
are essentially required in formulating any re-
dundancy management procedures. Most de-
pendable protocols typically employ the fol-
lowing four functions (blocks): (a) synchro-

nization, (b) atomic broadcast, (c) agree-
ment, and (d) checkpoint establishment.

For each of these blocks, we outline primary at-
tributes; for details, we refer the reader to [7, 12].
3.1 Building Block 1: Voting/Convergence

Functions

As the voting/convergence function is a primary
building block for redundancy management opera-
tions, we highlight their properties of interest.

Module Name: Voting/Convergence Function
Module Attributes:

e All N redundant units perform identical operation us-
ing identical inputs. N must be at least 2m+1 or 3m+1
for NMR or Byzantine-resilient systems, respectively,

where m is the maximum number of faulty units.
e All inputs to the voter must be from the same cycle.

The order of the input sequence must be sustained.
e Voter processing time must be less than the incoming

message rate.

3.2 Building Block 2: Synchronization

Redundancy requires some form of synchroniza-
tion among different processors. Each processor
periodically executes a protocol that involves ex-
changing clock values with the other processors,
computing a reference value, and appropriately ad-
justing its local clock to reflect the consensus.

Module Name: Synchronization
Module Attributes

e The non-faulty clocks are initially synchronized to
some constant quantity.
e The non-faulty clock should not drift away from real-

time by a rate greater that p.
e The period between two re-synchronization signals and

the range within which these signals occur must satisfy

defined bounds.
e There is no overlap between synchronization periods.
e A non-faulty processor can read the difference between

its own clock and that of another non-faulty processor
with at most a small error.

3.3 Building Block 3: Atomic Broadcast
An important objective in fault-tolerant dis-
tributed system is to provide consistent informa-
tion to multiple processors in the system. Broad-
cast services are useful in many applications such
as managing process groups, commit protocols, etc.

Module Name: Atomic Broadcast
Module Attributes:

e The network remains connected even upon failures in

components (processors and links).
e The clocks of correct processors are approximately syn-

chronized within a maximum allowable deviation.
e Transmission and processing delays of messages are

bounded by a constant.

3.4 Building Block 4: Exact Agreement

Distributed system functions often require all
non-faulty processors to agree mutually on a spe-
cific value, even if certain processors in the system
are faulty. This agreement is achieved through an
agreement protocol that involves several rounds of
message exchange among the processors.

Module Name: Exact (Byzantine) Agreement
Module Attributes:

e At least 3m + 1 participants must be there. m is the
number of faulty processors.

e Each participants must be connected to each other par-
ticipants through at least 2m + 1 disjoint communica-
tion paths.

e At least m 4 1 rounds of communication among par-
ticipants must take place.

e All participants must be synchronized within a known
skew of each other.

3.5 Building Block 5: Checkpointing

Checkpointing is a commonly used technique to

provide for sustained operations in a distributed
system in the presence of transient faults, without
incurring the high performance cost of restarting
tasks/processes from scratch as transients are en-

countered.

Module Name: Checkpointing
Module Attributes

e The system consists of multiple processes and these
processes communicate by exchanging messages.

e Communication failures do not partition the network.

e A set of checkpoints of different processes form a con-
sistent system state.

e The set contains exactly one checkpoint for each pro-
cess.

After having identified the protocol building
blocks and subsequently the high-level framework
for protocol composition, we now consider a com-
monly used distributed dependable protocol to il-
lustrate the applicability of our approach.

3.6 FDIR Protocol Composition

A fault tolerant system employing dynamic re-
dundancy techniques achieves a desired depend-
ability attributes in the presence of faults through
a process of Fault Detection, fault Isolation and re-
source Reconfiguration, typically referred to as the
(FDIR) paradigm. Fault diagnosis [7, 12] is a key
component of this approach, requiring an accurate
determination of the status of the system. Fault
isolation component prevents a faulty unit from
causing incorrect behavior in a non-faulty unit. We
outline the basic aspects of the generic on-line fault

diagnosis and FDIR algorithm [16] that we use to
demonstrate our approach.

Fault Diagnosis and FDIR Algorithm

Fault diagnosis in the system is achieved through
constant monitoring and exchange of data between
different system nodes. Each node broadcasts its
output value at frame end. Each node has a ma-
jority voter, which votes on the output data from
all the nodes including its own output at the end
of every frame. A non-faulty node can identify the
sender of an incoming message, and can detect the
absence or deviation from specified time window
for an expected message. The determination of an
error in a node (X) is achieved by the other nodes
in the system as they receive and analyze the in-
coming messages from X" for errors.

We highlight basic steps which are essential to
the overall correctness of the FDIR protocol.

Module Name: FDIR
Module Attributes

e All processors execute the same workload and deter-
mine the output value using a voting function.

e At the end of a frame, each node votes on the output
data from all the nodes including its own output, and
generates an error report.

e At the beginning of every frame, each node broadcast
an error report message regarding each node in the
system.

e Upon receipt of a round of error report, each node votes
and collectively agrees upon the penalty count of each
other nodes.

e Once this exact agreement is reached, the penalty
count of an accused node is compared to the prespeci-
fied exclusion threshold.

e If the penalty count exceeds the threshold, each node
then votes on the exclusion of an accused node from the
operating set, and collectively (Byzantine agreement)
agrees upon this decision.

e If an excluded nodes exhibit correct behavior, its
penalty and reward counts are updated, and all other
functional nodes agree upon these values.

e If the reward count of an excluded node falls below
a predefined re-admission threshold, then its inclusion
in the current operating set is collectively (Byzantine
agreement) agreed upon by all other functional nodes.

We now relate these functions to protocol-
building-blocks which are constituent to the hier-
archical composition of the FDIR protocol.

A: Choosing the Building Blocks:

Through these identified functions/steps, it can
be inferred that the following basic protocol-
building-blocks are essentially needed. We discuss
their role in the overall operation of fault detection,

isolation and reconfiguration. The building blocks
being used are:

e Voting/Convergence Function is used to
(a) determine the output value of the proces-
sor, and detect any error in an incoming mes-
sage, (b) compute the average value during in-
teractive convergence (synchronization) phase,
and (c) compute the majority value(s) during
exact agreement phase.

e Synchronization is used to (a) synchronize var-
ious activities of all processors, and (b) imple-
ment atomic broadcast primitive.

e Communication Primitives (specifically,
atomic broadcast primitive) is used to achieve
the atomicity, order and bounded communica-
tion of message exchanges.

e Agreement Function (or interactive consis-
tency algorithm (ICA)) is used to collectively
agree upon (a) penalty count and/or reward
count of an accused node, and (b) inclu-
sion/exclusion of a node in/from the operating
set of nodes.

e Checkpointing Function is used to establish re-
covery points to restart the process upon the
initiation of reconfiguration of the operating
set of nodes. This function may be imple-
mented implicitly by using the frame bound-
aries from the synchronization function.

B: Outlining the Block Interactions:

Having identified the necessary blocks, Figure 5
then depicts the hierarchical composition of FDIR
protocol utilizing the identified building blocks of
redundancy management protocols.

Building Blocks

Voting/

; nchronization| Broadcast | Agreement | Checkpointing
Detection

Building Blocks Specification and Verification

LEVEL

‘ Protocol Composition from Building Blocks ‘

‘ Consistency of Specification Across Building Blocks ‘

‘ Protocol Verification & Validation ‘

Figure 5: Composition of a FDIR Protocol

An important step in composing a protocol is
to establish the consistency of specifications across
various constituent blocks by demonstrating that
the requirements of these building blocks are non-
conflicting. Towards this objective, we identify the

inter-dependencies of these building blocks in the
overall FDIR protocol operation (See Figure 6).

Atomic
Broadcast

Voting/
Convergence

! Error Detection
FDIR =T Routines

iiiiiiiiiiii

Agreement

A—B: A influencesB.
Figure 6: Inter-dependencies of Building Blocks

Since the influence paths in Figure 6 outline the
interactions, our next step is to identify the exact
condition or conditions a particular block imposes
on another blocks. We summarize the conditions
(for Byzantine fault coverage) for each block inter-
actions in Table 1. Let us now consider an influ-
ence path from Figure 6, specifically Voting/Conv
— Sync — At.Bcast — FDIR to elaborate on the
nuances of block-interactions. As we see from Ta-
ble 1 that the influence of atomic-broadcast block
on the FDIR block is that the underlying system
model must be synchronous. The synchronous na-
ture of the system essentially requires the synchro-
nization block. Voting/convergence block primar-
ily influences the system configuration for the given
fault coverage. Now, suppose that for the Chkptg
— FDIR block-interaction, one chooses an asyn-
chronous checkpointing algorithm to establish re-
covery points. A basic assumption in asynchronous
checkpointing algorithms is that the message trans-
mission delay is arbitrary but finite. However,
from the correctness viewpoint, a protocol that is
designed for an asynchronous system (weaker as-
sumptions) will still be correct when executed in a
synchronous system (stronger assumptions).

C: Issues in Block-Interactions:

We note that the effectiveness of the process of
isolating and defining self-contained modules de-
pends on capabilities to identify underlying direct
and indirect dependencies between building blocks.

For illustration purposes, we focus on the com-
patibility of three specific building blocks namely,
synchronization, atomic broadcast, and check-
pointing, being used in FDIR composition. One
of the requirements [7] of a consistent set of re-
covery points taken by the checkpointing opera-

Blocks Interactions

[| Attributes/Conditions

Voting/Conv — FDIR
Voting/Conv — Sync
Voting/Conv — Agrmt

N = 3m + 1 units

N identical units

voting cycle

voting time < arrival rate

Sync — At.Bcast
Sync — FDIR
Sync — Chkptg
Sync — Agrmt

initially synchronized clocks
bounded drift rate

bounded clock-reading error
3m + 1 processes

Agrmt — FDIR 3m + 1 participants
2m + 1 disjoint paths
m + 1 rounds of communication

synchronous system model

At.Bcast — FDIR
At.Bcast — Chkptg

synchronous system model
bounded delays
synchronized clocks

Chkptg — FDIR un-partitioned network

co-ordinated checkpoints

Table 1: Inter-Block Requirements

tion is that there are no orphan messages2. As to
be illustrated, the ability of a checkpointing oper-
ation to ensure that there are no orphan messages
in a consistent set of recovery points is governed
by properties and correctness of synchronization
and atomic broadcast primitives. A checkpoint-
ing operation can be implemented using the frame
boundaries from the synchronization function. In
reality, it could be possible that at any global time,
the clock reading of any two different processors
in the system is within 8 of each other. Let at
time instant 7', each process is scheduled to take its
checkpoints. Since clocks are not perfectly synchro-
nized, the clocks of different processor will reach T’
within § of each other. Consider a particular case
of a message exchange between two processors (See
Figure 7).

Figure 7: Checkpointing: Interaction of Processes

2There is no event for sending a message in a process Y’
succeeding its checkpoint, whose corresponding receive event
in another process X occurs before the checkpoint of X that
is contained in the set [7].

It is to note that processors are supposed to take
checkpoints at time instant 1" as per their respec-
tive local clock. Here, processor Y sends a message
m to X after establishing its checkpoints. Since
there is no lower bound imposed on broadcast de-
lay (it is only upper bounded by a constant A), in
the event when A < 3, the message m can get de-
livered at X before X takes its checkpoint at time
instant 7. Under this situation, the set of check-
points taken by X at time instant 7' will have an
orphan message.

We emphasize that by modularizing and iden-
tifying specific requirements and dependencies of
each individual building block, we can identify sub-
tle cases (as the one discussed above) which might
occur when building blocks are operating together.

D: Composition Guidelines Revisited:

After having discussed these inter-block interac-
tions, we now refer back to category-based compo-
sition guidelines presented in Section 2.1 to high-
light some important issues of this FDIR composi-
tion. Let us consider module interactions depicted
in Figure 8 to discuss various issues of compo-
sition. For clarity purposes, we have considered
module interactions between clock synchronization
and atomic broadcast. The argument extends for
other module interactions as well.

-Synchronous model -Atomicity
-Bounded comm. -Termination
e -Order
- Atomic Broadcast
m -
7 -Synchronized clocks AT_BCAST

k.o~

s
-Bounded max. skew
-Bounded correction

£
-Initially sync. clocks
-Bounded drift rate
-Bounded clock reading

Clock Synchronization ‘

System configuration

/ N\

CLK_SYN

Systemmodel Time theory Failure theory

Figure 8: Composition of Synchronization and
Atomic Broadcast Modules

We outline® formal theories of synchronization
and atomic broadcast primitives. This also illus-
trates how export and import interfaces are de-
fined. Theories of other system building blocks can

3For clarity purposes, we have opted not to use any par-
ticular syntax of a specification language.

be similarly described. Following this, we present
FDIR composition utilizing theories of these sys-
tem building blocks. We emphasize that once the
basic formal specification and analysis of a partic-
ular building block is developed, associated axioms
and formal theories of these blocks essentially re-
main unchanged over the protocol composition.

clock_synchronization : theory

IMPORTING time_model, system_model, failure_model
% Specifications of semantic requirements
begin assumption

% declared as AXIOMS (See Section 3.2)

-- initial skew : AX_1

-- resynchronization period : AX_2

-- bounded drift : AX_3

-- initial synchronization : AX_4

-- nonoverlap : AX_b5

-- clock reading errors : AX_6

end assumption

% Defines EXPORT interface

-- bounded max skew : THEOREM_1

-- bounded correction amount : THEOREM_2
end theory

atomic_broadcast : theory

IMPORTING clock_synchronization,synchronous_system
% Specifications of semantic requirements
begin assumption

declared as AXIOMS (See Section 3.3)

-- synchronized clocks : AX_1

-—- connected network : AX_2

-- bounded transmission : AX_3

end assumption

Defines EXPORT interface

-- atomicity : THEOREM_1

-- order : THEOREM_2

-—- termination : THEOREM_3

end theory

=

=

Module Atomic Broadcast (AB) utilizes services
extended by Clock Synchronization (CS) to achieve
atomicity and bounded communication of message
exchange. Module AB imports synchronization
function through export interface of CS module.
Morphisms k and m are needed to establish the
compatibility of these two modules. Consider mor-
phism % which links import specification of AB
module to export specification of CS block. As we
mentioned, k : SPEC1 — SPEC?2 must be such
that image of any axiom of SPEC1 is a theorem in
SPEC2. In AB block, the fact that “the clocks of
correct processors are approximately synchronized
within a maximum allowable deviation” is speci-
fied as an axiom (Refer to theory outline presented
below). For morphism k, the image of this axiom
is essentially a theorem in CS module, i.e., we must

prove in CS block that the maximum skew between
any two good clocks are bounded (See Sections 3.2
and 3.3). Similarly, morphism m maps parame-
ters of synchronous model of AB modules to CS
module. Basically, this is an identity morphism.
This readily follows from module attributes of Syn-
chronous System and Synchronization presented in
Sections 2.2 and 3.2, respectively.

To further elaborate, consider now composing
Agreement block with the composite module out
of AB and CS blocks. The specification R which
describes the semantic requirements of Agreement
module will import parameters from AB and CS
block (Refer to Fig. 4). Also, we have to define
morphisms to indicate compatibility between the
parameters of the two modules. For example, we
could define a morphism which maps connectiv-
ity requirements of Agreement module to connected
network requirements of AB module. Similarly, an-
other morphism maps synchronization attributes
(Refer to Sections 3.3 and 3.4). As a note, a group
membership protocol can also be modularly con-
structed utilizing system building blocks of clock
synchronization and atomic broadcast. The formal
theory of FDIR is described below.

FDIR : theory
IMPORTING clock_synchronization, atomic_broadcast,
agreement, membership, checkpointing
begin assumption
% Services of other system building blocks
% declared as AXIOMS (See Sections 3.1-3.5)
-- synchronized clock : AX_1
-- atomicity of broadcast : AX_2
—-- termination of broadcast : AX_3
-- bounded failure detection : AX_4
-- agreement on processors’ group-view : AX_5
-- recognition of a processor in a group : AX_6
-- a consistent system state for recovery : AX_7
end assumption
% Operational attributes
-- voting cycle rate
—-- penalty count threshold
-- reward count threshold
-- error appearance rate
-- error disappearance rate
% Requirements of FDIR -- properties to be proven
-- diagnosis of a faulty node : THEOREM_1
-- agreement on node’s exclusion : THEOREM_2
-- agreement on node’s inclusion : THEOREM_3
—-- reconfiguration operating nodes : THEOREM_4
end theory

We now define some of the morphisms needed
for FDIR composition, and discuss how they can

assist in establishing compatibility of modules, and
in simplifying verification.

Morph_A : spec_FDIR -> spec_Agreement
-- maps attributes
-- maps assumptions
-- maps functions
Declare_Faulty(processor_set,round,processor_l,
processor_2) -> ICA(processor_set,value_vector)
Exclude(processor) -> ICA(processor_set,
accused_value_vector)
Include(processor) -> ICA(processor_set,
approved_value_vector)
Morph_B : spec_FDIR -> spec_Voting
-- maps attributes
system_voting_cycle -> voter_processing_rate
threshold_value -> error_appearance
threshold_value -> disappearance_rate
-- maps assumptions
-- maps functions
Detect_Error(output_values) ->
Majority_Vote(value_vector)

Morph_C: spec_FDIR -> spec_Synchronization
-- maps attributes
system_voting_cycle -> resynchronization_rate

Morph_D : spec_Agreement -> spec_Voting
-- maps attributes
-- maps assumptions
-- maps functions
ICA(processor_set, value_vector) ->
Majority_Vote(value_vector)

E: Conformance Aspects of Morphisms over
Composition:

Let us consider a hypothetical situation where
we change few attributes/actions in some modules
for them to become operationally conflicting. In
FDIR protocol, system voting cycle is the frame
rate at which nodes exchange data for voting. Sup-
pose, we decide to decrease the rate at which sys-
tems participate in clock synchronization. Since we
want that each processor to be executing the same
workload and broadcasting its output at frame end,
we have to accordingly decrease the system voting
cycle to make it work in lock-step manner. In the
case of reducing the system voting cycle, if the er-
ror is transient in nature and system penalty count
threshold is high, the node gets isolated after a
long time and hence error isolation latencies are
very large. This would thus reduce the system
reliability. This conflicting design choice can get
flagged by Morph_C mapping FDIR to Synchroniza-
tion while translating properties incorporating sys-
tem voting cycle and system resynchronization pe-

riod to FDIR’s operating conditions for handling
transient errors.

Moreover, in order for a processor to declare
another processor faulty, it executes an interac-
tive consistency algorithm (ICA) using the error
report collected over the beginning of the frame.
The correctness property of the diagnosis pro-
cedure (Theorem 1 of FDIR theory) can be es-
tablished by translating properties of interactive
consistency /Byzantine agreement along Morph_A
which maps specification FDIR to Agreement.

4 Discussion and Conclusions

The key idea presented in this paper is that if a
library of — system, fault, communication — mod-
els and building blocks based on them can be for-
mulated, then these elements subsequently aid in
systematic and hierarchical development of the for-
mal models of dependable distributed protocols.
We have presented our initial approach towards ex-
ploiting category theory for modular protocol com-
position, and have discussed how by defining ex-
port and import interfaces of basic modules, and
morphisms linking two different modules, a larger
or more complex protocol can be formally com-
posed and verified.

We envision that a modular approach such as
the one we have proposed in this paper would fa-
cilitate easier design process and formal treatment
of protocols with stricter real-time and dependabil-
ity requirements. Such building blocks will be use-
ful to system designers because they will permit
thoroughly (and rigorously) tested formal theories
of required system and component behavior, and
will support system design decisions and modifica-
tion. Onme of the interesting viewpoint is to inves-
tigate techniques to ensure the consistency of var-
ied requirements of building blocks across different
levels. Further research in this context would re-
quire detailing and defining external specifications
of building blocks to facilitate such mechanisms.

References
[1] R. Alur, et al., “MOCHA: Modularity in Model Check-
ing.” LNCS 1427, pp. 521-525, Springer-Verlag, 1998.
[2] A. Arora, S. Kulkarni, “Component Based Design of

Multitolerance,” IEEE Trans. on Software Engineering,
vol. 24, no.1, pp. 63-78, 1998.

[3] E.M. Clarke, J.M. Wing, et al., “Formal Methods:
State of the Art and Future Directions.” ACM Com-
puting Surveys, vol. 28, No. 4, pp. 626—643, Dec. 1996.

[4] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specifi-
cation 2 — Module Specifications and Constraints, vol.

21 of EATCS Monograph on Theoretical Computer Sci-
ence, Springer-verlag, 1990.

B. Garbinato, R. Guerraoui, “Flexible Protocol Com-
position in BAST,” ICDCS-18, pp- 22-29, 1998.

M.A. Hiltunen, R.D. Schlichting, “An Approach
to Constructing Modular Fault-Tolerant Protocols.”
SRDS-12, pp. 105-114, Oct. 1993.

P. Jalote, Fault Tolerance in Distributed Systems. Pren-
tice Hall, 1994.

X. Liu, et al., “Building Reliable, High-Performance
Communication Systems from Components.” Operating
Systems Review, 34(5), pp. 80-92, Dec. 1999.

P. Michel, V. Wiels, “A Framework for Modular Formal
Specification and Verification.” Proc. of FME’97, 1997.
S. Misra, et al., “Consul: A Communication Substrate
for Fault-Tolerant Distributed Programs.” Distributed
Systems Engineering, 1(2), pp. 87-103, 1993.

D.E. Rydeheard, R.M. Burstall, Computational Cate-
gory Theory, Prentice Hall, 1988.

M. Singhal, N.G. Shivratri, Advance Concepts in Oper-
ating Systems. McGraw-Hill, 1994.

P. Sinha, N. Suri, “Identification of Test Cases Using a
Formal Approach.” FTCS-29, pp. 314-321, 1999.

N. Suri, P. Sinha, “On the Use of Formal Techniques
for Validation.” FTCS-28, pp. 390-399, 1998.

R. van Renesse, K. Birman, S. Maffeis, “Horus: A Flex-
ible Group Communication System.” Communication
of the ACM, 39(4), pp. 76-83, April 1996.

C. Walter, P. Lincoln, N. Suri, “Formally Verified On-
Line Diagnosis.” IEEE Trans. on Software Engineering,
SE 23(11), pp. 684-721, Nov. 1997.

