On Simplifying Modular Specification and Verification of Distributed Protocols*

Purnendu Sinha
ECE Dept.
Concordia University
Montréal, Canada
sinha@ece.concordia.ca

Abstract

Computer systems supporting high assurance and high
consequences applications typically utilize dependable dis-
tributed protocols to manage system resources and to pro-
vide sustained delivery of services in the presence of failures.
The inherent complexity entailed in the design and analysis
of such protocols, is increasingly necessitating the use of for-
mal techniques in establishing the correctness of the protocol
level operations. Ezploiting modular design aspects appear-
ing in most dependable distributed protocols, we have in-
troduced techniques utilizing concepts of category theory for
constructing formal library routines of a set of constituent
functional primitives, and their use in establishing the cor-
rectness of the protocol operation. In this paper, we develop
on our proposed category-theory-based approach for modular
composition through formulating (a) a group membership
protocol which can also form the next hierarchical building
blocks for other dependable protocol operations, and (b) a
checkpointing protocol utilizing the group membership func-
tion as one of its building block. Subtleties in building-block
interactions and their influence on the overall correctness
of the composite protocols are also highlighted.

1 Introduction

High assurance systems such as flight control sys-
tems, unmanned air vehicles, military command and
control systems, etc. typically rely on group commu-
nication protocols to co-ordinate the system activities
in the presence of failures. Due to complex protocol
operations and corresponding large operational state
space, simulation and prototyping techniques are fac-
ing growing limitations in establishing the correctness
of protocol level operations. Exploiting formal meth-
ods [3] support for state exploration over the formal
verification based analysis of operations of a given pro-
tocol, in [23, 21] we introduced a formal-methods-based
approach to specifically identify pertinent test cases to
guide and supplement the existing validation process.

*Supported in part by NSERC, FRDP—Concordia University
(Sinha) & TFR, Saab, NSF CAREER CCR 9896321 (Suri)

Neeraj Suri
Dept. of Computer Engineering
Chalmers University
Goteborg, Sweden
suri@ce.chalmers.se

Over these studies, we observed that most dependable
protocols are conceptually constructed using similar
functional primitives or variations of these primitives,
and perhaps their formal specification could be reused
across different protocols. To support this viewpoint,
in [20] we presented our initial approach towards ex-
ploiting category theory for modular composition of
dependable distributed protocols. We have shown how
by defining external interfaces of basic modules, and
morphisms linking two different modules, a larger or
more complex protocol can be formally composed and
consequently verified in a compositional sense.

In this paper, we extend our category-theory-based
approach introduced in [20]. Specifically, we (a) high-
light the capabilities of our approach through a case
study of group communication protocols, and (b) show
how a complex protocol could be easily formalized if
guidelines were provided as per the reuse of the formal
specification and verification of individual functional
primitives of the chosen protocol.

We first discuss related work in the area of modu-
larization in order to distinguish our approach towards
protocol modularization.

Related Work: Modularization is a well-known
technique for simplifying complex software systems [1,
2,6,8,9,10, 11, 13, 14, 15, 17, 24]. We have observed
that most of the approaches [8, 10, 17, 24] focus on
implementation aspects of the composition of a pro-
tocol from micro-protocols developed for specific ser-
vices. Among other approaches [1, 2, 6, 9, 11, 14, 15]
have provisions for formal reasoning to ascertain config-
urations against system specifications. Our proposed
approach [20] utilizes category-theory-based concepts
to define interfaces for building block protocols and
operations to complex protocol specifications. We en-
vision that the correctness of the composite protocol
level operations can be established utilizing the proof
constructs being developed for basic protocol modules.

The organization of the paper is as follows. Sec-
tion 2 provides a background discussion of our proposed

category-theory-based formal framework for modular
composition. Sections 3.1 through 3.3 outlines the
basic building blocks of group communication proto-
cols. Section 4 presents a hierarchical composition of
a checkpointing protocol to illustrate our modular ap-
proach. We conclude with a discussion in Section 5.

2 Modular Composition & Verification

In [20] we introduced a formal framework which uti-
lizes concepts of category theory to facilitate a rigor-
ous and consistent composition out of system building-
block protocols. Here, we first provide a brief overview
of the proposed category theory based modular compo-
sition framework prior to detailing the overall approach
based on it.
2.1 Category-Based Composition

We have adapted calculus of modules based on cate-
gorical concepts [7, 16, 18] for simplifying formal verifi-
cations. We first define a few general terms; for details,
the reader is referred to [7, 18].

o Signature: A signature SIG = (S,OP) consists of a set
S, the set of sort, and a set OP, the set of constant and
operation symbols.

o Specification: A specification SPEC = (SIG, AX) con-
sists of two parts: the signature SIG and a set of axioms
AX which describes the behavior of the system as well as
constraints on the environment.

o Specification Morphism: A specification morphism m :
SPEC1 — SPEC?2 is a map from the sorts and opera-
tions of one specification to the sorts and operations of an-
other such that (a) axioms are translated to theorems, and
(b) source operations are translated compatibly to target
operations.

Module specifications are defined by utilizing the no-
tion of push-out operation from category theory. Given
specifications A and B, and a specification R describ-
ing syntactic and semantic requirements along with two
morphisms f and g, the push-out operation gives spec-
ification P which contains A and B (See Figure 1(a)).

(Resources provided

f by this module)
R A Parameter Export
g h h’
k
P u Import Body

\P’ (Resources provided

by other modules)

@ (b)
Figure 1: (a) Push-out, and (b) Module Interfaces
Formally, given specification morphism f : R — A

and g : R — B, a specification P together with speci-
fication morphisms h: A - P and k : B — P is called

push-out (of f and g), if we have ho f = kog, where o
denotes composition. Furthermore, for all specification
P’ and morphisms h’' and k' such that h'o f = k' o g,
there exists an unique morphism u : P — P’ such that
uoh =h'" and uo k = k’. The specification P is the
complete description of the module.

In general, protocols utilize services rendered by

other protocols, and extend their services to be used in
conjunction with other protocols to achieve the overall
desired objective. In this respect, specifications A and
B can constitute interfaces of the module. Specification
B could declare attributes/operations that must be im-
ported from other modules, and similarly, specification
A could declare attributes/operations that can be ex-
ported to other modules (See Figure 1(b)). In other
words, specifications A and B correspond to guarantees
and assumptions, respectively. It is to be emphasized
that interaction or relationship between the modules
are expressed by means of morphisms, and categorical
operations assist constructing larger modules resulting
from these interactions.
Composition: To capture module interactions, our
proposed composition scheme allows two modules to be
interconnected via export and import interfaces. The
push-out of two modules is the resulting specification
of the composed module. Figure 2 depicts the compo-
sition operation. Here, Module 1 imports via specifica-
tion By whatever Module 2 exports via specification A;.
The compatibility of the parameters (or semantic con-
straints) is governed by the morphism s. Furthermore,
the following property must be respected: tog; = foo0s.
In this case, the resulting module is (R;, B2, A1, Py 2),
where P, » is the push-out of P, and P» over Bj.

h

@

Bz P Pl,2

Figure 2: Composition of Two Modules

For complex protocols, a module may import param-
eters from several different modules, and also the spec-
ification consisting of syntactic and semantic require-
ments may compose of several different small specifica-
tions. We refer the reader to [20] for further details.

Our proposed category-theoretic-framework [20]
provides assistance to a protocol designer to choose
constituent modules and test for their compatibility
as part of the selection process. Figure 3 depicts our
general approach for modular composition and verifi-
cation of dependable distributed protocols. We begin
with highlighting the salient features of basic building
blocks mentioned on the top most level in Figure 3.

Building Blocks

Communication
Primitives

Theories of Time
& Failure Models

Voting/Conver-

System Models gence Functions

Building Blocks Specification and Verification

Consistency of Specification Across Building Blocks

LEVEL

‘ Synergistic Formulation of Dependable Distributed Operations ‘

Y ‘ Protocol Verification ‘

Figure 3: A General Framework

2.2 Basic Building Blocks
System Models

In a distributed system model, the notion of syn-
chrony relates to assumptions made about the time
bounds on the performance of the system. We char-
acterize pertinent aspects of synchrony in the module
given below. We will utilize this format of “module”
description throughout the paper.

Module Name: Synchronous System®
Module Attributes:

o For a chosen message type, transmission and processing
delays are bounded by a constant d; this consists of the time
it takes for sending, transporting, and receiving a message
over a link.

o Every process has a local clock with known bounded rate
of drift p > 0 with respect to real-time.

o The clocks of correct processors are monotone increas-
ing functions of real-time and the resolution of processors
clocks is fine enough, so that separate clock readings yield
different values.

Failure Models

A failure model specifies how a faulty component
can deviate from its service specification. The proces-
sor fault classes considered in the literature are tran-
sient, intermittent, or permanent. These common fault
classes characterize errors which occur in the data do-
main. Another classification of faults is based on the
perturbations that occur (and are being detected) in
the time domain.

LOur approach directly extends to asynchronous, timed-
asynchronous and quasi-asynchronous models as well.

Communication Primitives

Generally, communication protocols utilize a data-
gram service which allows the transmission of mes-
sages along links between a pair of nodes in a point-to-
point communication network. Thus, a specification of
a datagram service reflecting bounded communication
under different failure assumptions can be specified.

Voting/Convergence Functions

An important issue in distributed computing is to
ensure that interacting nodes adopt identical or close
values for system parameters. Two main approaches,
namely consensus and convergence differ in the decision
procedure and the chosen voting function(s).

2.3 Basic Blocks — Protocol Specification

After having outlined the basic primitives or build-
ing blocks, the next step is to formally specify these
basic primitives identifying their export and import
interface, and their associated morphisms. Based on
these primitives, we have to construct specifications for
system building blocks inherently being used in group
communication protocols. We stress the fact that ex-
plicit declaration of export and import interfaces of a
module specification facilitate us to establish the con-
sistency of the requirements across these modules to
avoid any conflicting specifications.

2.4 Protocol Verification

As category theory allows composition of a larger
module specification from small module specifications,
we exploit this modular structure to simplify formal
verification. For each component in module interac-
tions, the goal is to define specification morphisms cap-
turing different nuances. Also, there is a need to show
that the image of any axiom from a source specification
is a theorem in the goal specification along with the
morphism(s) connecting them. Hence, we decompose
global properties into elementary lemmas provable in
more basic specifications, and these lemmas are trans-
lated along morphisms to the global description.

Having discussed our category theory based modular
approach for protocol composition, we now elaborate
on our approach by addressing classes of protocols used
for group communication services.

3 Group Communication Services

Application servers replicate the system state and
use group communication protocols to co-ordinate their
activities in the presence of processor or communica-
tion failures. The empirical formulation of a generic
group communication protocol involves the following
procedures: (a) establishing and maintaining a com-
mon time base among distributed functional units and
between computational tasks (clock synchronization),

(b) providing consistent information to multiple pro-
cessors in the distributed system ensuring message or-
dering and guaranteed delivery (atomic broadcast), and
(c) ensuring up-to-date state information at each group
member (group membership).

We categorize basic functions that are typically used
across a variety of group communication protocols. For
each block, we (informally) outline primary attributes?;
for details, we refer the reader to [4, 12, 19].

3.1 Building Block 1: Synchronization

In a distributed environment, to establish and main-
tain a consistent system-wide time base, each processor
periodically executes a protocol that involves exchang-
ing clock values with the other processors, computing a
reference value, and adjusting its local clock to reflect
the consensus.

Module Name: Clock Synchronization
Module Attributes:

e The non-faulty clocks are initially synchronized to some
constant quantity.

e The non-faulty clock should not drift by a rate greater than
the specified drift-rate.

e Re-synchronization signals must occur within a specified
period.

e Synchronization periods should not overlap.

e The error in reading clock values of non-faulty processors
is bounded by a constant.

Approach:

e Periodically, the processors decide that it is time to re-
synchronize their clocks. Each processor reads the clocks
of the other processors, forms a “fault-tolerant average” of
their values, and sets its own clock to that value.

Requirement:

o The maximum skew between any two good clocks must be
bounded.

o A non-faulty processor’s clock is adjusted by a small
amount during each re-synchronization.

3.2 Building Block 2: Atomic Broadcast

An important objective in distributed system is to
provide consistent information to multiple processors
in the system. Since the basic communication prim-
itive supported by a network is one-to-one communi-
cation, broadcast services must make use of this basic
primitive.

Module Name: Atomic Broadcast
Module Attributes:

e The network remains connected even upon failures in com-
ponents (processors and links).

e The clocks of correct processors are approximately synchro-
nized within a maximum allowable deviation.

e Transmission and processing delays of messages are
bounded by a constant, A.

Approach:

2In module descriptions, the attributes correspond to the as-
sumptions (Specification B), and the requirements correspond
to the guarantees (Specification A) (See Figure 1(a)).

e To execute A-broadcast m, a process simply Reliable-
broadcast m, i.e., it sends m to all its neighbors in the
network.

e When a process R-delivers m, it schedules its A-delivery at
local time T' + A.

Requirements:

o Atomicity: if any correct processor delivers a message at
time 7" on its clock, then that message was initiated by
some processor and is delivered by each correct processor
at time 7" on its clock.

o Order: all correct processors deliver their messages in the
same order.

o Termination: every message whose broadcast was initiated
by a correct processor at time 7" on its clock is delivered by
all correct processors at time 7'+ A on their own clocks.

At this stage we have presented two building blocks
namely, clock synchronization and atomic broadcast. In
the next section we will show how the group member-
ship, although a building block by itself, can be hierar-
chically composed of other identified building blocks.
3.3 Building Block 3: Group Membership

We now introduce the final building block com-
ponent for distributed dependable protocols, i.e., the
group membership primitive. Group membership pro-
tocols are used to ensure that the state information
stored at each group member remains up-to-date and
that at any time, all group members see the same state
information — despite information propagation delays
and failures.

Module Name: Synchronous Group Membership
Module Attributes:

e The network remains connected even upon failures.
e Atomic broadcast service must be implemented to commu-
nicate between processors.

Approach:

e A processor j that starts at time 7', broadcasts a “new-
group” message time-stamped 7" to all other processors to
form a new group.

e On receiving “new-group” message, each processor broad-
casts a “present” message with its identifier and its will-
ingness to join a new group. The set of processors that
broadcast “present” messages for time S = T+ A is termed

processor membership as of view time S.
e To ensure consistency of membership view, each member of

the group broadcast “present” message at a defined “mem-
bership check” time.

Requirements:

o Agreement on group membership: If p and q are joined to
the same group and are both alive then their membership
views are identical.

o Recognition: If p is alive and joined to a group then its id
will be included in its membership view.

o Bounded failure detection delays: There exists a time con-
stant dy such that if a processor belonging to group g fails
at time ¢ then, by time ¢ + dy, all members of g that stays
correct in the interval [t,t 4 dy] will join a group G’ that
does not contain p.

o Bounded join delays: There exists a time constant d; such
that if a processor starts at time ¢ then, by time ¢ + d;, it
will join a new group along with every other processor ¢
that stays correct in the interval [t,¢ + d;].

The synchronous membership protocols of [5], which
depend on (a) synchronous atomic broadcast service,
(b) clocks internally synchronized to a maximum devi-
ation of §, and (c) an unreliable datagram service, ac-
curately identify the correct processes, and satisfy the
above stated timeliness properties. It is interesting to
see how the group membership can be modularly com-
posed utilizing system primitives and building blocks
1 and 2 of the prior sections. A composition involving
these different categorized modules and their associ-
ated morphisms is depicted in Figure 4.

RAB A B
m F
%BAB FAB
R Sync A Sync |
v
Byne " Ryre P

\ R%c /RAB
B-— R

MBR MBR

L

MBR MBR

Figure 4: Composition of a Synchronous Membership
Protocol

Composition Guidelines: Let us consider module
interactions between clock synchronization and atomic
broadcast depicted in Figure 4. We outline® formal
theories of synchronization and atomic broadcast prim-
itives. This also illustrates how export and import in-
terfaces are defined (See Figure 5). In these module
definitions, “function” specifies a particular approach
needed to realize the implementation of that specific
operation.

Module Atomic Broadcast (AB) utilizes services ex-
tended by Clock Synchronization (Sync) to achieve
atomicity and bounded communication of message ex-
change. Module AB imports synchronization function
through export interface of Sync module. Morphisms &
and m are needed to establish the compatibility of these
two modules. Consider morphism k& which links import
specification of AB module to export specification of
Sync block. As we mentioned, k : SPEC1 — SPEC?2
must be such that image of any axiom of SPEC1 is
a theorem in SPEC2. In AB block, the fact that “the
clocks of correct processors are approximately synchro-

3The development of complete theories of these building
blocks in Specware [22] and their usage in compositional veri-
fication is an ongoing work.

Parameter (R)
System configuration
Time and failure models
Assumptions
un-partitioned network
bounded transmission delay

Parameter (R)

System configuration

Time and failure models

Assumptions
un-partitioned network
bounded transmission delay
initial clock skew
bounded drift
initial synchronization
resynchronization period

Import (B)
Datagram function
bounded communication
Clock Synchronization function

bounded maximum skew
bounded clock correction

Import (B)
Datagram function
Clock reading mechanism

bounded communication Export (A)
bounded clock reading error Atomic Broadcast function
Fault-tolerant averaging function atomicity
precision enhancement (closeness) termination
order

Export (A)

Clock Synchronization function
bounded maximum skew
bounded clock correction amount

Body : Atomic Broadcast

Body : Clock Synchronization

Figure 5: Categorized Theories of Clock Synchroniza-
tion and Atomic Broadcast

nized within a maximum allowable deviation” is speci-
fied as an axiom (an assumption in Import part) (Refer
to theory outline in Figure 5). For morphism k, the
image of this axiom is essentially a theorem in Sync
module (a requirement in Export part), i.e., we must
prove in Sync block that the maximum skew between
any two good clocks are bounded. Similarly, morphism
m maps parameters of synchronous model of AB mod-
ules to Sync module. This readily follows from module
attributes of Synchronous System and Synchronization
presented in Sections 2.2 and 3.1, respectively. Specifi-
cation P is the co-limit of complete specifications Pgy .
and Pyp.

Compositional Verification Aspects — Let us
consider composing a membership block with the com-
posite module of AB and Sync block. The specification
Ry Br (See Figure 6) which describes the semantic re-
quirements of Membership module is supported by pa-
rameters from AB and Sync blocks. The correctness
properties of the protocol’s action of broadcasting a
message at regular intervals, joining a group and main-
taining the view of membership can be decomposed
into correctness properties of datagram services, syn-
chronized clocks, and atomic broadcast, and then they
get translated along morphisms (e.g.,) to prove that
the membership requirements are met.

To illustrate this fact, we consider an example of
“agreement on history” property of membership pro-
tocol. Suppose, p and ¢ are correct processors during
a given time interval. If during that interval, p and ¢
are joined to a common group g and the next group

Parameter (R)
Synchronous communication network

(supported by "parameter” part of Sync. and Broadcast)

Import (B)
Atomic Broadcast function
(Imported via composite specification)
atomicity and terminiation property
Export (A)
Membership function
agreement on group membership
join detection
failure detection

Body : Group Membership

Figure 6: Specification of Group Membership Protocol

joined by these two processors after leaving g are g;
and g,, respectively, then groups ¢g; and g» are the
same. Since time is used to uniquely identify successive
processor groups, the termination and atomicity prop-
erties of broadcast service used by a joining processor
compels all correct processors to agree on a new view
time as well as on the successive membership check in-
stances.

4 Modular Composition of a
Co-ordinated Checkpointing and
Recovery Protocol

After having identified the protocol building blocks
(Sections 3.1 and 3.3) and subsequently the high-level
framework for protocol composition, we now consider
an actual distributed protocol to illustrate the appli-
cability of our approach. A checkpointing protocol is
chosen as this represents a large class of distributed
protocols widely used in both theory and practice.

Checkpointing [12, 19] is a commonly used tech-
nique to provide for sustained operations in a dis-
tributed system in the presence of transient faults,
without incurring the high performance cost of restart-
ing tasks/processes from scratch as transients are en-
countered. We consider an approach for checkpoint-
ing and rollback recovery which utilizes synchronized
clocks as outlined in [12]. We highlight basic steps
which are essential to the overall correctness of the cho-
sen protocol.

Module Name: Checkpointing
Module Attributes

e All processes communicate by exchanging messages
through communication channels.
e Communication failures do not partition the network.

e The clocks of the different processors are approximately
synchronized within a maximum allowable deviation £.
e The message delay is bounded by a constant §.

o With synchronized clocks and bounded message de-
lay, if a message is sent by a process in the time period
(local clock) [T — 8 — §,T], then it will be delivered
to the destination by time T'+ ¢ + 8 (local clock).

Approach:

o All co-operating processes checkpoint periodically, each
with the same period 7. It is assumed that © > 8 + 4.

e Prior to establishing its k** checkpoint, a process does not
consume any message that is sent by a process after estab-
lishing its k*" checkpoint.

e A process checkpoints its own local states, and logs the
messages it sends or receives.

o The senders log the messages they send during the
interval [T — 8 — 4, T].
o A receiver logs any message it receives in the interval
[T,T + B + 4].
Requirement:
o A set of checkpoints of different processes form a consistent
system state, i.e., orphan and lost messages are not present.
We now relate these functions to protocol-building-
blocks which are constituent to the hierarchical com-
position of the checkpointing protocol.

A: Choosing Building Blocks

Checkpointing protocols utilizing synchronized
clocks would essentially require the building blocks
of group communication services, namely synchro-
nization, broadcast and membership. Synchroniza-
tion is used to (a) synchronize various activities of
all processors, and (b) implement atomic broadcast
primitive, communication primitives (specifically,
atomic broadcast) is used to achieve the atomicity, or-
der and bounded communication of message exchanges.
and finally, membership is essentially needed to iden-
tify members in a group to form a consistent global
state. These building blocks inherently assume the
presence of synchronous communication network prim-
itives for bounded communication between two pro-
cesses.

B: Outlining the Block Interactions

Having identified the building blocks and their role
in achieving the overall objectives of the checkpointing
operation, we present the hierarchical composition of
the checkpointing protocol using the building blocks of
group communication services, as shown in Figure 7.

In order to establish the consistency of specifications
across the various constituent building blocks, it is im-
portant to identify inter-dependencies of these basic
building blocks (as depicted in Figure 8), and highlight
the exact condition or conditions a particular block im-
poses on another blocks. As the modularization ap-
proach help us identify the specific attributes of each

Building Blocks

Clock Atomic Group Other Functions
Synchronization Broadcast Membership eg., Error detection

‘ Building Blocks Specification and Verification ‘

‘ Consistency of Specification Across Building Blocks ‘

Synergistic Formulation oll Checkpointing Operations

Figure 7: Hierarchical Composition of a Co-ordinated
Checkpointing Protocol

block, we summarize the conditions for each block in-
teractions in Table 1.

Blocks Interactions | Primary Attributes

Sync. — Broadcast synchronized clocks
Sync. — Membership bounded drift rate &
Sync. — Checkpoint clock reading error
Broadcast —+ Membership synchronous system

Broadcast — Checkpoint bounded delays
synchronized clocks

Membership — Checkpoint, || unpartitioned network
synchronized processors
bounded communication
atomicity and ordering

Table 1: Inter-Block Requirements for Checkpointing

Synchronization

Error Detection

Routine
‘ Broadcast H Checkpointing |<—{ Membership

| J

Figure 8: Inter-dependencies of Building Blocks of
Checkpointing Protocol

The interactions between building blocks are de-
picted in Figure 8. An influence path, such as Synchro-
nization — Broadcast — Membership — Checkpointing,
depicts a form of interactions among these four build-
ing blocks. We illustrate how modular composition
assist in addressing these dependencies and identify-
ing any governing conditions. By the properties of the
synchronous membership protocol, each processor has
an up-to-date state information of all group members.

Suppose, a failure is detected in a process by a proces-
sor P. As a result, P must timely broadcast this event
to all other processes to stop all execution and initiate a
roll back to a validated checkpoint. These facts can be
asserted by the atomicity and termination properties
of atomic broadcast. The influence of atomic broadcast
block on the membership block is that the underlying
system model must be synchronized. This constraint
gets satisfied by the synchronization block.

C: Issues in Block Interactions

We further elaborate on inter-dependencies by con-
sidering the properties of broadcast primitive and the
nature of clock synchronization that can influence the
working of checkpointing operation. Clocks of all pro-
cessors are tightly synchronized with respect to each
other with a maximum skew of 3. With approximately
synchronized clocks and no lower bound imposed on
broadcast delay, it is possible that a set of checkpoints
taken by a processor may contain an orphan message.
To avoid inclusion of orphan messages in a checkpoint,
the checkpointing operation ensures that a process does
not consume any message delivered during 5 before es-
tablishing its checkpoint. To achieve this, all messages
sent by a process between its k' checkpoint and &+ 1"
checkpoint are tagged with & to indicate the interval in
which they are sent. Only messages with tag k — 1 are
included in the k%" checkpoint. The correctness of this
technique is guaranteed by the existence of a common
time base by synchronizing the clocks of all processors
in the system. These subtle dependencies of building
blocks can be highlighted by modularizing and defining
morphisms portraying these specific requirements.

D: Nuances of Morphisms over Modular
Composition

We have illustrated various issues involved in
category-based composition of protocols while dis-
cussing group membership building block. In this sec-
tion, we present an informal composite specification of
checkpointing protocol (See Figure 9), and then define
some morphisms needed for a consistent composition
out of identified system building blocks.

We now define some of the morphisms and dis-
cuss how they can assist in simplifying formal veri-
fication. For discussion purposes, we consider three
different morphisms, namely Morph4, Morphp and
Morphc linking checkpoint specification to member-
ship, atomic broadcast and synchronization specifica-
tions, respectively. That is, Morph 4 : Checkpoint —
Membership, Morphp : Checkpoint — Broadcast,
and Morphc : Checkpoint — Synchronization.

First, via Morph membership function establishes
the consistent view of membership of each processes,

Parameter (R)
Synchronous network
(supported by parameter part of Sync. and Broadcast)
Operational Attributes
checkpointing interval
Import (B)
Clock Synchronization function
synchronized clocks

Atomic Broadcast function
atomicity and termination property

Membership function
agreement on group membership
join detection
failure detection

Export (A)
Checkpointing function
aconsistent global set of checkpoints

Body : Checkpointing Operation

Figure 9: Specification of Checkpointing Protocol

i.e., determines participating processes. As mentioned,
in order to establish a consistent checkpoint, it is im-
portant that sender and receiver log any messages sent
or received during the specified interval to avoid orphan
or lost messages. The correctness of this property can
be established by translating correctness properties of
atomic broadcast operation along Morphg. Morphc
is needed to ensure that the frame boundary of each
processor is synchronized, and all co-operating proces-
sor establish their checkpoints within a specified clock
skew. The constraints on the checkpointing interval ()
is governed by the maximum allowable transmission de-
lay (0) and the maximum skew (8) between clocks of
two correct processes, i.e, 7 > ¢ + 3. This also allows
the detection of communication failure between check-
points. These properties are translated along mor-
phisms Morphpg and Morphc.

E: Perspectives on Tool-Supports for Com-
posing Modules

We are currently specifying building blocks of group
communication protocols in Specware [22]. Specware
is a system for the specification and formal develop-
ment of software. Among other operations available for
combining specifications in Specware, we are exploiting
the use of import and colimit operations. In order to
use the colimit operation to combine specifications, we
first indicate how they are to be related by exhibiting
morphisms between them (called diagram of specifica-
tions). A diagramis a directed multigraph (allows more

than one arc between nodes) whose nodes are labeled
with specifications and whose arcs are labeled with
morphisms. The colimit operation is then applied to
a diagram of specifications linked by morphisms. The
colimit contains all the elements of the specifications
in the diagram, but elements that are linked by arcs
in the diagram are identified in the colimit. Another
basic operation of our interests in Specware is refine-
ment/interpretation. This feature allows transforma-
tion of high-level task-descriptive specifications to low-
level implementation-oriented specifications, and even-
tually to code generation.

As discussed, category-based formalization of ba-
sic building block-protocols permit re-usability of these
basic formal modules. Moreover, for any configuration
of building blocks over a protocol composition, mor-
phisms also provide a direct capability of tracing de-
sired feasible path of any variable, attribute, or action.

F: Caveats/Limitations

We note that selecting an appropriate set of build-
ing blocks for a given protocol can sometimes be dif-
ficult due to subtleties associated with fault-tolerance
and timing attributes. We acknowledge some of the
caveats/limitations of our proposed approach.

e It is possible that two initially non-conflicting
modules may end up being semantically or oper-
ationally conflicting at some arbitrary implemen-
tation details which are not apparent at the high
level of specification. Determining, a priori, how
much (and also how often) implementation details
will be needed to succinctly capture all subtleties
of module interactions is a difficult problem and a
topic of our on-going research.

e The choice of which building blocks to include,
when composing a given protocol, and the param-
eterization of their respective formal theories are
very much an intuitive process. In order to en-
sure a viable composition, the user needs to selec-
tively choose building blocks which would satisfy
varied functional, temporal and dependability re-
quirements. Inability to identify subtle indirect
dependencies among building blocks is the major
cause for these problems.

e As expected, if a selected module cannot be added
to an existing configuration to achieve the desired
property, then that block must be modified ac-
cordingly. Moreover, for particular configurations
of protocol-building-blocks, formal analyses may
be required to determine the weakest properties
that still can guarantee overall correctness of the
protocol.

5 Discussion and Conclusions

For protocol level operations, the proposed category-
theory based formal framework serves as a design tool
for composing dependable distributed protocols. With
our focus on group communication protocols, we have
identified basic building blocks which are inherent to
providing group communication services. As each mod-
ule specification explicitly defines export and import
interfaces, this scheme, depending on identified inter-
dependencies between blocks, suffices in dealing with
protocol interactions. It is important to note that mor-
phisms linking different modules are effective means
of highlighting any conflicts arising over composition.
They essentially pinpoint properties which must be ob-
served across different modules. As we can decompose
global properties into small lemmas provable in dif-
ferent modules and translate these “local” properties
along morphism to establish desired properties, we not
only have a capability of performing basic verification,
but also a design tool to perform speculative changes
at the protocol and implementation level and observe
the impact.

As systems in future grow more complex with
stricter dependability specifications, the design of the
protocol and, most importantly, its formal reasoning
would necessitate a modular or a hierarchical approach
to protocol composition. We envision that a modular
approach such as the one we have proposed would fa-
cilitate modular composition of future protocols and
their formal treatment. Such building blocks will be
useful to system designers for their capability of speci-
fying and facilitating rigorously tested (as well as pre-
tested) formal theory modules of required system and
component behavior, and also supporting system de-
sign decisions and modifications. Our present effort
in expanding the proposed framework involve detailing
and defining external specifications of building blocks
to facilitate semi-automated process to establish con-
sistency across building blocks.

References

[1] R. Alur, et al., “MOCHA: Modularity in Model Checking.”
LNCS 1427, pp. 521-525, Springer-Verlag, 1998.

[2] A. Arora, S. Kulkarni, “Component Based Design of Mul-
titolerance,” IEEE Trans. on Soft. Engg., 24(1), pp. 63—
78, 1998.

[3] E.M. Clarke, J.M. Wing, et al., “Formal Methods: State of
the Art and Future Directions.” ACM Computing Surveys,
vol. 28, No. 4, pp. 626-643, Dec. 1996.

[4] F. Cristian, “Understanding Fault-Tolerant Distributed
Systems.” Comm. of the ACM, 34(2), pp. 57-78, Feb. 1991.

[5] F. Cristian, “Reaching Agreement on Processor-Group
Membership in Synchronous Distributed Systems.” Dis-
tributed Computing, vol. 6, pp. 175-187, April 1991.

[16]

(17]

(18]
(19]

20]

21]

(22]

23]

(24]

R. De Prisco, et al., “Building Blocks for High Performance
and Fault-Tolerant Distributed Systems.” Details Available
at http://www.lcs.mit.edu/research/projects, 1999.

H. Ehrig, B. Mahr, Fundamentals of Algebraic Specifica-
tion 2 — Module Specifications and Constraints, vol. 21
of EATCS Monograph on Theoretical Computer Science,
Springer-verlag, 1990.

B. Garbinato, R. Guerraoui, “Flexible Protocol Composi-
tion in BAST,” Proc. of ICDCS-18, pp. 22-29, 1998.

T. Henzinger, et al., “You Assume, We Guarantee: Method-
ology and Case Studies.” Proc. of CAV’98, July 1998.

M.A. Hiltunen, R.D. Schlichting, “An Approach to Con-
structing Modular Fault-Tolerant Protocols.” Proc. of
SRDS-12, pp. 105-114, Oct. 1993.

J. Hooman, Specification and Compositional Verification of
Real-Time Systems. LNCS 558, Springer Verlag 1991.

P. Jalote, Fault Tolerance in Distributed Systems. Prentice
Hall, 1994.

E. Juan, J.J.P. Tsai, Compositional Verification of High-
Assurance Systems, Kluwer Academic Publisher, 2000.

I. Keidar, R. Khazan, N. Lynch, A. Shvartsman, “An
Inheritence-Based Technique for Building Simulation Proofs
Incrementally.” Proc. of ICSE-22, pp. 478-487, 2000.

X. Liu, et al., “Building Reliable, High-Performance Com-
munication Systems from Components.” Operating Systems
Review, 34(5), pp. 80-92, Dec. 1999.

P. Michel, V. Wiels, “A Framework for Modular Formal
Specification and Verification.” Proc. of FME’97, 1997.

S. Misra, et al., “Consul: A Communication Substrate for
Fault-Tolerant Distributed Programs.” Distributed Systems
Engineering, 1(2), pp. 87-103, 1993.

D.E. Rydeheard, R.M. Burstall, Computational Category
Theory, Prentice Hall, 1988.

M. Singhal, N.G. Shivratri, Advance Concepts in Operating
Systems. McGraw-Hill, 1994.

P. Sinha, N. Suri, “Modular Composition of Redundancy
Management Protocols in Distributed Systems: An Out-
look on Simplifying Protocol Level Formal Specification and
Verification.” Proc. of ICDCS-21, pp. 255-263, 2001.

P. Sinha, N. Suri, “Identification of Test Cases Using a For-
mal Approach.” Proc. of FTCS-29, pp. 314-321, 1999.

Y. V. Srinivas and Richard Jullig, “Specware(TM): Formal
Support for Composing Software,” Proc. of the Conference
on Mathematics of Program Construction, Kloster Irsee,
Germany, July 1995. Also as Kestrel Institute Technical Re-
port KES.U.94.5.

N. Suri, P. Sinha, “On the Use of Formal Techniques for
Validation.” Proc. of FTCS-28, pp. 390-399, 1998.

R. van Renesse, K. Birman, S. Maffeis, “Horus: A Flexi-
ble Group Communication System.” Communication of the
ACM, 39(4), pp. 76-83, April 1996.

