On the Use of Formal Techniques for Analyzing
Dependable Real-Time Protocols*

Purnendu Sinha
ECE Dept.
Boston University
Boston, MA 02215
sinha@bu.edu

Abstract

The effective design of composite dependable and
real-time protocols entails demonstrating their proof of
correctness and, in practice, the efficient delivery of
services. We focus on these aspects of correctness and
efficiency, specifically considering the real-time aspects
where the need is to ensure satisfaction of stringent
timing and operational constraints. In this paper we
establish the use of mathematically rigorous techniques
such as formal methods (FM’s) in not only provid-
ing for their traditional usage in establishing correct-
ness checks, but also for their capability of assessing
and analyzing timing requirements in dependable real-
time protocols. We present our perspectives in utiliz-
ing FM’s in developing exact case analyses of fault-
tolerant and real-time protocols. We discuss the in-
sights obtained and flaws identified in the hand analy-
sis over the process of formally analyzing and verifying
the correctness of an existing fault-tolerant real-time
scheduling protocol.

1 Introduction

Computers used for critical applications utilize de-
pendable and real-time protocols to deliver reliable
and timely services. Additionally, apart from the
stringent operational and timing considerations there
is also a driver to deliver high performance and max-
imal utilization of system resources. In such systems,
the delivery of time-critical services relies on mecha-
nisms, primarily scheduling disciplines, to satisfy op-
erational and timing constraints. However, the de-
sign and analysis of optimal scheduling algorithms for
real-time systems is known to be computationally in-
tractable. Exacerbating the situation is the fact that
correctness proofs for composite dependable and real-

*Supported in part by DARPA Grant DABT63-96-C-0044
and NSF CAREER CCR 9896321

Neeraj Suri
Dept. of Computer Engineering
Chalmers University
Goteborg, Sweden
suri@ce.chalmers.se

time algorithms and their exact-characterization tend
to be quite complex and, potentially, error prone. The
demonstration of the correctness of composite depend-
able real-time protocols is usually performed through
simulation studies though at a cost of lack of rigor-
ousness and not being comprehensive to cover the en-
tire state-space of the protocol operation. From the
viewpoint of establishing correctness and efficient de-
livery of services, we focus on time-critical aspects of
dependable real-time protocols in this paper.

The effective use of formal techniques for analysing
“discrete” dependable or real-time services has been
demonstrated in [4, 5, 11, 12, 14]. In this paper,
we investigate formal methods capabilities for rigor-
ous analysis of “composite” dependable real-time pro-
tocols when the environment is not fully predictable
(e.g., systems operating in non-deterministic environ-
ments, i.e., in presence of faults). Specifically, our
primary contributions in the formal analysis and ver-
ification of dependable real-time protocols are:

e We demonstrate the capability of formal meth-
ods to be used as an analysis tool by developing
the exact case analysis of a fault-tolerant (FT)
version of rate monotonic algorithm (RMA), i.e.,
FT-RMA. We discuss insights obtained over the
process of formally specifying and verifying the
correctness of RMA and FT-RMA.

e We highlight the capability of formal techniques
to identify flaws in the existing (and published)
hand analysis of a FT-RMA algorithm, which we
encountered while formally specifying and prov-
ing its correctness.

The organization of the paper is as follows: Sec-
tion 2 describes the system model chosen for our pro-
posed formalism and briefly discusses formal methods.
Section 3 overviews the rate monotonic algorithm and

its fault-tolerant extension (FT-RMA). Section 4 de-
velops our perspectives on deriving exact-case analysis
of FT-RMA. We present the formal specification and
verification of scheduling algorithms in Section 5. We
conclude with a brief discussion in Section 6 on the ca-
pabilities and caveats in the use of formal techniques
in the real-time arena.

2 System Models and Formal Methods

For our study, we consider conventionally used sys-
tems [8, 2, 3, 10] where the model involves tasks which
have specific correlation (e.g., periodicity, utilization,
etc.), follow a deterministic order of execution, and
with provision for incorporating non-deterministic as-
pects such as interrupts and faults.

Consider a set of n independent, periodic and pre-
emptible tasks 71,72, -, Tn, with periods 77 < Ty <
-». < T,, and execution times C1,Cs, -, C,, respec-
tively, being executed on a uni-processor system where
each task must be completed before the next request
for it occurs. All tasks are preemptible, and preemp-
tion overhead is assumed to be negligible.

We assume transient, intermittent and permanent
faults (fail-stop, fail-silent). Furthermore, we con-
sider [2, 3] that: (a) fault recovery can be carried
out by re-execution of the faulty task, (b) two suc-
cessive faults are separated by an interval of at least
T, +T,_1, and (c) errors can be detected and the cost
of detection is negligible or can be incorporated in a
task’s computation time.

Formal methods [4, 11], through their capabilities
of deductive reasoning and mathematical induction,
provide extensive support for (a) precise and unam-
biguous specifications and identification of specifica-
tion level inconsistencies, verifiable design assump-
tions, and (b) automated and exhaustive state explo-
ration over the verification process. Because of the
state-space explosion problem associated with depend-
able and real-time protocols, we have chosen proof-
theoretic! formal approaches which utilize logical rea-
soning and derivations, as well as rules of induction,
to obtain a formal proof basis for the desired system
operations. We point the reader for details on for-
mal methods to the excellent study in [11]. For our
research, we utilize SRI's Prototype Verification Sys-
tem (PVS)?2 tool [9]; although any formal environment
based on higher-order logic can be utilized.

lFormal methods include model-theoretic and proof-
theoretic approaches for verification. We refer the reader to [11,
Section 2.2] for a more detailed discussion on these approaches.

2PVS is being used both for its public domain availability
and for its comprehensive theorem proving environment.

With this background, we now present the classi-
cal RMA approach and subsequently its fault tolerant
extension, namely, FT-RMA which is subjected to for-
mal specification and verification. We begin with our
motivation for the selection of FT real-time scheduling
for demonstrating the capabilities of formal techniques
for analyzing dependable real-time protocols.

3 FT-RT Scheduling : An Overview

In dependable time-critical systems, tasks must be
executed by their respective deadlines in order to de-
liver desired service despite the occurrence of faults.
Although our proposed formal approach is developed
as a generalized analysis tool; in order to demonstrate
a tangible analysis capability, we have selected the
FT rate monotonic algorithms (FT-RMA) as they are
representative of a large class of composite depend-
able, real-time protocols. FT-RMA was developed in
DCCA [2] and a modified journal version in [3]. Over
the process of using these protocols [2, 3] to show via-
bility of our formal V&V approach [14], we have also
been able to identify test cases [13] that actually make
the published FT-RMA protocols of [2, 3] fail. We
first introduce the RMA [8], which is the basis for
FT-RMA [2, 3].

3.1 RMA : A Review

The Rate Monotonic Algorithm (RMA) [8] is an
optimal static priority algorithm for the task model
of Section 2, in which a task with shorter period is
given a higher priority than a task with longer period.
A schedule is called feasible if each task starts after
its release time and completes before its deadline. A
given set of tasks is said to be RM-Schedulable if RMA
produces a feasible schedule. The processor utilization
of n tasks is given by U = Y1 | %

A set of tasks is said to fully utilize the processor
if (a) the RM-schedule meets all deadlines, and (b) if
the execution time of any task is increased, the task
set is no longer RM-schedulable. Given n tasks in
the task set with execution times C; for task 7;; if
C;=T;1—T; Vie{l,n—1}, and C,, = 2Ty — T,
then under the RMA, the task set fully utilizes the
processor.

The following theorem provides a sufficient condi-
tion to check for RM-schedulability.

Theorem 1 (L&L Bound [8]) Any set of n peri-
odic tasks is RM-schedulable if the processor utiliza-
tion is no greater than n(2= —1). O

This schedulability bound of [8] being rather pes-
simistic (for large values of n, it converges to 69%) ne-
cessitates an exact case analysis of the RMA policy for

its practical applications. The necessary and sufficient
conditions for RM-schedulability based on processor
utilization appear in [7]. Another approach to provide
the necessary and sufficient condition for schedulabil-
ity is based on worst-case response time calculation [6].
We describe this later approach to compute response
times based on the number of invocations in an in-
terval and the computation time needed for each in-
vocation. For simplicity, we assumes a single task of
priority j, and all tasks phasings being zero.

The number of events at priority level j arriving
in the interval between two time instants z and y
is computed as number(z,y,j) = [y/T;] — [=/Tj].
The computation time needed for these invocations is
compute_time(z,y, j) = number(z,y, j) x Cj.

So, at level i the computation time needed for all
invocations at levels higher than 7 is computed as:

i1
total_compute_time(z,y,1) = Z compute_time(z,y, j)
j=1

Let R(z,y,) be the response time at level ¢ in the
interval [z,y). If total_compute_time(z,y,1) is zero,
the processor will not be preempted in the interval
and the whole of the time will be available for the
use at level i. If total_compute_time(z,y,3) > 0, then
the response time at level 7 cannot be less than y +
total_compute_time(z,y,i). The above argument can
be defined recursively:

R(x,y,i) =

if (total_compute_time(x,y,i) = 0) then y
else R(y, yt+total_compute_time(x,y,i), i)

endif

The worst-case response time at level 7 can then
be defined as R; = R(0,C;,%). If no computation is
needed at levels 0,---,7 — 1, then the response time at
level i is the computation time C; itself; if not, then
the amount of time needed at the higher levels is added
to the computation time.

Thus, a necessary and sufficient condition is given
as follows:

Theorem 2 (Exact-case Analysis — 2 [6]) A
given task set is schedulable iff Vi 1 <1i <n, R; <Tj,
where deadlines d; are bounded by C; < d; < T;. O

The classical RMA does not have any provision
for re-execution of tasks to handle transient fault in-
stances, nor does it provide any guarantees for their
backup task schedulability. In the next section, we
outline how time-redundancy can be incorporated into
RMA to provide guarantees for tasks to meet their
deadlines even in the presence of faults [2, 3].

3.2 FT-RMA : A Review

Currently, there are ongoing efforts in extending
RMA to provide for fault-tolerance by incorporating
temporal redundancy [2, 3, 10]. As mentioned in
the beginning of Section 3, we have selected the ap-
proach proposed in [2, 3] for our study. This approach
describes a recovery scheme for the re-execution of
faulty tasks, including a scheme to add slack (i.e., idle
time) to the schedule, and further derives schedulabil-
ity bounds for a set of tasks considering fault-tolerance
through re-execution of task. Furthermore, cases with
a single or with multiple faults within an interval of
length T;, + T,,_1 are considered. Faults are assumed
to be transient such that a single identified faulty task
can be re-executed.

Along with guaranteeing the schedulability of a task
set in the fault-free case (RMA), we need to ensure the
schedulability of a task set even when the backups are
used for re-execution of some task. A recovery scheme
that ensures re-execution of any task after a fault has
been detected must satisfy the following conditions:

S1: There should be sufficient slack for any one in-
stance of any given task to re-execute.

S2: When any instance of 7; finishes executing, all
slack distributed within its period should be avail-
able for the re-execution of 7; in case a fault is
detected.

S3: When a task re-executes, it should not cause any
other task to miss its deadline.

The original recovery scheme proposed in [2] is:
“The faulty task should re-execute at its own prior-
ity.”

The following lemmas show the published [2] proof
of correctness of this approach.

Lemma 1 ([2]) If Ug > C;/T;,
S1 is satisfied. O

i =1,...,n, then

Lemma 2 ([2]) If S1 is satisfied, and swapping®
takes place, then S2 is satisfied. O

Lemma 3 ([2]) If S1 and S2 are satisfied, and the
faulty task is re-executed at its own priority, then S3
is satisfied. O

A FT-RMA utilization bound was computed to
guarantee schedulability in the presence of a sin-
gle fault. This schedulability bound was derived as:
Urr_rma = Urp(1 — Ug), where Ug is equal to the
maximum of all tasks utilizations (Up = max U;).

3The slack is shifted in time by being swapped with the task’s
execution time if no fault occurs.

However, this recovery scheme of [2] may fail in
meeting a task’s deadline, even though a given task
set satisfies Upr_grara bound. A modified recovery
scheme is presented in [3] as:

“In the recovery mode, 7 will re-execute at its
own priority, except for the following case: Dur-
ing recovery mode, any instance of task that has
a priority higher than that of 7. and a deadline
greater than that of T, will be delayed until recov-
ery is complete.”

The approaches presented in [2, 3] attempted to
provide FT support to a task set satisfying Upr_Rgrara
bound. As mentioned, in [3] the authors have modified
the recovery scheme of [2], our initial interest was to
explore the capabilities of the formal process to iden-
tify the cause due to which a recovery task fails to
meet its deadline, and to highlight the shortcomings
in arguments presented in the hand analysis of the
original version of FT-RMA [2]. Concurrently, this
also resulted in developing the exact case analysis of
FT-RMA, which we describe in the next section.

4 Our Perspectives on Exact-Case
Analysis of FT-RMA

The results presented in Section 3.2 provide suffi-
cient conditions to check for schedulability under fault
assumptions. From a practical standpoint, the utiliza-
tion bound Upr_grara is quite pessimistic arguing for
exact-case analysis of FT-RMA. In this section, we
present such an exact-case analysis, with the recovery
scheme in which the faulty task re-executes at its own
priority. We extend the procedure outlined in Sec-
tion 3.1 (Theorem 2) to incorporate the re-execution
time for the faulty task.

When a fault is detected during execution of a task,
the task needs to be re-executed. It is assumed that
the task re-executes at the end of its original sched-
uled time-slot; in order to ensure that the recover-
ing task will meet its deadline, we need to compute
the worst case response time of this re-executing task
and compare this value with its deadline. As depicted
in Fig. 1, the release time of this recovering task is
considered to be the task’s worst case response time
in the original schedule. Let WC{, denote the worst
case response time of the m!* instance of task i, i.e.,
WC: = R(m x T;,m x T; + C;,i) Then, the condi-
tion to guarantee schedulability of recovery task can
be expressed as:

R(WCE , WC: +Ciyi) < (m+1)xT; (1)

fault occurred fault detected ~ possible re-execution time slot

,,,,,,,,,,,,,,,,,,,,,,,,,,

origina earliest possible start time
completion time of recovery task

Figure 1: Re-execution of a Faulty Task

Since the faulty task re-executes at its own priority,
it will not affect higher priority tasks. To confirm that
lower priority tasks are not affected by a faulty task,
T;, being re-executed, we need to compute the worst
case response times of these lower priority tasks (w.r.t.
7;) incorporating re-execution time of 7;, and compare
them with their respective deadlines.

Let EST(j) be the earliest start time of a lower
priority task 7; relative to recovery task 7, where r <
Jj < n. The execution time of 7; will be at least delayed
by C,. Incorporating this factor into the response time
calculation, the condition to guarantee schedulability
of lower priority tasks (w.r.t. 7,.) is given as:

R(EST(j) + Cr, EST(j) + C, + Cj,5) <T; (2

Theorem 3 (Exact-case Analysis — 3) 4
task set is schedulable under single fault assumption
tff Equations 1 and 2 are satisfied. O

The above statement readily follows from our ear-
lier discussions.

We have provided an exact characterization for a
set of periodic tasks scheduled by the rate monotonic
algorithm for a single fault case. This exact character-
ization can be used to determine whether a recovery
task would meet its deadline or not, thereby ensuring
schedulability of a given task set. We present the for-
malization of the exact characterization in Section 5.2.

5 Formalization of FT-RT Protocols :

(RMA — FT-RMA)

An ability to formally specify and verify a given
fault-tolerant real-time protocol is an essential element
in our approach. Along with the formal aspect, we will
also discuss what interpretation/information we were
able to deduce from the formal approach. The formal
specification and verification of algorithms are per-
formed using PVS*. The main effort in formal specifi-
cation was devoted in formalizing various assumptions

4For comprehensive PVS references, the reader is referred to
http://pvs.csl.sri.com.

on task and system models, system requirements, the
scheduling policies, fault assumptions, and recovery
schemes and associated conditions they satisfy. The
key idea in our formal verification is to demonstrate
the consistency of proof of correctness of any algo-
rithm by transforming it into a mathematical (or cal-
culational) activity that can be easily checked by a
mechanical theorem prover. We present formal specifi-
cations in the following sections, 5.1 and 5.2. Although
the PVS syntax for RMA and FT-RMA is used in the
subsequent sections, we will explain the nuances as
necessary for the discussion. In the formal representa-
tion below, we will identify the associated definitions,
axioms and theorems of RMA and FT-RMA which
were earlier presented in Sections 3.1 and 3.2. These
are marked as % in the PVS specifications.
5.1 Formal Specification of RMA

The formal specification® of RMA is embodied
in the PVS theory called rma. Task_ID is de-
fined as a predicate subtype of posnat. The types
posreal and Real _Time are defined to be subtypes of
real. The types period_range and execution_range
are defined as subtypes of posreal. Task State
is an enumerated type. The task characteristics
are defined as Property which is a record type
with fields Period, Execution, Phasing and State
which are of types period range, execution range,
Real Time and Task_State, respectively. Our aim
here is to enumerate over the exhaustive task sets sat-
isfying various timing constraints and a given utiliza-
tion bound.

Property : TYPE = [# Period :
Execution : execution_range,
Phasing: Real_Time, State :

period_range,
Task_State #]

Task_Vector is defined as an array with index type
Task_ID and element type Property. The constraints
on task’s execution time, periodicity, deadline and pri-
ority are declared as AXIOMS. All other assumptions for
RMA are declared as dependent types and definitions
in the specification.

Constraint_AX : AXIOM FORALL (i:Task_ID):
Execution(T(i)) <= Period(T(i))

Instance : TYPE = nat
Occurrence: [Task_ID, Instance -> Real_Time]=
LAMBDA (i:Task_ID, j:Instance):
Phasing(T(i)) + j * Period(T(i))

5The complete specifications for RMA and FT-RMA are at
http://eng.bu.edu/~suri/specs/specs.html.

Release: [Task_ID, Instance -> Real_Timel=
LAMBDA (i:Task_ID, j:Instance):
Occurrence(i,j)

Periodic_LM : LEMMA

(FORALL (i:Task_ID, j:Instance)
Occurrence(i, j+1) - Occurrence(i, j) =
Period(T(i)))

%Deadline being the next occurrence of task
Deadline : [Task_ID, Instance -> Real_Time]
Deadline_AX : AXIOM
(FORALL (i:Task_ID, j:Instance):
Deadline(i, j) = Occurrence(i,j+1))

% Distinct priorities for tasks

Priority : [Task_ID -> posreall

Priority_AX:AXIOM (FORALL i : NOT EXISTS j:
Priority(i) = Priority(j))

% Priority assignment by RMA

K : posnat
RMA_Priority : [Task_ID -> posreall] =
LAMBDA (i : Task_ID) : K / Period(T(i))

% Definition of Rate Monotonic priority

RMA_AX : AXIOM (FORALL i : FORALL j
Period(T(i)) > Period(T(j)) IMPLIES
RMA_Priority(i) < RMA_Priority(j))

The processor utilization and a schedulability con-
dition (Theorem 1) are formalized below:

% Definiton for Processor Utilization

Utilization : real =

sigma(1l, N, LAMBDA i :
Execution(T(i)) / Period(T(i)))

% Sufficient Condition for schedulability
% (Theorem 1) U <= N * (root(2, N)-1).
RMA : Conjecture

2 >= exponent((1 + Utilization/ N), N)

Following these definitions, we now discuss formal
representation of response time calculation described
in Section 3.1. For simplicity, we assume a single task
of priority j, and all tasks phasings being zero. The
response time calculation is specified below:

% Number of events at priority level "j"

% in [x, y) time-interval

number(x, y : Real_Time, j : posnat):int =
ceil(y/Period(T(j))) - ceil(x/Period(T(j)))

% Computation time for events at level "j
compute_time(x, y : Real_Time, j : posnat):
Real_Time = number(x, y, j)*Execution(T(j))

% Computation time for all invocations at
% levels higher than "i"
total_compute_time(x,y:Real_Time, i:posnat):
Real_Time = sigma(1l, i-1,

(LAMBDA (i : int) : compute_time(x,y,i)))

% Response time at level i in [x, y)

X, y : var Real_Time

pPr : var posnat

Response(x, y, pr) : recursive Real_Time =
(IF total_compute_time(x, y, pr) = O THEN y

ELSE Response(y, y +
total_compute_time(x, y, pr), pr)

ENDIF) Measure (LAMBDA x, y, pr : x)

For example, to check whether a given task set is RM-
Schedulable or not for the case where all tasks phas-
ings are zero, we can apply the response time calcula-
tion (Theorem 2) as below:

RM_Schedulable?(T: Task_Vector): bool =
(FORALL (i:rng):Period(T(i))<=Period(T(i+1)))
AND (FORALL (i: Task_ID):
Response (0,Execution(T(i)),i)<=Period(T(i)))

The predicate RM_Schedulable? captures the no-
tion that if tasks are ordered as per their period and
if task response times are less than the respective pe-
riods then the task set is RM-schedulable.

A set of tasks is said to fully utilize the processor
if (a) the RM-schedule meets all deadlines, and (b) if
the execution time of any task is increased, the task
set is no longer RM-Schedulable. We specify this as:

Incr : real =1
Fully_Utilize?(T: Task_Vector): bool =
RM_Schedulable?(T) AND (EXISTS (i: Task_ID):
EXISTS (j : Task_ID) : NOT
Response (0,Execution(T WITH [(i):=(T(i) WITH
[Execution := Execution(T(i))+Incrl)]1(j)),j)
< Period(T(j)))

This formalization tests if a given task set fully uti-
lizes the processor. Besides validating the task set to
be RM-schedulable, it checks for the existence of a
task whose response time exceeds its period if the ex-
ecution time of any other task in the set is increased.

At this stage we have formalized the basic features
of the RMA on which the FT-RMA is developed. In
the next section, we formalize the assertions provided
in the hand-analysis of the FT-RMA [2].

5.2 Formalization of FT-RMA and Exact-
Case Analysis

The formal specification of FT-RMA is embodied in
a PVS theory called ftrma. The pvs theory rma is ex-
plicitly imported, as the theory ftrma builds/extends
upon the rate monotonic theory. We begin with for-
malizing the calculation of the backup utilization Up
which is defined as max(U;) Vi = 1,...,n. This is
computed by using max(U, n) function which finds
the maximum value of task utilization from an array
U of size n. The backup time or slack within a period
L is calculated as:

Backup(L: posreal) posreal = UB * L.

Next, we attempt to formalize the computation of
backup slot length between the m®* period of 7; and
nth period of 7j. We need to check that beginning
period of any other task does not exist between times
mT; and nT;. This can be specified as follows:

boundary?(i,j:Task_ID, m,n:Instance): bool=
NOT EXISTS(k : Task_ID, 1 : Instance)
m * Period(T(i)) < 1 * Period(T(k)) AND
1 * Period(T(k)) < n * Period(T(j))

The predicate boundary? is true if there does not
exist any time [T} such that mT; < [T}, < nTj hold,
i.e., there is no beginning period of I** instance of task
Tx within times mT; and nT;. Now, the backup slot
calculation between mT; and nTj} is specified as:

BS(i,j: Task_ID, m,n: Instance): real =
(IF boundary?(i,j,m,n) THEN
UB * (n * Period(T(j)) - m * Period(T(i)))
ELSE 0 ENDIF)

As discussed in Section 3.1, the worst case execu-
tion time of any instance of a task can be computed
as follows:

WCET (i: Task_ID, m: Instance): Real_Time =
Response (m*Period(T(1)),
m*Period(T(i))+ Execution(T(i)), i)

We attempt to formalize the assumption that two
faults are separated by the interval of length T, +T, ;.

Fault_AX: AXIOM

(FORALL(i,j:Task_ID, 1,m:Instance):
faulty(i,1) AND faulty(j,m) AND

NOT EXISTS (k : Task_ID, n : Instance):
(faulty(k,n) AND Release(k,n)<=Release(j,m)
AND Release(k,n) >= Release(i,1l)) IMPLIES
WCET(j,m) >=

WCET (i,1)+(Period (T(N))+Period(T(N-1))))

The above axiom states that for any two consec-
utive faults in a task set, the worst case execution
times of the two faulty tasks are separated by at least
T, +T, 1.

The sufficient condition, Upr_gara, for schedula-
bility under a single fault assumption, UL (1 — Ug),
is formally specified as:

FT-RMA : Conjecture (2 >=
exponent ((1 + Utilization/(N*(1-UB))), N))

This basically checks whether a given task set sat-
isfies the fault-tolerant schedulability bound.
Exact-Case Analysis through the Formal
Verification Process

In this section, we demonstrate that the exact-case
analysis results as a natural consequence of the com-
putational capabilities of formal verification process.

In order to confirm that a faulty task being re-
executed will meet its deadline, we need to check that
the task’s worst case response time, assumed to be re-
leased at time being its worst case response time in the
fault-free case and being re-executed at its own prior-
ity, is less than its period. We formalize this through
the predicate reexecute? which checks whether a
task being re-executed will meet its deadline. (Refer
to Eq. 1 and the discussion on exact-case analysis in
Section 4)

reexecute?(i: Task_ID, m: Instance): bool =
Response (WCET(i,m), WCET(i,m) +
Execution(T(i)), i) <= (m+1) * Period(T(i))

We now formalize various conditions a recov-
ery scheme needs to satisfy to ensure successful re-
execution of faulty task. The condition S1 that slack
available for an instance of recovery task, say 7,
should be at least C; is formalized as the predicate
slack?:

slack?(n: Task_ID, m: Instance): bool =
Backup(Period(T(n))) <= Execution(T(n))

The condition S2 states that if there is a fault dur-
ing the execution, then the recovery task 7; must be
re-executed for a duration of C; before its deadline.
The predicate recovery? validates this condition.

recovery?(i: Task_ID, m: Instance): bool =
slack?(i,m) AND reexecute?(i,m)

The condition S3 ensures that if a task re-executes,
then it should not cause any other task to miss its
deadline. Since the recovery task re-executes at its

own priority and rate monotonic order is followed, it
can only affect lower priority tasks. To ensure that
lower priority tasks do not miss their deadlines, we
need to compute the worst case execution time of these
tasks, incorporating the re-execution time of the re-
covery task. This can be expressed exactly as follows:

Let EST(j) be the earliest start time of a lower
priority task 7; relative to recovery task 7,, where r <
Jj < n. The execution time of 7;’s will be delayed by
at least C.. We take this factor into the response time
calculation as: Response(EST(j)+C,, EST(j)+C.+
Cj,j) where EST(j) is the worst case execution time
of task j — 1. The PVS specification of this as follows:
(Refer to Eq. 2 and a discussion on exact-case analysis
in Section 4)

EST(j : Task_ID) : Real _Time =

Response(0, Execution(T(j-1)), j-1)
lower_range(r : int) : TYPE =

{x : int | x > r AND x <= N}

Recovery_Check : CONJECTURE
FORALL (j : lower_range(r))

Response (EST(j) + Execution(T(r)), EST(j)+

Execution(T(r))+Execution(T(j)),j) <=

Period(T(j))

As we will discuss further in Section 5.3, we needed
to incorporate the specification for slack length calcu-
lation based on number of invocation of different tasks
and their execution times. Furthermore, to probe into
the highlighted inconsistencies we had to specify the
full utilization conditions for a task set into the formal
specification. We provide the formal representation of
these conditions below:

% Slack length calculation:
Slack(t: Real_Time) : Real_Time =
t - sigma(l, N, LAMBDA i :
ceil(t/Period(T(i))) * Execution(T(i)))

% Check for full utilization by each task
Full?(T : Task_Vector) : bool =
(FORALL (j : Task_ID) : IF (j < N) THEN
Execution(T(j))=Period(T(j+1))-Period(T(j))
ELSE Execution(T(j)) =
2*Period(T(1)) - Period(T(N)) ENDIF)

So far we have described the formal representation
of the assertions and/or arguments presented in the
hand-analysis of FT-RMA. In the next section, we out-
line our steps towards verification and analysis of F'T-
RMA and the observations deduced from the formal
process of specifying the RMA /FT-RMA properties.

5.3 Identification of Flaws in FT-RMA
via the Formal Verification Process

As mentioned in Section 3.2, one of our interests
is to explore the use of formal methods to identify
the cause of failure of recovery task to satisfy its tim-
ing constraints. Prior to getting into the details, we
briefly describe our developed formal-methods-based
approach for V&V. In [14], we had presented the ra-
tionale and approaches for the use of formal methods
for validation. We have developed graphical repre-
sentation structures to encapsulate various verification
information and schemes exploring deductive capabili-
ties of formal methods to identify test cases for valida-
tion. Particularly, we introduced two data structures,
Inference Tree (IT) and Dependency Tree (DT), with
these structures having capabilities for symbolic exe-
cution and query processing, respectively. In [13], we
explored the deductive capabilities of our formal ap-
proach through a case study of FT-RMA and showed
how the different queries being posed and their cor-
responding inferences at various stages of interactive
IT/DT-based process facilitated identification of spe-
cific test cases.

Our initial efforts were to ensure that conditions
S1, S2 and S3 given in Section 3.2 are satisfied by
attempting to prove putative theorems reflecting ex-
pected behaviors of the protocol operations. It is im-
portant to mention that simply by following the as-
sertions given in the hand analysis of FT-RMA [2],
the initial verification process showed no flaws in the
arguments being presented. As our approach [14] fa-
cilitates incorporation of speculative conditions to ex-
plore their implications on the overall working of the
protocol, we speculatively imposed condition where,
under the Upr_gryma utilization bound, a recovery
task misses its deadline by being preempted by other
higher priority tasks. The subsequent discussions
summarizes specific queries being posed in the DT
and corresponding inferences generated over the in-
teractive IT/DT process. For detailed discussion on
our formal approach for V&V and the IT/DT usages
for FT-RMA, the reader is referred to [14, 13].

Based on the formal representation of backup uti-
lization and backup slot distribution over a specified
period, verification of recovery conditions indicated
that the condition S1 is satisfied but the condition
S2 is not. It is important to mention that based on
the definition of backup utilization and backup slots
length calculations, the verification process confirmed
that there was enough slack available in the schedule.
This flagged discrepancies in Lemma 2 as the condi-
tion S2 should have been satisfied if there was enough

slack reserved in the schedule and swapping had taken
place. Furthermore, it also revealed that the backup
slots reserved for re-execution may not be available for
that purpose, thereby contradicting the statement in
Lemma 1. These observations led us to incorporate
the specification for slack length calculation based on
number of invocation of different tasks and their ex-
ecution times. Following this step, we were able to
ascertain that there is not enough slack available for
the faulty task to re-execute. At this stage we have
been able to flag the inconsistencies in the FT-RMA,
though the conditions due to which these inconsisten-
cies are arising is yet to be determined.

Based on the understanding on the rate monotonic
theory, we investigated the issues related to the least
natural slack length in the schedule. As discussed in
Section 3.1, the schedule would have the least idle time
when the task set satisfies the full utilization condi-
tions. It is important to mention that in case of the
lowest priority task 7, being faulty, to be able to re-
execute successfully under full utilization condition,
its execution time should not exceed (277 —T,,)/2. The
faulty task re-executes at its own priority while recov-
ering. At this stage, various conditions reflecting full
utilization of the processor under the imposed specu-
lative conditions were systematically checked. As we
have shown in [13], the failure of the composite query
representing conditions for full utilization of the pro-
cessor result in the test cases for validating the pro-
posed approaches of FT-RMA. The following compos-
ite condition (with A > 0, considered as small as pos-
sible) essentially checks the feasibility of FT-RMA.

C;i = T1yn—T;, Vi 1<i<n-—1,
Cn = (2T —Tn)/2+A, (3)
such that ZU" < Upr_rmMA

With this condition, a task set fails to be RM-
schedulable under the following two fault conditions:
(a) the lowest priority task 7, is faulty, and (b) the
second lowest priority task 7,,_; is faulty.

We point out that with this set of conditionals
and with the second lowest priority task, 7, 1, be-
ing faulty, the modified recovery scheme of [3] fails to
ensure schedulability of the lowest priority task, 7,,, as
will be illustrated in Section 5.4.

5.4 Illustrating the Failure of FT-RMA
with the Identified Test Cases

As discussed in the previous section, conditions for
full utilization of the processor is a guiding factor to
validate the proposed schemes of FT-RMA. Let us

T C; T; U, =C;/T;
ksl 0.4 3.6 | 0.1111

T2 0.5 4 0.125

T3 0.9 4.5 | 0.2

T4 0.91 | 5.4 | 0.1685

Table 1: A set of 4 periodic tasks

consider® a set of 4 periodic tasks, {7y, T2, 73,74}, with
their respective periods being 3.6, 4, 4.5 and 5.4, and
the deadline of each task being equal to its period. Uti-
lizing Eq. 3, the execution times are then computed
as shown in Table 1. Thus, the values of Ug, ULr
and Upr_Rrara, as expressed in Sections 3.1 and 3.2,
are 0.2, 0.7568 and 0.6054, respectively. Note that
the value of Cj is upper bounded by the execution
time such that the corresponding total processor uti-
lization is equal to Upr_gapra. Thus, the execution
time of 74, C4, can have any numerical value” satisfy-
ing 0.9 < C4 < 0.9144. As a test case, we choose C4
as 0.91. Thus, the total processor utilization by the
task set is 0.6046. Since the total processor utiliza-
tion by this task set is less than Upr_gara (0.6054),
with recovery schemes of [2, 3|, a single fault should
be tolerated by re-execution of the faulty task.

Let us first consider the fault-free case. Since the
total utilization of the processor (0.6046) is less than
the least upper bound (0.7568), the task set is RM-
schedulable. The resulting schedule without consider-
ing backup slots is depicted in Fig. 2. In subsequent
timing diagrams of the RM-schedule of the task set,
7] denotes the j* instance of task ;.

0 0.9 18 271 36 45 54 6.31

Figure 2: RM-schedule of 4 tasks

We now illustrate the schemes [2, 3] to insert slacks
in the schedule by FT-RMA. The backup task can
be imagined to be occupying backup slots between ev-
ery two consecutive period boundaries, where a period
boundary is the beginning of any period. Therefore,
the length of backup slot between the k* period of 7;
and [*" period of 7; is given by Ug(IT; — kT;), where
there is no intervening period boundary for any sys-
tem task. For the given task set with Up = 0.2, the

61t is important to mention that any values for n and periods
Th,-+Tpn can be considered for illustration purposes, provided
the resulting task set satisfies Eq. 3.

"The upper bound of Cy is (Urr—raa — Y v, Ci/T:) Ta,
which equals 0.9144.

lengths of backup from 0 to T3 is 0.72, from T to T3 is
0.08, from T3 to T3 is 0.1, from T3 to Ty is 0.18, from
T, to 2711 is 0.36, and so on. The resulting schedule
with inserted backup slots is depicted in Fig. 3.

7:0.72 B,=008 B;=0.1 B;=018 Bg=0.36

0 112 162 252 343 418 486 612 7.03 :Task Finish Times

1 2 2 2 2
1 BT L LG B T
Figure 3: RM-schedule of 4 tasks with backup slots

In the event when no fault has occurred, the backup
slots are swapped with the computation time and the
resulting schedule would be similar to Fig. 2.

The following two examples [13] highlight the in-
sufficiency of the proposed FT-RMA schedulability
bound, Ugpr_gryma. The first example demonstrates
two cases where the original recovery scheme [2] fails
to guarantee the schedulability under fault condition,
and then the second example highlights a flaw in the
modified recovery scheme [3].

Example 1: Two cases where the original recovery
scheme [2], the faulty tasks re-executes at its own pri-
ority, is found to be flawed.

Case (1) The lowest priority task, T4, misses its
deadline if a fault had occurred during its execution
and it had re-ezecuted.

Let 74 be a faulty task. 7,72,73 and also 74
swapped their respective execution time slots with the
backup slot Bj. 74 finishes at 2.71, and since no other
higher priority tasks are ready, it is allowed to re-
execute at its own priority. The recovery task 75 only
gets to execute for 0.89 time units utilizing backup
slot B; of length 0.72 time units and a natural slack
of length 0.17. During the time interval [3.6, 5.4], the
execution of recovery task 7§ gets preempted by higher
priority tasks and hence, never gets to complete its ex-
ecution before time 5.4. Fig. 4 illustrates this fact.

Task 4 missesits deadline

~~

Fa{[inTaﬁ(4

1)1 1 1 r

2| 2
Tl T2 T4 'l'4 '[1 T2

0 09 18 271 36 45 54
Figure 4: 74 misses its deadline

Now referring back to Lemma 1, with backup uti-
lization Up being 0.2, there exists backup slots of to-
tal length 1.08 time units within 74’s period. As per
Lemma 2, with backup slots of length 1.08 time units

being present and swapping being done, enough slack
should have been available for successful re-execution
of 74, which is not the case here. This is the discrep-
ancy which was highlighted by the verification process.

Case (2) The lowest priority task misses its dead-
line due to re-execution of a faulty higher priority task.

Let 73 be a faulty task. As per the recovery scheme,
it re-executes at its own priority. The recovery task
T4 preempts 74, and causes the deadline of 74 to be
missed. It can be observed from Fig. 5 that 74 executes
for only 0.9 time units and still would be needing 0.01
time units to complete its execution.

Faultin Task 3 Task 4 misses its deadline

1] 1] 1 r 1| 2] 2| 2
G B

0 0.9 18 2.7 3.6 45 5.4

Figure 5: 74 misses its deadline

Case (2) highlights the flaw in Lemma 3 where it

was proven that a lower priority task would not miss
its deadline due to re-execution of a higher priority
task. This particular flaw has not been discovered
by the authors of [2, 3]. However, the case (1) was
identified by them, and then based on that observa-
tion the recovery scheme was later modified. As we
will demonstrate next, the modified recovery scheme
is also flawed.
Example 2: A case where the lowest priority task
misses its deadline if a fault had occurred in one
of higher priority tasks, and the modified recovery
scheme [3] has been used for re-ezecution.

Consider the same task set as described above. Let
75 fail and re-execute at its own priority. This causes
T4 to miss its deadline. Note that during 73’s recovery,
no other higher priority tasks are ready, therefore, 73
would maintain its priority and will complete success-
fully. As depicted in Fig. 5, 74 would utilize backups
and execute for 0.9 time units and still would be need-
ing 0.01 time units before time 5.4.

It is important to highlight that we have been able
to identify and construct a specific task set (see Eq. 3
in Section 5.3) which violates the basis of FT-RMA
protocol operations. This case study of FT-RMA has
been able to demonstrate that the formal techniques
can be used in providing for correctness checks and
precise assessment of timing requirements. Further-
more, formal techniques can provide insights into an
algorithm /design decisions, and underlying assump-
tions.

6 Conclusions and Future Work

We have established how formal methods can be
used to specify and verify dependable real-time pro-
tocols. We have presented a formal analysis of com-
posite fault-tolerant real-time protocols using formal
techniques where we have been able to identify flaws
in the design analysis. We have discussed several con-
comitant benefits of the formal approach for analysis
of these protocols. We acknowledge that the efficiency
and effectiveness of our work will depend on the level
of detail used/needed in the abstractions. We are
currently investigating issues pertinent to modeling
real-time deadlines in the representation techniques.
A detailed formal approach to incorporate continu-
ous/dense time model [1] needs to be developed to
improve the overall objectives of formal verification
and validation process.

References
[1] R. Alur, T.A. Henzinger, “Logics and Models of Real
Time : A Survey.” Real Time : Theory in Practice, (J.W.
de Bakker, K. Huizing, W.-P. de Roover, G. Rozenberg,
eds.), LNCS 600, Springer-Verlag, pp. 74-106, 1992.

[2] S. Ghosh, R. Melhem, D. Mossé “Fault-Tolerant Rate
Monotonic Scheduling.” Proc. of DCCA-6, 1997.

[3] S. Ghosh, R. Melhem, D. Mossé, J.S. Sarma, “Fault-
Tolerant Rate Monotonic Scheduling.” Real-Time Systems,
vol. 15, no. 2, pp. 149-181, Sept. 1998.

[4] C. Heitmeyer, D. Mandrioli, Formal Methods for Real-
Time Computing. John Wiley, New York, 1996.

[5] F. Jahanian, A.K-L. Mok, “Safety Analysis of Timing
Properties in Real-Time Systems.” IEEE Trans. on Soft-
ware Engineering, SE 12(9), pp. 890-904, Sept. 1986.

[6] M. Joseph, Real-time Systems: Specification, Verification
and Analysis. Prentice Hall, London, 1996.

[7] J. Lehoczky, L. Sha, Y. Ding, “The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Aver-
age Case Behavior.” Proc. of RTSS, pp. 166-171, 1989.

[8] C.L.Liu, J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment.” Journal
of the ACM, 20(1), pp. 46—61, January 1973.

[9] S. Owre, J. Rushby, N. Shankar, F. von Henke, “Formal
Verification for Fault-Tolerant Architectures: Prolegomena
to the Design of PVS.” IEEE Trans. Software Engineering,
SE 21(2), pp. 107-125, Feb. 1995.

[10] M. Pandya, M. Malek,“Minimum Achievable Utilization
for Fault-Tolerant Processing of Periodic Tasks.” IEEE
Trans. on Computers, 47(10), pp. 1102-1112, Oct. 1998.

[11] J. Rushby, “Formal Methods and the Certification of Crit-
ical Systems.” SRI-TR CSL-93-7, Dec. 1993.

[12] J. Rushby, F. von Henke, “Formal Verification of Algo-
rithms for Critical Systems.” IEEE Trans. on Software
Engineering, SE 19(1), pp. 13-23, Jan. 1993.

[13] P. Sinha, N. Suri, “Identification of Test Cases Using a
Formal Approach.” Proc. of FTCS-29, pp. 314-321, 1999.

[14] N. Suri, P. Sinha, “On the Use of Formal Techniques for
Validation.” Proc. of FTCS-28, pp. 390-399, 1998.

