
On the Use of Formal Techniques for Analyzing

Dependable Real�Time Protocols�

Purnendu Sinha Neeraj Suri

ECE Dept� Dept� of Computer Engineering

Boston University Chalmers University

Boston� MA ����� G�oteborg� Sweden

sinha�bu�edu suri�ce�chalmers�se

Abstract

The e�ective design of composite dependable and
real�time protocols entails demonstrating their proof of
correctness and� in practice� the e�cient delivery of
services� We focus on these aspects of correctness and
e�ciency� speci�cally considering the real�time aspects
where the need is to ensure satisfaction of stringent
timing and operational constraints� In this paper we
establish the use of mathematically rigorous techniques
such as formal methods �FM�s	 in not only provid�
ing for their traditional usage in establishing correct�
ness checks� but also for their capability of assessing
and analyzing timing requirements in dependable real�
time protocols� We present our perspectives in utiliz�
ing FM�s in developing exact case analyses of fault�
tolerant and real�time protocols� We discuss the in�
sights obtained and
aws identi�ed in the hand analy�
sis over the process of formally analyzing and verifying
the correctness of an existing fault�tolerant real�time
scheduling protocol�

� Introduction
Computers used for critical applications utilize de�

pendable and real�time protocols to deliver reliable
and timely services� Additionally� apart from the
stringent operational and timing considerations there
is also a driver to deliver high performance and max�
imal utilization of system resources� In such systems�
the delivery of time�critical services relies on mecha�
nisms� primarily scheduling disciplines� to satisfy op�
erational and timing constraints� However� the de�
sign and analysis of optimal scheduling algorithms for
real�time systems is known to be computationally in�
tractable� Exacerbating the situation is the fact that
correctness proofs for composite dependable and real�

�Supported in part by DARPA Grant DABT������C�����
and NSF CAREER CCR ������	

time algorithms and their exact�characterization tend
to be quite complex and� potentially� error prone� The
demonstration of the correctness of composite depend�
able real�time protocols is usually performed through
simulation studies though at a cost of lack of rigor�
ousness and not being comprehensive to cover the en�
tire state�space of the protocol operation� From the
viewpoint of establishing correctness and e�cient de�
livery of services� we focus on time�critical aspects of
dependable real�time protocols in this paper�

The e�ective use of formal techniques for analysing
�discrete� dependable or real�time services has been
demonstrated in ��� �� 		� 	
� 	��� In this paper�
we investigate formal methods capabilities for rigor�
ous analysis of �composite� dependable real�time pro�
tocols when the environment is not fully predictable
�e�g�� systems operating in non�deterministic environ�
ments� i�e�� in presence of faults
� Speci�cally� our
primary contributions in the formal analysis and ver�
i�cation of dependable real�time protocols are�

� We demonstrate the capability of formal meth�
ods to be used as an analysis tool by developing
the exact case analysis of a fault�tolerant �FT

version of rate monotonic algorithm �RMA
� i�e��
FT�RMA� We discuss insights obtained over the
process of formally specifying and verifying the
correctness of RMA and FT�RMA�

� We highlight the capability of formal techniques
to identify �aws in the existing �and published

hand analysis of a FT�RMA algorithm� which we
encountered while formally specifying and prov�
ing its correctness�

The organization of the paper is as follows� Sec�
tion
 describes the system model chosen for our pro�
posed formalism and brie�y discusses formal methods�
Section � overviews the rate monotonic algorithm and

	

its fault�tolerant extension �FT�RMA
� Section � de�
velops our perspectives on deriving exact�case analysis
of FT�RMA� We present the formal speci�cation and
veri�cation of scheduling algorithms in Section �� We
conclude with a brief discussion in Section � on the ca�
pabilities and caveats in the use of formal techniques
in the real�time arena�

� System Models and Formal Methods

For our study� we consider conventionally used sys�
tems ���
� �� 	�� where the model involves tasks which
have speci�c correlation �e�g�� periodicity� utilization�
etc�
� follow a deterministic order of execution� and
with provision for incorporating non�deterministic as�
pects such as interrupts and faults�

Consider a set of n independent� periodic and pre�
emptible tasks ��� ��� � � � � �n� with periods T� � T� �
� � � � Tn� and execution times C�� C�� � � � � Cn� respec�
tively� being executed on a uni�processor system where
each task must be completed before the next request
for it occurs� All tasks are preemptible� and preemp�
tion overhead is assumed to be negligible�

We assume transient� intermittent and permanent
faults �fail�stop� fail�silent
� Furthermore� we con�
sider �
� �� that� �a
 fault recovery can be carried
out by re�execution of the faulty task� �b
 two suc�
cessive faults are separated by an interval of at least
Tn�Tn��� and �c
 errors can be detected and the cost
of detection is negligible or can be incorporated in a
task�s computation time�

Formal methods ��� 		�� through their capabilities
of deductive reasoning and mathematical induction�
provide extensive support for �a
 precise and unam�
biguous speci�cations and identi�cation of speci�ca�
tion level inconsistencies� veri�able design assump�
tions� and �b
 automated and exhaustive state explo�
ration over the veri�cation process� Because of the
state�space explosion problem associated with depend�
able and real�time protocols� we have chosen proof�
theoretic� formal approaches which utilize logical rea�
soning and derivations� as well as rules of induction�
to obtain a formal proof basis for the desired system
operations� We point the reader for details on for�
mal methods to the excellent study in �		�� For our
research� we utilize SRI�s Prototype Veri�cation Sys�
tem �PVS
� tool ���� although any formal environment
based on higher�order logic can be utilized�

�Formal methods include model�theoretic and proof�
theoretic approaches for veri
cation� We refer the reader to �		

Section ���� for a more detailed discussion on these approaches�

�PVS is being used both for its public domain availability
and for its comprehensive theorem proving environment�

With this background� we now present the classi�
cal RMA approach and subsequently its fault tolerant
extension� namely� FT�RMA which is subjected to for�
mal speci�cation and veri�cation� We begin with our
motivation for the selection of FT real�time scheduling
for demonstrating the capabilities of formal techniques
for analyzing dependable real�time protocols�

� FT�RT Scheduling � An Overview
In dependable time�critical systems� tasks must be

executed by their respective deadlines in order to de�
liver desired service despite the occurrence of faults�
Although our proposed formal approach is developed
as a generalized analysis tool� in order to demonstrate
a tangible analysis capability� we have selected the
FT rate monotonic algorithms �FT�RMA
 as they are
representative of a large class of composite depend�
able� real�time protocols� FT�RMA was developed in
DCCA �
� and a modi�ed journal version in ���� Over
the process of using these protocols �
� �� to show via�
bility of our formal V�V approach �	��� we have also
been able to identify test cases �	�� that actually make
the published FT�RMA protocols of �
� �� fail� We
�rst introduce the RMA ���� which is the basis for
FT�RMA �
� ���

��� RMA � A Review

The Rate Monotonic Algorithm �RMA
 ��� is an
optimal static priority algorithm for the task model
of Section
� in which a task with shorter period is
given a higher priority than a task with longer period�
A schedule is called feasible if each task starts after
its release time and completes before its deadline� A
given set of tasks is said to be RM�Schedulable if RMA
produces a feasible schedule� The processor utilization
of n tasks is given by U �

Pn

i��
Ci

Ti
�

A set of tasks is said to fully utilize the processor
if �a
 the RM�schedule meets all deadlines� and �b
 if
the execution time of any task is increased� the task
set is no longer RM�schedulable� Given n tasks in
the task set with execution times Ci for task �i� if
Ci � Ti�� � Ti �i � f	� n� 	g� and Cn �
T� � Tn�
then under the RMA� the task set fully utilizes the
processor�

The following theorem provides a su�cient condi�
tion to check for RM�schedulability�

Theorem � �L�L Bound ���� Any set of n peri�
odic tasks is RM�schedulable if the processor utiliza�
tion is no greater than n�

�

n � 	
� �

This schedulability bound of ��� being rather pes�
simistic �for large values of n� it converges to ���
 ne�
cessitates an exact case analysis of the RMA policy for

its practical applications� The necessary and su�cient
conditions for RM�schedulability based on processor
utilization appear in ���� Another approach to provide
the necessary and su�cient condition for schedulabil�
ity is based on worst�case response time calculation ����
We describe this later approach to compute response
times based on the number of invocations in an in�
terval and the computation time needed for each in�
vocation� For simplicity� we assumes a single task of
priority j� and all tasks phasings being zero�

The number of events at priority level j arriving
in the interval between two time instants x and y
is computed as number�x� y� j
 � dy�Tje � dx�Tje�
The computation time needed for these invocations is
compute time�x� y� j
 � number�x� y� j
� Cj �

So� at level i the computation time needed for all
invocations at levels higher than i is computed as�

total compute time�x� y� i
 �
i��X

j��

compute time�x� y� j

Let R�x� y� i
 be the response time at level i in the
interval �x� y
� If total compute time�x� y� i
 is zero�
the processor will not be preempted in the interval
and the whole of the time will be available for the
use at level i� If total compute time�x� y� i
 � �� then
the response time at level i cannot be less than y �
total compute time�x� y� i
� The above argument can
be de�ned recursively�

R�x�y�i� �

if�total�compute�time�x�y�i� � �� then y

else R�y� y�total�compute�time�x�y�i�� i�

endif

The worst�case response time at level i can then
be de�ned as Ri � R��� Ci� i
� If no computation is
needed at levels �� � � � � i�	� then the response time at
level i is the computation time Ci itself� if not� then
the amount of time needed at the higher levels is added
to the computation time�

Thus� a necessary and su�cient condition is given
as follows�

Theorem � �Exact	case Analysis
 � ���� A
given task set is schedulable i� �i 	 � i � n� Ri � Ti�
where deadlines di are bounded by Ci � di � Ti� �

The classical RMA does not have any provision
for re�execution of tasks to handle transient fault in�
stances� nor does it provide any guarantees for their
backup task schedulability� In the next section� we
outline how time�redundancy can be incorporated into
RMA to provide guarantees for tasks to meet their
deadlines even in the presence of faults �
� ���

��� FT�RMA � A Review

Currently� there are ongoing e�orts in extending
RMA to provide for fault�tolerance by incorporating
temporal redundancy �
� �� 	��� As mentioned in
the beginning of Section �� we have selected the ap�
proach proposed in �
� �� for our study� This approach
describes a recovery scheme for the re�execution of
faulty tasks� including a scheme to add slack �i�e�� idle
time
 to the schedule� and further derives schedulabil�
ity bounds for a set of tasks considering fault�tolerance
through re�execution of task� Furthermore� cases with
a single or with multiple faults within an interval of
length Tn � Tn�� are considered� Faults are assumed
to be transient such that a single identi�ed faulty task
can be re�executed�

Along with guaranteeing the schedulability of a task
set in the fault�free case �RMA
� we need to ensure the
schedulability of a task set even when the backups are
used for re�execution of some task� A recovery scheme
that ensures re�execution of any task after a fault has
been detected must satisfy the following conditions�

S�� There should be su�cient slack for any one in�
stance of any given task to re�execute�

S�� When any instance of �i �nishes executing� all
slack distributed within its period should be avail�
able for the re�execution of �i in case a fault is
detected�

S
� When a task re�executes� it should not cause any
other task to miss its deadline�

The original recovery scheme proposed in �
� is�
�The faulty task should re�execute at its own prior�
ity��

The following lemmas show the published �
� proof
of correctness of this approach�

Lemma � ����� If UB � Ci�Ti� i � 	� � � � � n� then
S� is satis�ed� �

Lemma � ����� If S� is satis�ed� and swapping�

takes place� then S� is satis�ed� �

Lemma
 ����� If S� and S� are satis�ed� and the
faulty task is re�executed at its own priority� then S

is satis�ed� �

A FT�RMA utilization bound was computed to
guarantee schedulability in the presence of a sin�
gle fault� This schedulability bound was derived as�
UFT�RMA � ULL�	 � UB
� where UB is equal to the
maximum of all tasks utilizations �UB � max Ui
�

�The slack is shifted in time by being swapped with the task�s
execution time if no fault occurs�

However� this recovery scheme of �
� may fail in
meeting a task�s deadline� even though a given task
set satis�es UFT�RMA bound� A modi�ed recovery
scheme is presented in ��� as�

�In the recovery mode� �r will re�execute at its
own priority� except for the following case� Dur�
ing recovery mode� any instance of task that has
a priority higher than that of �r and a deadline
greater than that of �r will be delayed until recov�
ery is complete��

The approaches presented in �
� �� attempted to
provide FT support to a task set satisfying UFT�RMA

bound� As mentioned� in ��� the authors have modi�ed
the recovery scheme of �
�� our initial interest was to
explore the capabilities of the formal process to iden�
tify the cause due to which a recovery task fails to
meet its deadline� and to highlight the shortcomings
in arguments presented in the hand analysis of the
original version of FT�RMA �
�� Concurrently� this
also resulted in developing the exact case analysis of
FT�RMA� which we describe in the next section�

� Our Perspectives on Exact�Case
Analysis of FT�RMA

The results presented in Section ��
 provide su��
cient conditions to check for schedulability under fault
assumptions� From a practical standpoint� the utiliza�
tion bound UFT�RMA is quite pessimistic arguing for
exact�case analysis of FT�RMA� In this section� we
present such an exact�case analysis� with the recovery
scheme in which the faulty task re�executes at its own
priority� We extend the procedure outlined in Sec�
tion ��	 �Theorem

 to incorporate the re�execution
time for the faulty task�

When a fault is detected during execution of a task�
the task needs to be re�executed� It is assumed that
the task re�executes at the end of its original sched�
uled time�slot� in order to ensure that the recover�
ing task will meet its deadline� we need to compute
the worst case response time of this re�executing task
and compare this value with its deadline� As depicted
in Fig� 	� the release time of this recovering task is
considered to be the task�s worst case response time
in the original schedule� Let WCi

m denote the worst
case response time of the mth instance of task i� i�e��
WCi

m � R�m � Ti�m � Ti � Ci� i
 Then� the condi�
tion to guarantee schedulability of recovery task can
be expressed as�

R�WCi
m�WCi

m � Ci� i
 � �m� 	
� Ti �	

fault occurred fault detected possible re-execution time slot

original
completion time

earliest possible start time
of recovery task

Figure 	� Re�execution of a Faulty Task

Since the faulty task re�executes at its own priority�
it will not a�ect higher priority tasks� To con�rm that
lower priority tasks are not a�ected by a faulty task�
�i� being re�executed� we need to compute the worst
case response times of these lower priority tasks �w�r�t�
�i
 incorporating re�execution time of �i� and compare
them with their respective deadlines�

Let EST �j
 be the earliest start time of a lower
priority task �j relative to recovery task �r� where r �
j � n� The execution time of �j will be at least delayed
by Cr� Incorporating this factor into the response time
calculation� the condition to guarantee schedulability
of lower priority tasks �w�r�t� �r
 is given as�

R�EST �j
 � Cr� EST �j
 � Cr � Cj � j
 � Tj �

Theorem
 �Exact	case Analysis

� A
task set is schedulable under single fault assumption
i� Equations
 and � are satis�ed� �

The above statement readily follows from our ear�
lier discussions�

We have provided an exact characterization for a
set of periodic tasks scheduled by the rate monotonic
algorithm for a single fault case� This exact character�
ization can be used to determine whether a recovery
task would meet its deadline or not� thereby ensuring
schedulability of a given task set� We present the for�
malization of the exact characterization in Section ��
�

� Formalization of FT�RT Protocols �
�RMA � FT�RMA	

An ability to formally specify and verify a given
fault�tolerant real�time protocol is an essential element
in our approach� Along with the formal aspect� we will
also discuss what interpretation�information we were
able to deduce from the formal approach� The formal
speci�cation and veri�cation of algorithms are per�
formed using PVS�� The main e�ort in formal speci��
cation was devoted in formalizing various assumptions

�For comprehensive PVS references
 the reader is referred to
http���pvs�csl�sri�com�

on task and system models� system requirements� the
scheduling policies� fault assumptions� and recovery
schemes and associated conditions they satisfy� The
key idea in our formal veri�cation is to demonstrate
the consistency of proof of correctness of any algo�
rithm by transforming it into a mathematical �or cal�
culational
 activity that can be easily checked by a
mechanical theorem prover� We present formal speci��
cations in the following sections� ��	 and ��
� Although
the PVS syntax for RMA and FT�RMA is used in the
subsequent sections� we will explain the nuances as
necessary for the discussion� In the formal representa�
tion below� we will identify the associated de�nitions�
axioms and theorems of RMA and FT�RMA which
were earlier presented in Sections ��	 and ��
� These
are marked as � in the PVS speci�cations�

��� Formal Speci�cation of RMA

The formal speci�cation� of RMA is embodied
in the PVS theory called rma� Task ID is de�
�ned as a predicate subtype of posnat� The types
posreal and Real Time are de�ned to be subtypes of
real� The types period range and execution range

are de�ned as subtypes of posreal� Task State

is an enumerated type� The task characteristics
are de�ned as Property which is a record type
with �elds Period� Execution� Phasing and State

which are of types period range� execution range�

Real Time and Task State� respectively� Our aim
here is to enumerate over the exhaustive task sets sat�
isfying various timing constraints and a given utiliza�
tion bound�

Property � TYPE � 	
 Period � period�range�

Execution � execution�range�

Phasing� Real�Time� State � Task�State
�

Task Vector is de�ned as an array with index type
Task ID and element type Property� The constraints
on task�s execution time� periodicity� deadline and pri�
ority are declared as AXIOMS� All other assumptions for
RMA are declared as dependent types and de�nitions
in the speci�cation�

Constraint�AX � AXIOM FORALL �i�Task�ID��

Execution�T�i�� �� Period�T�i��

Instance � TYPE � nat

Occurrence�	Task�ID� Instance
� Real�Time��

LAMBDA �i�Task�ID� j�Instance��

Phasing�T�i�� � j � Period�T�i��

�The complete speci
cations for RMA and FT�RMA are at
http���eng�bu�edu��suri�specs�specs�html�

Release�	Task�ID� Instance
� Real�Time��

LAMBDA �i�Task�ID� j�Instance��

Occurrence�i�j�

Periodic�LM � LEMMA

�FORALL �i�Task�ID� j�Instance� �

Occurrence�i� j���
 Occurrence�i� j� �

Period�T�i���

�Deadline being the next occurrence of task

Deadline � 	Task�ID� Instance
� Real�Time�

Deadline�AX � AXIOM

�FORALL �i�Task�ID� j�Instance��

Deadline�i� j� � Occurrence�i�j����

� Distinct priorities for tasks

Priority � 	Task�ID
� posreal�

Priority�AX�AXIOM �FORALL i � NOT EXISTS j�

Priority�i� � Priority�j��

� Priority assignment by RMA

K � posnat

RMA�Priority � 	Task�ID
� posreal� �

LAMBDA �i � Task�ID� � K � Period�T�i��

� Definition of Rate Monotonic priority

RMA�AX � AXIOM �FORALL i � FORALL j �

Period�T�i�� � Period�T�j�� IMPLIES

RMA�Priority�i� � RMA�Priority�j��

The processor utilization and a schedulability con�
dition �Theorem 	
 are formalized below�

� Definiton for Processor Utilization

Utilization � real �

sigma��� N� LAMBDA i �

Execution�T�i�� � Period�T�i���

� Sufficient Condition for schedulability

� �Theorem �� U �� N � �root��� N�
���

RMA � Conjecture

� �� exponent��� � Utilization� N�� N�

Following these de�nitions� we now discuss formal
representation of response time calculation described
in Section ��	� For simplicity� we assume a single task
of priority j� and all tasks phasings being zero� The
response time calculation is speci�ed below�

� Number of events at priority level �j�

� in 	x� y� time
interval

number�x� y � Real�Time� j � posnat��int �

ceil�y�Period�T�j���
 ceil�x�Period�T�j���

� Computation time for events at level �j�

compute�time�x� y � Real�Time� j � posnat��

Real�Time � number�x� y� j��Execution�T�j��

� Computation time for all invocations at

� levels higher than �i�

total�compute�time�x�y�Real�Time� i�posnat��

Real�Time � sigma��� i
��

�LAMBDA �i � int� � compute�time�x�y�i���

� Response time at level i in 	x� y�

x� y � var Real�Time

pr � var posnat

Response�x� y� pr� � recursive Real�Time �

�IF total�compute�time�x� y� pr� � � THEN y

ELSE Response�y� y �

total�compute�time�x� y� pr�� pr�

ENDIF� Measure �LAMBDA x� y� pr � x�

For example� to check whether a given task set is RM�
Schedulable or not for the case where all tasks phas�
ings are zero� we can apply the response time calcula�
tion �Theorem

 as below�

RM�Schedulable��T� Task�Vector�� bool �

�FORALL �i�rng��Period�T�i����Period�T�i�����

AND �FORALL �i� Task�ID��

Response���Execution�T�i���i���Period�T�i���

The predicate RM Schedulable� captures the no�
tion that if tasks are ordered as per their period and
if task response times are less than the respective pe�
riods then the task set is RM�schedulable�

A set of tasks is said to fully utilize the processor
if �a
 the RM�schedule meets all deadlines� and �b
 if
the execution time of any task is increased� the task
set is no longer RM�Schedulable� We specify this as�

Incr � real � �

Fully�Utilize��T� Task�Vector�� bool �

RM�Schedulable��T� AND �EXISTS �i� Task�ID��

EXISTS �j � Task�ID� � NOT

Response���Execution�T WITH 	�i����T�i� WITH

	Execution �� Execution�T�i���Incr����j���j�

� Period�T�j���

This formalization tests if a given task set fully uti�
lizes the processor� Besides validating the task set to
be RM�schedulable� it checks for the existence of a
task whose response time exceeds its period if the ex�
ecution time of any other task in the set is increased�

At this stage we have formalized the basic features
of the RMA on which the FT�RMA is developed� In
the next section� we formalize the assertions provided
in the hand�analysis of the FT�RMA �
��

��� Formalization of FT�RMA and Exact�
Case Analysis

The formal speci�cation of FT�RMA is embodied in
a PVS theory called ftrma� The pvs theory rma is ex�
plicitly imported� as the theory ftrma builds�extends
upon the rate monotonic theory� We begin with for�
malizing the calculation of the backup utilization UB
which is de�ned as max�Ui
 �i � 	� � � � � n� This is
computed by using max�U� n� function which �nds
the maximum value of task utilization from an array
U of size n� The backup time or slack within a period
L is calculated as�
Backup�L� posreal� � posreal � UB � L�

Next� we attempt to formalize the computation of
backup slot length between the mth period of �i and
nth period of �j � We need to check that beginning
period of any other task does not exist between times
mTi and nTj � This can be speci�ed as follows�

boundary��i�j�Task�ID� m�n�Instance�� bool�

NOT EXISTS�k � Task�ID� l � Instance� �

m � Period�T�i�� � l � Period�T�k�� AND

l � Period�T�k�� � n � Period�T�j��

The predicate boundary� is true if there does not
exist any time lTk such that mTi � lTk � nTj hold�
i�e�� there is no beginning period of lth instance of task
�k within times mTi and nTj � Now� the backup slot
calculation between mTi and nTj is speci�ed as�

BS�i�j� Task�ID� m�n� Instance�� real �

�IF boundary��i�j�m�n� THEN

UB � �n � Period�T�j��
 m � Period�T�i���

ELSE � ENDIF�

As discussed in Section ��	� the worst case execu�
tion time of any instance of a task can be computed
as follows�

WCET �i� Task�ID� m� Instance�� Real�Time �

Response�m�Period�T�i���

m�Period�T�i��� Execution�T�i��� i�

We attempt to formalize the assumption that two
faults are separated by the interval of length Tn�Tn���

Fault�AX� AXIOM

�FORALL�i�j�Task�ID� l�m�Instance��

faulty�i�l� AND faulty�j�m� AND

NOT EXISTS �k � Task�ID� n � Instance��

�faulty�k�n� AND Release�k�n���Release�j�m�

AND Release�k�n� �� Release�i�l�� IMPLIES

WCET�j�m� ��

WCET�i�l���Period�T�N���Period�T�N
�����

The above axiom states that for any two consec�
utive faults in a task set� the worst case execution
times of the two faulty tasks are separated by at least
Tn � Tn���

The su�cient condition� UFT�RMA� for schedula�
bility under a single fault assumption� ULL�	 � UB
�
is formally speci�ed as�

FT
RMA � Conjecture �� ��

exponent��� � Utilization��N���
UB���� N��

This basically checks whether a given task set sat�
is�es the fault�tolerant schedulability bound�

Exact�Case Analysis through the Formal
Veri�cation Process

In this section� we demonstrate that the exact�case
analysis results as a natural consequence of the com�
putational capabilities of formal veri�cation process�

In order to con�rm that a faulty task being re�
executed will meet its deadline� we need to check that
the task�s worst case response time� assumed to be re�
leased at time being its worst case response time in the
fault�free case and being re�executed at its own prior�
ity� is less than its period� We formalize this through
the predicate reexecute� which checks whether a
task being re�executed will meet its deadline� �Refer
to Eq�
 and the discussion on exact�case analysis in
Section �

reexecute��i� Task�ID� m� Instance�� bool �

Response�WCET�i�m�� WCET�i�m� �

Execution�T�i��� i� �� �m��� � Period�T�i��

We now formalize various conditions a recov�
ery scheme needs to satisfy to ensure successful re�
execution of faulty task� The condition S� that slack
available for an instance of recovery task� say �i�
should be at least Ci is formalized as the predicate
slack��

slack��n� Task�ID� m� Instance�� bool �

Backup�Period�T�n��� �� Execution�T�n��

The condition S� states that if there is a fault dur�
ing the execution� then the recovery task �i must be
re�executed for a duration of Ci before its deadline�
The predicate recovery� validates this condition�

recovery��i� Task�ID� m� Instance�� bool �

slack��i�m� AND reexecute��i�m�

The condition S
 ensures that if a task re�executes�
then it should not cause any other task to miss its
deadline� Since the recovery task re�executes at its

own priority and rate monotonic order is followed� it
can only a�ect lower priority tasks� To ensure that
lower priority tasks do not miss their deadlines� we
need to compute the worst case execution time of these
tasks� incorporating the re�execution time of the re�
covery task� This can be expressed exactly as follows�

Let EST �j
 be the earliest start time of a lower
priority task �j relative to recovery task �r� where r �
j � n� The execution time of �j �s will be delayed by
at least Cr� We take this factor into the response time
calculation as� Response�EST �j
�Cr� EST �j
�Cr�
Cj � j
 where EST �j
 is the worst case execution time
of task j� 	� The PVS speci�cation of this as follows�
�Refer to Eq� � and a discussion on exact�case analysis
in Section �

EST�j � Task�ID� � Real�Time �

Response��� Execution�T�j
���� j
��

lower�range�r � int� � TYPE �

�x � int � x � r AND x �� N�

Recovery�Check � CONJECTURE

FORALL �j � lower�range�r�� �

Response�EST�j� � Execution�T�r��� EST�j��

Execution�T�r���Execution�T�j���j� ��

Period�T�j��

As we will discuss further in Section ���� we needed
to incorporate the speci�cation for slack length calcu�
lation based on number of invocation of di�erent tasks
and their execution times� Furthermore� to probe into
the highlighted inconsistencies we had to specify the
full utilization conditions for a task set into the formal
speci�cation� We provide the formal representation of
these conditions below�

� Slack length calculation�

Slack�t� Real�Time� � Real�Time �

t
 sigma��� N� LAMBDA i �

ceil�t�Period�T�i��� � Execution�T�i���

� Check for full utilization by each task

Full��T � Task�Vector� � bool �

�FORALL �j � Task�ID� � IF �j � N� THEN

Execution�T�j���Period�T�j����
Period�T�j��

ELSE Execution�T�j�� �

��Period�T����
 Period�T�N�� ENDIF�

So far we have described the formal representation
of the assertions and�or arguments presented in the
hand�analysis of FT�RMA� In the next section� we out�
line our steps towards veri�cation and analysis of FT�
RMA and the observations deduced from the formal
process of specifying the RMA�FT�RMA properties�

��� Identi�cation of Flaws in FT�RMA
via the Formal Veri�cation Process

As mentioned in Section ��
� one of our interests
is to explore the use of formal methods to identify
the cause of failure of recovery task to satisfy its tim�
ing constraints� Prior to getting into the details� we
brie�y describe our developed formal�methods�based
approach for V�V� In �	��� we had presented the ra�
tionale and approaches for the use of formal methods
for validation� We have developed graphical repre�
sentation structures to encapsulate various veri�cation
information and schemes exploring deductive capabili�
ties of formal methods to identify test cases for valida�
tion� Particularly� we introduced two data structures�
Inference Tree �IT	 and Dependency Tree �DT	� with
these structures having capabilities for symbolic exe�
cution and query processing� respectively� In �	��� we
explored the deductive capabilities of our formal ap�
proach through a case study of FT�RMA and showed
how the di�erent queries being posed and their cor�
responding inferences at various stages of interactive
IT�DT�based process facilitated identi�cation of spe�
ci�c test cases�

Our initial e�orts were to ensure that conditions
S�� S� and S
 given in Section ��
 are satis�ed by
attempting to prove putative theorems re�ecting ex�
pected behaviors of the protocol operations� It is im�
portant to mention that simply by following the as�
sertions given in the hand analysis of FT�RMA �
��
the initial veri�cation process showed no �aws in the
arguments being presented� As our approach �	�� fa�
cilitates incorporation of speculative conditions to ex�
plore their implications on the overall working of the
protocol� we speculatively imposed condition where�
under the UFT�RMA utilization bound� a recovery
task misses its deadline by being preempted by other
higher priority tasks� The subsequent discussions
summarizes speci�c queries being posed in the DT
and corresponding inferences generated over the in�
teractive IT�DT process� For detailed discussion on
our formal approach for V�V and the IT�DT usages
for FT�RMA� the reader is referred to �	�� 	���

Based on the formal representation of backup uti�
lization and backup slot distribution over a speci�ed
period� veri�cation of recovery conditions indicated
that the condition S� is satis�ed but the condition
S� is not� It is important to mention that based on
the de�nition of backup utilization and backup slots
length calculations� the veri�cation process con�rmed
that there was enough slack available in the schedule�
This �agged discrepancies in Lemma
 as the condi�
tion S� should have been satis�ed if there was enough

slack reserved in the schedule and swapping had taken
place� Furthermore� it also revealed that the backup
slots reserved for re�execution may not be available for
that purpose� thereby contradicting the statement in
Lemma 	� These observations led us to incorporate
the speci�cation for slack length calculation based on
number of invocation of di�erent tasks and their ex�
ecution times� Following this step� we were able to
ascertain that there is not enough slack available for
the faulty task to re�execute� At this stage we have
been able to �ag the inconsistencies in the FT�RMA�
though the conditions due to which these inconsisten�
cies are arising is yet to be determined�

Based on the understanding on the rate monotonic
theory� we investigated the issues related to the least
natural slack length in the schedule� As discussed in
Section ��	� the schedule would have the least idle time
when the task set satis�es the full utilization condi�
tions� It is important to mention that in case of the
lowest priority task �n being faulty� to be able to re�
execute successfully under full utilization condition�
its execution time should not exceed �
T��Tn
�
� The
faulty task re�executes at its own priority while recov�
ering� At this stage� various conditions re�ecting full
utilization of the processor under the imposed specu�
lative conditions were systematically checked� As we
have shown in �	��� the failure of the composite query
representing conditions for full utilization of the pro�
cessor result in the test cases for validating the pro�
posed approaches of FT�RMA� The following compos�
ite condition �with � � �� considered as small as pos�
sible
 essentially checks the feasibility of FT�RMA�

Ci � Ti�� � Ti� � i 	 � i � n� 	�

Cn � �
T� � Tn
�
 � �� ��

such that
X

i

Ui � UFT�RMA

With this condition� a task set fails to be RM�
schedulable under the following two fault conditions�
�a
 the lowest priority task �n is faulty� and �b
 the
second lowest priority task �n�� is faulty�

We point out that with this set of conditionals
and with the second lowest priority task� �n��� be�
ing faulty� the modi�ed recovery scheme of ��� fails to
ensure schedulability of the lowest priority task� �n� as
will be illustrated in Section ����

��	 Illustrating the Failure of FT�RMA
with the Identi�ed Test Cases

As discussed in the previous section� conditions for
full utilization of the processor is a guiding factor to
validate the proposed schemes of FT�RMA� Let us

�i Ci Ti Ui � Ci�Ti
�� ��� ��� ��				
�� ��� � ��	��
�� ��� ��� ���
�� ���	 ��� ��	���

Table 	� A set of � periodic tasks

consider� a set of � periodic tasks� f��� ��� ��� ��g� with
their respective periods being ���� �� ��� and ���� and
the deadline of each task being equal to its period� Uti�
lizing Eq� �� the execution times are then computed
as shown in Table 	� Thus� the values of UB � ULL
and UFT�RMA� as expressed in Sections ��	 and ��
�
are ��
� ������ and ������� respectively� Note that
the value of C� is upper bounded by the execution
time such that the corresponding total processor uti�
lization is equal to UFT�RMA� Thus� the execution
time of ��� C�� can have any numerical value	 satisfy�
ing ��� � C� � ���	��� As a test case� we choose C�

as ���	� Thus� the total processor utilization by the
task set is ������� Since the total processor utiliza�
tion by this task set is less than UFT�RMA �������
�
with recovery schemes of �
� ��� a single fault should
be tolerated by re�execution of the faulty task�

Let us �rst consider the fault�free case� Since the
total utilization of the processor �������
 is less than
the least upper bound �������
� the task set is RM�
schedulable� The resulting schedule without consider�
ing backup slots is depicted in Fig�
� In subsequent
timing diagrams of the RM�schedule of the task set�
� ji denotes the jth instance of task �i�

τ1

1
τ
1

2 τ
1

3 τ
1

4 τ
2

1 τ
2

2 τ
2

3 τ
2

4

0 0.9 1.8 3.62.71 4.5 5.4 6.31

Figure
� RM�schedule of � tasks

We now illustrate the schemes �
� �� to insert slacks
in the schedule by FT�RMA� The backup task can
be imagined to be occupying backup slots between ev�
ery two consecutive period boundaries� where a period
boundary is the beginning of any period� Therefore�
the length of backup slot between the kth period of �i
and lth period of �j is given by UB�lTj � kTi
� where
there is no intervening period boundary for any sys�
tem task� For the given task set with UB � ��
� the

�It is important to mention that any values for n and periods
T�� � � �Tn can be considered for illustration purposes
 provided
the resulting task set satis
es Eq� ��

�The upper bound of C� is
�
UFT�RMA �

P
�

i��
Ci�Ti

�
T�

which equals ���	���

lengths of backup from � to T� is ���
� from T� to T� is
����� from T� to T� is ��	� from T� to T� is ��	�� from
T� to
T� is ����� and so on� The resulting schedule
with inserted backup slots is depicted in Fig� ��

τ
1

4τ
1

3τ
1

2τ1

1
τ

2

1 τ
2

2 τ
2

3 τ
2

4

0 3.43 4.86 6.12 7.03

B = 0.1 B = 0.08B = 0.72 B = 0.361 2 3 5

: Task Finish Times

B = 0.184

1.12 1.62 4.182.52

Figure �� RM�schedule of � tasks with backup slots

In the event when no fault has occurred� the backup
slots are swapped with the computation time and the
resulting schedule would be similar to Fig�
�

The following two examples �	�� highlight the in�
su�ciency of the proposed FT�RMA schedulability
bound� UFT�RMA� The �rst example demonstrates
two cases where the original recovery scheme �
� fails
to guarantee the schedulability under fault condition�
and then the second example highlights a �aw in the
modi�ed recovery scheme ����
Example �� Two cases where the original recovery
scheme �
�� the faulty tasks re�executes at its own pri�
ority� is found to be �awed�

Case ��� The lowest priority task� ��� misses its
deadline if a fault had occurred during its execution
and it had re�executed�

Let �� be a faulty task� ��� ��� �� and also ��
swapped their respective execution time slots with the
backup slot B�� �� �nishes at
��	� and since no other
higher priority tasks are ready� it is allowed to re�
execute at its own priority� The recovery task � r� only
gets to execute for ���� time units utilizing backup
slot B� of length ���
 time units and a natural slack
of length ��	�� During the time interval ����� ����� the
execution of recovery task � r� gets preempted by higher
priority tasks and hence� never gets to complete its ex�
ecution before time ���� Fig� � illustrates this fact�

τ
1

1 τ
1

2 τ
1

3 τ
1

4 τ
r

4 τ
2

1 τ
2

2 τ
2

3

0 1.8 3.6 4.5 5.4

Task 4 misses its deadlineFault in Task 4

2.710.9

Figure �� �� misses its deadline

Now referring back to Lemma 	� with backup uti�
lization UB being ��
� there exists backup slots of to�
tal length 	��� time units within ���s period� As per
Lemma
� with backup slots of length 	��� time units

being present and swapping being done� enough slack
should have been available for successful re�execution
of ��� which is not the case here� This is the discrep�
ancy which was highlighted by the veri�cation process�

Case ��� The lowest priority task misses its dead�
line due to re�execution of a faulty higher priority task�

Let �� be a faulty task� As per the recovery scheme�
it re�executes at its own priority� The recovery task
� r� preempts ��� and causes the deadline of �� to be
missed� It can be observed from Fig� � that �� executes
for only ��� time units and still would be needing ���	
time units to complete its execution�

τ
1

1 τ
1

2 τ
1

3 τ
r

3 τ
1

4 τ
2

1 τ
2

2 τ
2

3

0 1.8 2.7 3.6 4.5 5.4

Fault in Task 3 Task 4 misses its deadline

0.9

Figure �� �� misses its deadline

Case �

 highlights the �aw in Lemma � where it
was proven that a lower priority task would not miss
its deadline due to re�execution of a higher priority
task� This particular �aw has not been discovered
by the authors of �
� ��� However� the case �	
 was
identi�ed by them� and then based on that observa�
tion the recovery scheme was later modi�ed� As we
will demonstrate next� the modi�ed recovery scheme
is also �awed�

Example �� A case where the lowest priority task
misses its deadline if a fault had occurred in one
of higher priority tasks� and the modi�ed recovery
scheme ��� has been used for re�execution�

Consider the same task set as described above� Let
�� fail and re�execute at its own priority� This causes
�� to miss its deadline� Note that during ���s recovery�
no other higher priority tasks are ready� therefore� ��
would maintain its priority and will complete success�
fully� As depicted in Fig� �� �� would utilize backups
and execute for ��� time units and still would be need�
ing ���	 time units before time ����

It is important to highlight that we have been able
to identify and construct a speci�c task set �see Eq� �
in Section ���
 which violates the basis of FT�RMA
protocol operations� This case study of FT�RMA has
been able to demonstrate that the formal techniques
can be used in providing for correctness checks and
precise assessment of timing requirements� Further�
more� formal techniques can provide insights into an
algorithm�design decisions� and underlying assump�
tions�

 Conclusions and Future Work
We have established how formal methods can be

used to specify and verify dependable real�time pro�
tocols� We have presented a formal analysis of com�
posite fault�tolerant real�time protocols using formal
techniques where we have been able to identify �aws
in the design analysis� We have discussed several con�
comitant bene�ts of the formal approach for analysis
of these protocols� We acknowledge that the e�ciency
and e�ectiveness of our work will depend on the level
of detail used�needed in the abstractions� We are
currently investigating issues pertinent to modeling
real�time deadlines in the representation techniques�
A detailed formal approach to incorporate continu�
ous�dense time model �	� needs to be developed to
improve the overall objectives of formal veri�cation
and validation process�

References
�	� R� Alur
 T�A� Henzinger
 �Logics and Models of Real

Time � A Survey�� Real Time � Theory in Practice
 �J�W�
de Bakker
 K� Huizing
 W��P� de Roover
 G� Rozenberg

eds��
 LNCS ���
 Springer�Verlag
 pp� ���	��
 	����

��� S� Ghosh
 R� Melhem
 D� Moss�e �Fault�Tolerant Rate
Monotonic Scheduling�� Proc� of DCCA��
 	����

��� S� Ghosh
 R� Melhem
 D� Moss�e
 J�S� Sarma
 �Fault�
Tolerant Rate Monotonic Scheduling��Real�Time Systems

vol� 	�
 no� �
 pp� 	���	�	
 Sept� 	����

��� C� Heitmeyer
 D� Mandrioli
 Formal Methods for Real�

Time Computing� John Wiley
 New York
 	����

��� F� Jahanian
 A�K�L� Mok
 �Safety Analysis of Timing
Properties in Real�Time Systems�� IEEE Trans� on Soft�

ware Engineering
 SE 	����
 pp� �������
 Sept� 	����

��� M� Joseph
 Real�time Systems� Speci�cation� Veri�cation

and Analysis� Prentice Hall
 London
 	����

��� J� Lehoczky
 L� Sha
 Y� Ding
 �The Rate Monotonic
Scheduling Algorithm� Exact Characterization and Aver�
age Case Behavior�� Proc� of RTSS
 pp� 	���	�	
 	����

��� C�L� Liu
 J�W� Layland
 �Scheduling Algorithms for Multi�
programming in a Hard�Real�Time Environment�� Journal
of the ACM
 ���	�
 pp� ����	
 January 	����

��� S� Owre
 J� Rushby
 N� Shankar
 F� von Henke
 �Formal
Veri
cation for Fault�Tolerant Architectures� Prolegomena
to the Design of PVS�� IEEE Trans� Software Engineering

SE �	���
 pp� 	���	��
 Feb� 	����

�	�� M� Pandya
 M� Malek
�Minimum Achievable Utilization
for Fault�Tolerant Processing of Periodic Tasks�� IEEE

Trans� on Computers
 ���	��
 pp� 		���			�
 Oct� 	����

�		� J� Rushby
 �Formal Methods and the Certi
cation of Crit�
ical Systems�� SRI�TR CSL����	
 Dec� 	����

�	�� J� Rushby
 F� von Henke
 �Formal Veri
cation of Algo�
rithms for Critical Systems�� IEEE Trans� on Software

Engineering
 SE 	��	�
 pp� 	����
 Jan� 	����

�	�� P� Sinha
 N� Suri
 �Identi
cation of Test Cases Using a
Formal Approach�� Proc� of FTCS�
�
 pp� �	����	
 	����

�	�� N� Suri
 P� Sinha
 �On the Use of Formal Techniques for
Validation�� Proc� of FTCS�
�
 pp� �������
 	����

