
Agile Sink Selection in Wireless Sensor Networks

Mohammadreza Mahmudimanesh, Neeraj Suri
Technical University of Darmstadt, Germany

Email: {reza,suri}@cs.tu-darmstadt.de

Abstract—The conventional setup of a wireless sensor network
is composed of several sensor nodes and one or more sinks.
The network topology and data collection techniques are then
optimized towards efficient collection of the sensed data at
the sink(s). In this paper, we present a novel network coding
technique based on Compressed Sensing that allows each node
to operate as a sink. Our network coding technique efficiently
disseminates a number of linear combinations of the sensed data.
After the dissemination phase, the entire sensed data is available
by querying any node of the network. This is especially useful for
distributed control using a wireless sensor and actuator network
or in scenarios where the end user needs to access the global
state of the environment from any node in its vicinity; e.g., when
the end user is mobile.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are distributed sensory
systems for large-scale monitoring of physical parameters of
interest such as seismic vibrations, temperature, light intensity,
radiation level, etc. [31]. They have applications in environ-
ment monitoring, industrial automation, surveillance, and so
on. A WSN consists of battery-powered Sensor Nodes (SNs)
that communicate with each other over a wireless medium.
Due to energy constraints, the communication range is limited;
hence, each SN can only exchange information with a few
neighboring nodes [20].

In a typical WSN, all of the sensed data are cooperatively
gathered at a dedicated node called sink [1]. The end user of the
WSN fetches these data from the sink for further processing.
In this paper, we present an all-to-all dissemination method
such that all of the sensed data are accessible from any node
of a WSN. In simple words, each node can potentially be a
sink. This grants more flexibility and mobility to the end user
of the WSN, since it is possible to access the global state of
the environment from any arbitrary SN in its vicinity.

A. Problem statement

Consider a WSN consisting of n static SNs. Suppose that
vector f ∈ Rn is made by stacking the values recorded by the
SNs. Thus, the ith entry of vector f , namely fi, is equal to the
value recorded by the ith SN. Throughout this paper, we may
use either of the terms spatial signal or vector interchangeably
and both refer to f . The goal of our dissemination method is
to make the vector f available to all SNs within a certain time
limit. This is useful for Wireless Sensor and Actuator Networks
(WSANs) [33] when a distributed control is performed based
on the global state of the environment. We also consider the
scenario where the global state can be recovered by fetching
a limited amount of data from a small subset of the SNs; e.g.,

when a mobile sink visits some SNs and estimates the global
state of the environment by extracting their data.

There are two challenges to achieve this goal. First, the
number of transmissions by the SNs must be minimized in
order to meet bandwidth limitations and also save battery.
Second, the dissemination protocol must be light-weight such
that it can be easily implemented on the basic hardware
platforms of the SNs.

B. Contributions

This paper introduces Comprensus, a novel protocol for
efficient dissemination of compressible data in a WSN. Com-
prensus draws its concepts from the well known consensus
methods studied in distributed control literature [25]. Unlike
consensus, compressibility of the data plays a decisive role in
our protocol. The more compressible the spatial signal is, the
less transmissions are required by Comprensus to disseminate
the data. Comprensus proves a significant performance gain
over consensus techniques by exploiting the compressibility
of the sensed data and reducing the number of transmissions.

Our approach has two advantages over the straightforward
solution that gathers data at a stationary sink and sends it to
the mobile end user. First, our method allows each SN to be
a potential sink. Second, there is no need for the end user to
be in radio range of the stationary sink. The mobile end user
can extract the global state of the environment from any SN in
its vicinity. This is especially useful for in-door applications
where the base station is not necessarily accessible from any
arbitrary location in the environment.

Evaluations show that using Comprensus each SN can have
an estimation of the global state with a Signal-to-Noise Ratio
(SNR) of more than 50 decibels. This level of SNR indicates
that Comprensus can achieve a highly accurate estimation
of the global state at all SNs. In Section III we show that
under a fixed accuracy requirement a tradeoff between latency
and energy consumption can be settled depending on specific
application requirements. We investigate scenarios ranging
from low-latency energy-aggressive mode to energy-preserving
high-latency mode. Comprensus proves to be easily tunable to
each of these configurations.

C. Paper organization

Section II briefly reviews the related work. Section II-A
gives a preliminary background of the theories that Com-
prensus is based on. The definitions and theorems described
in Section II-A are used in explanation of the Comprensus
protocol which is detailed in Section III. Section IV provides
evaluation results of the Comprensus protocol applied to a
large set of simulated WSNs and compares the performance of978-1-4799-4657-0/14/$31.00 c© 2014 IEEE



Comprensus to dissemination methods based on decentralized
compression via randomized gossiping [29].

II. BACKGROUND AND RELATED WORK

Several studies report that spatial signals recorded by dense
WSNs are compressible under a linear transform such as Dis-
crete Cosine Transform (DCT) or Discrete Wavelet Transform
(DWT) [11], [19], [21]–[23]. This means that vector f can be
written as f = Ψx for some orthonormal matrix Ψ such that
x is almost sparse. More precisely, except a few significant
components, all other components of x are negligibly small.

The challenge of applying transform compression to WSNs
is that one does not know the location of the significant
components of x ahead of time. Therefore, it is hard to
implement these techniques in a distributed manner for WSNs
[12]. The theory of Compressed Sensing (CS) solves this
problem by introducing a novel sampling technique to recover
f from a few random linear measurements [7], [8]. Its simple
sampling technique and minimum coordination overhead as
well as robustness to noise makes it particularly suitable for
implementation in WSNs [10]. We will explain the basics of
the CS theory in more details in Section II-A.

Various adaptations of the CS theory are proposed for
distributed sensing in WSNs to handle the problem of col-
lecting the data at a single sink [2], [3], [15], [19], [22]. These
techniques are discussed in more details in Section II-B1 after
explaining the preliminary background of the CS theory. Our
work is closely related to [29]. Rabbat et al. in [29] employ
average consensus via randomized gossiping [5] to disseminate
the measurements in a WSN. The novelty of Comprensus is its
efficient network coding technique. We show that Comprensus
requires much less iterations and transmissions than [29]
to disseminate the measurements. We will revisit data dis-
semination based on compression via randomized gossiping
[29] in Section II-B2 after describing the basics of the CS
theory required for the explanation of this technique. We show
that Comprensus significantly outperforms compression via
randomized gossiping [5] both in terms of timely dissemination
and reducing the number of in-network transmissions.

Next, we briefly review the fundamentals of the CS theory
and study its applications in WSNs.

A. Compressed Sensing

The CS theory is initially based on the Restricted Isometry
Property (RIP) [9]. This paper is based on the newer version
of the CS theory that does not require the RIP. The so called
RIPless CS theory [6] allows for a computationally feasible
method to certify whether the preconditions of accurate signal
recovery hold for a particular setup of Comprensus.

We call a vector a ∈ Rn a sensing vector, and the
inner product of a sensing vector and vector f is called a
measurement. Let y1, y2, . . . , ym be m measurements such that

yj = aj
T f + σzj , j ∈ {1, 2, . . . ,m} (1)

where aj are the sensing vectors, {zj} is the white noise
sequence and σ2 is the noise variance. This can be also written
using matrix notations:

y = Af + σz (2)

where y = [y1 y2 . . . ym]T , A = [a1 a2 . . . am]T and
z = [z1 z2 . . . zm]T .

CS allows to recover the n-dimensional vector f from
m < n measurements under certain conditions for f and the
sensing vectors as follows. We assume that f can be sparsely
represented under a linear projection using an orthonormal
matrix Ψ. Suppose that f = Ψx for a suitably chosen
orthonormal matrix Ψ such that x is sparse. Vector x is called
a sparse vector when it has s � n non-zero components and
all its other (n − s) components are zero. Sparsity plays an
important role in the CS theory. The sparser the vector x
is, the fewer measurements are required to recover f . The
spatial signals recorded by a WSN admit a nearly sparse
representation under an orthonormal linear transform such as
Fourier, DCT or DWT [23].

1) Isotropy and Incoherence: Isotropy and incoherence are
the other necessary conditions in order to recover f from y [6].
Let a ∈ Rn be a random sensing vector with independent and
identically distributed components drawn from distribution F ,
i.e., a iid∼ F .

Definition 1. [6] Distribution F has the isotropy property,
when aaT is expected to be the identity matrix. Mathematically,

E[aaT ] = I , a ∼ F. (3)

The isotropy condition can be weakened to near isotropy,
i.e., E[aaT ] ≈ I and still f is accurately recoverable from the
measurement vector y [6].

Definition 2. [6] Coherence parameter µ is defined as the
smallest value µ such that

|aTj ψi|2 ≤ µ (4)

for all sensing vectors aj and columns ψi of Ψ,
j ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , n}.

We say that the sensing vectors are more incoherent if
the value of µ is a smaller number. According to [6], the
more incoherent the sensing vectors are, the less random
measurements are required for accurate recovery. Candes et
al. in their RIPless theory of CS [6] discuss some of the
random distributions F obeying the isotropy condition. These
include the Gaussian distribution, Rademacher distribution and
random Fourier sampling [6]. Randomized sampling brings a
key benefit for WSNs by eliminating the need for centralized
coordination [3], [19].

It is shown in [6] that if the isotropy condition holds and the
number of measurements m is in the order of O(µs log n), then
f can be recovered from y with an overwhelming probability.
Therefore, we need a basis1 Ψ and a set of sensing vectors
with isotropy property such that f is compressible under Ψ and
the columns of Ψ have the least coherence with the sensing
vectors. In this paper, we propose a novel network coding
technique that fulfills these conditions.

1A basis for Rn is a set of vectors ψi, i ∈ {1, . . . , n}, such that any
vector f ∈ Rn can be represented as f =

∑n
i=1 xiψi where xi are called

the coefficients of f in basis Ψ. The corresponding transformation matrix Ψ
is made by putting the vectors ψi in a matrix, i.e., Ψ = [ψ1 ψ2 . . . ψn] and
f = Ψx where x = [x1 x2 . . . xn]T .



2) Signal recovery: In order to recover f from y, first we
need to solve the following convex optimization problem [6].

minimize
x̄∈Rn

1

2
‖AΨx̄− y‖22+λσ‖x̄‖1 (5)

where λ = 10
√
m log n, ‖·‖1 is the norm-1 operator and ‖·‖2

is the norm-2 operator2.

Some of the efficient and accurate algorithms for solving
this problem can be found in [4], [18]. If x̂ is the solution to
the convex optimization problem in Equation 5, then f̂ = Ψx̂
will estimate the original signal f with an error bounded by
polylog(n)(s/m)σ2 [6]. In practice, signal f is not strictly
sparse under the Ψ-transform. Instead, x has a few components
with larger magnitudes and most of its remaining components
are nearly zero. Suppose that xs is a sparse approximation
of x by keeping s largest components of x and zeroing its
remaining (n− s) components. It is shown in [6] and [8] that,
in such a case the recovery error will not grow much more
than O(‖x− xs‖2) .

B. Applications of CS in WSNs

Suppose that each SN of a WSN senses one entry of
the spatial signal vector f . The ith entry of f , namely fi, is
equal to the value sensed by the ith SN. Suppose that SN i
randomly generates the ith column of matrix A. Let αi be the
ith column of A. Then, y = f1α1 + f2α2 + · · · + fnαn can
be calculated through aggregation over a spanning tree formed
on the WSN and the measurement vector y is delivered to the
sink [19]. Efficient protocols for data fusion and aggregation
using spanning trees is studied in [32].

1) Data collection: We assume that each SN is given
a unique id and runs a pseudo-random number generator
algorithm seeded by its id to produce αi. All of the SNs
run the same pseudo-random number generator algorithm,
though with different seeds. The pseudo-random number gen-
erator algorithm should be selected such that it is unlikely
that two SNs generate the same sequence of random values.
The measurement matrix A can be easily reproduced at the
sink by executing the same pseudo-random number generator
algorithm seeded by every SN id. Therefore, the measurement
matrix A does not need to be communicated between the SNs
and the sink. The SNs and the sink only need to agree on a
common pseudo-random number generator algorithm. Having
A and y, the sink can recover f from y as detailed in Section
II-A2. This process forms the main building block of many
distributed data gathering techniques based on CS [2], [15],
[19], [22].

2) Data dissemination using randomized gossiping: Dis-
semination of the random measurements using average con-
sensus algorithm was first studied in [29]. The measurement
mechanism of [29] is similar to what we explained above for
data gathering. The difference is that a gossiping average con-
sensus technique is applied to disseminate the measurements
yj , j ∈ {1, . . . ,m} in the network.

Suppose that SN i computes fiαi and stores the result in an
array of m real numbers. Let wi[t] ∈ Rm refer to the content of

2For a real vector v ∈ Rn, norm-1 of v is defined as ‖v‖1=
∑n

i=1|vi|
and norm-2 of v is defined as ‖v‖2=

√∑n
i=1|vi|2

the array inside SN i at time t. SN l1 is activated uniformly at
random at time t and chooses one of its neighbors l2 uniformly
at random. SN l1 and SN l2 exchange wl1 [t] and wl2 [t] and
update wl1 [t + 1] = wl2 [t + 1] = (wl1 [t] + wl2 [t])/2. When
t → ∞, wi → Af for all i ∈ {1, 2, . . . , n} [29]. Therefore,
after sufficiently many iterations of this protocol wi in all SNs
will get close enough to y = Af , and the signal f can be
recovered at any SN after solving Equation 5. Since the size of
y and also wi is in the order of µs log n, randomized gossiping
requires O(µs log n) transmissions per iteration. The number
of required iterations depends on the network topology [29].

One drawback of this method is that the measurements are
inaccurate unless sufficiently many iterations of this protocol
are executed. In practice, too many iterations and message
exchanges are required to achieve the consensus below an
acceptable error threshold. This paper proposes a novel net-
work coding mechanism which is still as simple as consensus,
nevertheless, requires less time and communications to dissem-
inate the measurements. In [29], the SNs run a protocol such
that all of them converge to a measurement vector y which is
common among all SNs. In Comprensus, each SN receives a
different measurement vector yi, i ∈ {1, 2, . . . , n}. We show
that for all of these measurement vectors, the isotropy and
incoherence properties hold. Therefore, Comprensus does not
need too many iterations for convergence to the same mea-
surement vector among all SNs. Instead, our proposed method
guarantees that the same signal f is accurately recoverable
from each individual measurement vector yi received by SN
i, i ∈ {1, 2, . . . , n}.

III. THE COMPRENSUS PROTOCOL

In this section, we explain Comprensus, a simple dis-
tributed protocol to disseminate random linear measurements
in a WSN with static topology. We assume that the network
topology corresponds to a connected regular graph of degree
d. It is easy to create a regular graph topology in a WSN when
nd is even. For a given degree d each SN selects at most d
neighbors with the highest Received Signal Strength Indicator
(RSSI) [30] assuming that each SN has at least d SNs in its
communication range. At the end of this process, we will have
a topology corresponding to a regular graph of degree d.

We start by defining the variables and definitions used
in our protocol. Suppose that each SN is equipped with two
pseudo-random number generators as defined below.

• Rademacher random generator produces either +1 or
−1 each with probability 1/2.

• Bernoulli random generator produces 1 with
probability p = k/n and 0 with probability 1− p.

We assume that SN i keeps a real number ui in its internal
memory.SN i also keeps a list Li of real numbers in its
memory. The data type of the elements of Li is the same
as the data type of ui. Memory requirement for this list
is O(µs log n) items. We will show shortly that µ will be
a small constant. This list actually holds the random linear
measurements which are used thereafter for signal recovery.
One can have an estimation of s in an appropriate basis Ψ
based on a previous knowledge about the data gathered from
the WSN. Since this estimation is not necessarily accurate,



it is recommended to use a worst case estimation for s in a
real-world deployment of Comprensus.

A. Distributed Comprensus algorithm

The Comprensus protocol is executed in three phases:
Initialization, Dissemination and Recovery. The instructions
described below will be executed in parallel by every SN i,
i ∈ {1, 2, . . . , n}.

1) Initialization: First, the list Li is emptied. Then, SN i
reads the value fi from its sensor and stores it into variable ui.
We assume that each SN is given a unique id and initializes the
seeds of the Rademacher and Bernoulli random generators by
its id. By choosing an efficient and reliable pseudo-random
number generator we minimize the chance that two SNs
generate the same sequence of random values [24].

2) Dissemination: This phase is repeated r times in parallel
by all n SNs. At each iteration t ∈ {1, 2, . . . , r} all of the SNs
execute Algorithm 1 simultaneously.

• hi[t] is the value generated by the Rademacher random
generator of SN i at iteration t.

• bi[t] is the value generated by the Bernoulli random
generator of SN i at iteration t.

Algorithm 1 Dissemination phase of Comprensus
1: ui ← hi[t] · ui
2: if bi[t] = 1 then
3: Transmit ui
4: else
5: for all SN j in neighborhood of SN i do
6: if SN j is transmitting the value uj [t] then
7: ui ← ui + uj [t]/n
8: end if
9: end for

10: end if
11: if at least one neighbor has transmitted then
12: add ui to the rear of Li

13: end if

Remark: if a set of adjacent SNs want to transmit at the
same iteration, they transmit one by one according to the
descending order of their ids. They aggregate their received
measurements in a temporary variable and update their corre-
sponding ui only after all of these concurrent transmissions are
completed. If the SNs are perfectly synchronized, aggregation
by signal superposition helps to perform this step simultane-
ously by all of these adjacent SNs [2], [3].

3) Recovery: SN i derives a vector yi by stacking the
entries in list Li. When all SNs agree on a common random
generator algorithm, the linear combinations that led to the
values in Li are reproducible as described in Section II-B1.
These linear measurements are then placed in Equation 5 to
recover f . We show in Section III-C that the linear measure-
ments acquired in the dissemination phase obey the isotropy
condition and have low coherence with DCT.

Line 1 of Algorithm 1 generates a new Rademacher value
and multiplies it by the current value of ui which is first set

to fi in the initialization phase. Line 2 decides whether SN i
is to transmit in this iteration or not. Since bi[t] returns 1 with
probability k/n, this is equivalent to the case that almost k out
of n SNs select themselves uniformly at random to transmit.
Executing the line 3 consumes the most amount of battery
power, as using the radio in transmitting mode is the major
energy drain of a SN [20]. If SN i is not in transmitting mode
at iteration t, i.e., bi[t] = 0, then it listens to the communication
channel and accumulates the values sent by neighboring nodes
onto ui after dividing them by n as instructed in lines 5
through 9. Summing the received values from neighboring
nodes can be done arithmetically by using a simple Time
Division Multiple Access (TDMA) mechanism [1]. A faster
alternative is signal superposition as proposed in [2], [3] when
the SNs are perfectly synchronized. It can also happen that no
neighbor of SN i does a transmission at iteration t. In this case,
no value is added to the list Li. This condition is checked in
line 11, and thus, line 12 is executed only when at least one
neighboring node has transmitted. We will explain shortly why
this restriction is necessary.

B. Matrix representation of the distributed protocol

In this section we examine the network-wide implication
of Algorithm 1 by using the equivalent matrix representation
of Comprensus.

Let Ni denote the set of the d neighbors of SN i.

Definition 3. Transition matrix Mt at iteration t is an n× n
real matrix with the following attributes.

1) Mt[i, i] = hi[t] for 1 ≤ i ≤ n.

2) Mt[j, i] = hi[t]/n when j ∈ Ni and bi[t] = 1.

It is easy to verify that after iteration t of the dissemination
phase,


u1[t]
u2[t]

...
un[t]

 = (Mt ×Mt−1 × · · · ×M1) f (6)

describes the contents of variables ui , i ∈ {1, 2, . . . , n}. We
also define the n× n matrix Qt as

Qt :=


q1,t

q2,t

...
qn,t

 := Mt ×Mt−1 × · · · ×M1 (7)

where q1,t, q2,t , . . . , qn,t are the rows of matrix Qt.

We define a set Ri as

Ri := {t | ∃j ∈ Ni : bj [t] = 1} (8)

to refer to the set of iterations in which at least one neighboring
node of SN i is transmitting. We also define matrix Ai as

Ai := [qTi,t1 q
T
i,t2 . . . qTi,tm(i)

]T (9)

where m(i) = |Ri| is the number of measurements received
by SN i and {t1, t2, . . . , tm(i)} = Ri. The number of received
measurements may differ from one SN to other. Nevertheless,



when the network topology corresponds to a regular graph, all
of the nodes are expected to receive almost the same amount of
measurements, since each SN has an equal chance to transmit
and receive messages. It can be shown that the measurement
vector yi made by stacking the values in list Li will be

yi = Aif + z (10)

where z is the additive noise. The noise is added either by the
communication channel or can be regarded as a side effect of
low precision floating pointing storage and processing inside
the SNs. We model z by a white Gaussian noise vector in our
simulations and experiments.

If the rows of Ai obey the isotropy property and have low
coherence with a compressive basis, then f can be recovered
at SN i from yi as detailed in Section II-A2. Now the reason
for the restriction in Line 11 of Algorithm 1 becomes clear.
We only let newly received measurements to be aggregated
and added to the measurement list Li. Otherwise, Ai will
have at least two rows which are linearly dependent, and thus,
Ai is not full rank. In other words, we will have redundant
measurements stored in Li if we do not check the condition
in Line 11 of Algorithm 1.

Suppose that m̄ is the average number of measurements
received per SN. m̄ should be in order of O(µs log n) in order
to perform successful recovery. When these conditions are
fulfilled, the signal vector f can be recovered at every SN after
running the Comprensus protocol. Next, we examine isotropy
and incoherence properties of our measurement matrix Ai for
i ∈ {1, 2, . . . , n}.

C. Numerical experiments

In this section, we investigate the isotropy and incoherence
of our measurement method through numerical experiments
on simulated WSNs. We perform comprehensive numerical
experiments on simulated WSNs consisting of n = 100 SNs.
Note that even better performance is expected for larger n
because of the logarithmic cost growth with n. The network
graph is a random regular graph of degree d = 5 which
is freshly generated in each experiment and the results are
averaged over multiple runs. We let the SNs to generate their
corresponding hi and bi random numbers and execute the
Comprensus protocol for varying values of r and k. Each
experiment is run 100 times and all of the results are averaged
to eliminate randomness effects.

In Section II-A1, we have seen that even if the set of
sensing vectors have the near-isotropy property, the signal f
can be recovered from measurement vector y. In Comprensus,
the set of the sensing vectors for SN i are the rows of Ai and
the measurement vector for SN i is yi. We define a metric for
deviation from isotropy and show that the rows of Ai have a
very low deviation from the isotropy property.

Definition 4. Deviation from isotropy for a random sensing
vector a is defined as

∑
e∈Ea(1− e)2 where Ea is the the set

of eigenvalues of the square matrix E[aaT ].

This metric determines how much E[aaT ] behaves like an
identity matrix. In the ideal case, E[aaT ] = I and has only one
eigenvalue, i.e., 1, and thus, the deviation from isotropy is zero.
For random sensing vector a, if the eigenvalues of E[aaT ] are

D
ev

ia
tio

n
 fr

om
 is

ot
ro

py

Fig. 1. Near-isotropy and low coherence of Comprensus measurements

all very close to 1, E[aaT ] behaves like an identity matrix and
deviation from isotropy as defined in Definition 4 will be low.

In our numerical experiments, a large set of measurement
matrices Ai are generated. Our random sensing vectors are
actually the rows of the randomly generated measurement
matrices Ai. For each row aT of these matrices, we calculate
aaT and sum up all of the results. E[aaT ] is then numerically
calculated by dividing this summation by the total number of
the randomly generated sensing vectors.

Observation 1 – near-isotropy: Deviation from isotropy
according to Definition 4 is calculated over all randomly
generated measurement matrices Ai, i ∈ {1, 2, . . . , n} and
a full range of experiments with k varying from 1 to n
and r ∈ {25, 50, 100}. The results as illustrated in Figure 1(a)
prove that our measurement mechanism obeys the near-
isotropy property with negligible deviation, i.e., E[aaT ] ≈ I .

Observation 2 – low coherence: We set Ψ to be the inverse
DCT matrix and calculate the coherence with the DCT basis
according to Definition 2 for randomly generated measurement
matrices with k varying from 1 to n and r ∈ {25, 50, 100}.
The averaged results over 100 simulations as illustrated in
Figure 1(b) shows that the coherence factor is also low.

D. Dissemination and recovery strategies

Dissemination and recovery are the two building blocks of
Comprensus which are implemented in a decoupled manner.



Here, we discuss why this decoupling allows a more flexible
and customizable protocol for data dissemination in WSNs.
Depending on the processing capabilities of the SNs, we follow
one of the following strategies.

• Recovery at SNs: Individual SNs have enough pro-
cessing power to run the recovery algorithm on their
received measurement vectors yi and access f .

• Recovery at an external collector: An external data
collector that has enough processing power retrieves
yi from any SN in its vicinity and recovers f .

Note that, in the second case, although the SNs themselves
can not extract the global vector f , their measurement vectors
contain enough information about the global spatial signal f .
Not being able to extract the global state is a consequence
of their low processing power. In other words, the infor-
mation is contained in their perceived measurement vectors.
Nevertheless, they have not sufficient processing power to
run the reconstruction algorithm and extract the original data.
[27] presents a high-performance SN platform that can run
Comprensus with the first strategy. Telos [28] is a widely used
SN platform that is suitable for the second strategy.

Isotropy and incoherence are the crucial prerequisites for
Comprensus to work. At the same time, the average number
of measurements m̄ that are received at each SN must be in
order of O(µs log n) to recover f . Figure 2(a) depicts how
m̄ increases with k for r ∈ {25, 50, 100}. Signal recovery
accuracy of Comprensus improves when µ is low and m̄ is
high. Figure 2(b) shows how m̄/µ changes with the given
simulation parameters. One interesting observation is that,
there exists a maximum ratio of m̄/µ corresponding to a
suitably chosen k for a given r. Effectiveness of Comprensus is
directly related to m̄/µ. The most desirable situation is when
the user requirement exactly matches the configuration with
maximum m̄/µ for m̄ being high enough for signal recovery.
However, the user may have different demands, for example
minimizing the energy consumption to prolong the lifetime of
the WSN might be a higher priority in certain applications.
Most energy-preserving configuration is attainable when rk
is minimized while m̄ is high enough to recover f . We
will further discuss these scenarios in Section IV where we
investigate the performance of the Comprensus protocol.

Comprensus can be also extended to a system with static
SNs and mobile sinks or multiple sinks that can retrieve data
from a small subset of SNs. Suppose that an external collector
polls a subset P ⊂ {1, 2, . . . , n} of the SNs and retrieves
their measurement vectors yj , j ∈ P . The most effective
configuration of Comprensus will be selecting r and k such
that m̄|P |/µ is maximized. |P | is in fact the number of SNs
that the collector can poll. Again a tradeoff between r, k and
the number of polled SNs can be settled to maximize the
effectiveness of Comprensus.

IV. EVALUATION

In this section, we investigate how accurate the signal
f can be recovered at an arbitrarily chosen SN i from its
measurement vector yi. We compare Comprensus with another
state of the art method based on compression via randomized
gossiping [29]. We evaluate a large number of simulated WSNs

|

|

Fig. 2. Effectiveness of Comprensus depending on the average perception
per SN

consisting of n = 100 SNs. The network topology is a regular
graph of degree 5. We assume that our desired topology is
accomplished by an appropriate topology control mechanism
[30]. Evaluations are performed by numerical experiments
in SciPy [16]. Each run of the experiment is conducted for
a freshly-generated random regular graph to ensure that the
results are valid for any arbitrary network with balanced
topology.

The compressible signal f is constructed by calculating the
inverse DCT transform of a sparse random vector that has s
nonzero components drawn from a normal distribution. This
way, we have a signal vector f whose projection on DCT
has only s nonzero coefficient. We conduct the experiment for
s = 5, s = 10 and s = 20 to discover the effect of sparsity on
the recovery performance. We run the Comprensus protocol
for 1 ≤ k ≤ n and 1 ≤ r ≤ n. After running the protocol,
SN i retrieves the measurement vector yi from Li. We use
CVXOPT [13] to recover the original signal f from yi by
using our implementation of the convex optimization solver
to find the solution of Equation 5. In every run, we pick a
SN at random to perform the recovery on its measurement
vector. This random selection ensures that it is possible to
recover f at any arbitrarily chosen SN. The accuracy of signal
reconstruction is measured by SNR in decibels (dB).



A. Signal recovery performance

Figure 3 illustrates the result of our experiments for three
different compressibility levels of f . Figures 3(a), 3(b) and 3(c)
show the SNR of the signal recovery, when projection of f on
the DCT basis has 5, 10, and 20 coefficients respectively. The
bright area indicates high SNR in signal reconstruction. This
essentially means that accurate dissemination is possible for
a particular r and k when the point at position (r, k) falls in
the bright area of the SNR diagrams of Figure 3. We observe
that, as s increases, we require either more transmissions (k)
per iteration or more iterations (r) in the dissemination phase
of Comprensus. This is reflected in Figure 3 as the bright area
of the SNR diagram shrinks when s increases.

1) Energy consumption reductions: The dissemination
phase of the Comprensus protocol is executed in r iterations
and in each iteration, k SNs are transmitting. Therefore, the
energy consumption is in order of O(rk) for a full dissemi-
nation, since radio transmission is the dominant energy drain
of a SN [20]. We will see shortly that the communication
complexity is much less than randomized gossiping methods
which require Ω(ns log n) best case (full connectivity of all
nodes, i.e., network topology corresponding to a complete
graph) and Θ(n2s log n) worst case [26], [29]. Also note that
none of these state of the art methods provide the tunability
that Comprensus offers. Using Comprensus, the user can
easily tune the dissemination protocol to operate either fast
in expense of more energy consumption or slower for the sake
of battery saving.

Comprensus requires at most O(rd) computations per SN
during the dissemination phase. Our evaluations presented in
the next section show that for r = n accurate signal recovery
is doable. By setting d to a small integer we will have
O(n) computation complexity per SN in the dissemination
phase of Comprensus. The actual processing complexity in
the recovery phase of Comprensus depends on whether signal
reconstruction takes place on the SN or on an external node as
described in Section III-D. As the embedded microprocessors
are becoming faster and more energy-efficient, we can expect
that the recovery algorithm can be executed on contemporary
higher-end mobile or embedded processors. One interesting
example is an electrocardiography monitor introduced in [17]
that runs the CS recovery algorithm on an iPhone. Another
possibility is that a dedicated node polls some of the SNs and
retrieves their measurement vectors yi. The recovery algorithm
is then executed on this dedicated node which has sufficient
processing power. One example can be a mobile sink or a
WSN with multiple dedicated sinks. The more SNs that can
be efficiently polled in this method, the less messages need to
be exchanged during the dissemination phase of Comprensus.

2) Dissemination latency reductions: In a low-latency
regime, it is required to disseminate the data in the least
amount of time. Looking at the three diagrams of Figure 3,
we realize that the minimum r is obtained when k is
maximized, i.e., all SNs transmit their ui[t] at all itera-
tions t ∈ {1, 2, . . . , n}. This is the fastest and most energy-
consuming mode of Comprensus’ dissemination mechanism.
On the other hand, we observe that beyond a certain value
of k, the minimum number of iterations required for accurate
recovery does not grow significantly. In Figure 3(a), we see
that the point (r = 30, k = 40) falls on the bright area,

and hence, accurate signal recovery is possible for r = 30
and k = 40. When we double the parameter k, the minimum
number of iterations r required to stay in the bright area
(recoverable condition) only decreases by at most 5 iterations.
The same pattern is seen in Figure 3(b) and Figure 3(c) as
the curve dividing the dark and the bright areas becomes
almost vertical for larger k. Therefore, although the minimum
number of required iterations r decreases by increasing the
number of active nodes k, the growth of performance gain
drops drastically for larger values of k.

3) Sharp phase transitions: An interesting observation in
our evaluations is that the transition to the condition where
accurate recovery is possible is relatively sharp. Looking
at the SNR diagrams of Figure 3, the border between the
bright area (successful dissemination) and dark area (non-
recoverability) has a recognizable contrast. Sharp transition
between recoverability and non-recoverability states in CS is
comprehensively studied in the Donoho-Tanner universal phase
transition inspections [14].

B. Comparison to randomized gossiping methods

In this section, we compare Comprensus to decentralized
compression based on randomized gossiping [29]. We set our
SNR requirement for both protocols to 40 dB and compare
their performance in achieving this requirement. Network
topology and all other conditions are also the same for both
protocols.

As described in Section II-B2, randomized gossiping re-
quires at least s log n data exchanges per iteration. The number
of required iterations is dependent on the network topology
and maximum allowed measurement error. Assume that wi[t]
is the content of the measurement vector of SN i at iteration
t of randomized gossiping as defined in Section II-B2. As we
have seen in Section II-B2, ‖wi[t]− y‖2→ 0 for y = Af when
t→∞. We define the measurement error of SN i at iteration
t as

εi,t := ‖wi[t]− y‖2. (11)

We also define average measurement error at iteration t as
εt := (

∑n
i=1 εi,t)/n. From the arguments in Section II-A2 we

know that for recovering f with SNR of at least 40 dB, the
measurement error εi,t must be lower than ‖f‖2×10−4 for the
measurement vector received by SN i at time t.

Figure 4 shows how εt decays with the number of random-
ized gossiping iterations for a WSN consisting of n = 100 SNs
with a network topology corresponding to a connected regular
graph of degree d = 5. We observe that, average measurement
error goes below our required threshold after almost 1200
iterations. We round down this number to 1000 iterations in
favor of the randomized gossiping method.

Now we compare the total amount of transmissions in
Comprensus and randomized gossiping. We consider the three
test cases illustrated in Figure 3. For s ∈ {5, 10, 20}, random-
ized gossiping requires s log n ≈ 4.6 × s transmissions per
iteration when n = 100, and thus, almost 4.6× 103 × s trans-
missions in total, since it requires to execute 1000 iterations.
Comprensus needs rk transmission corresponding to (r, k) that



Number of iterations (r)

N
um

be
r 

of
 a

ct
iv

e 
S

N
s 

(k
)

S
N

R
 [dB

]

Number of iterations (r)

N
um

be
r 

of
 a

ct
iv

e 
S

N
s 

(k
)

S
N

R
 [dB

]

Number of iterations (r)

N
um

be
r 

of
 a

ct
iv

e 
S

N
s 

(k
)

S
N

R
 [dB

]

(a) s = 5

(b) s = 10

(c) s = 20

Fig. 3. Accuracy of signal recovery for different runs of Comprensus
dissemination protocols

400 600 800 1000 1200 1400
Number of iterations

0

100

200

300

400

500

A
v
e
ra

g
e
 m

e
a
su

re
m

e
n
t 

e
rr

o
r 

(ε
t
)

Fig. 4. Measurement error decay with iterations of randomized gossiping

falls on the bright part of the SNR diagram of Figure 3. For s
being 5, 10 and 20 we set (r = 50, k = 30), (r = 60, k = 40)
and (r = 80, k = 40) respectively. Looking at Figure 3, we see
that these are rather conservative selections and signal recovery
is possible with fewer numbers of transmissions. Nevertheless,
we run Comprensus with these conservative settings and
compare its performance to the randomized gossiping method.
The comparison result is summarized in Table I.

TABLE I. COMPARING COMPRENSUS TO RANDOMIZED GOSSIPING

s
Total number of transmissions

Comprensus Randomized gossiping

5 1.5× 103 2.3× 104

10 2.4× 103 4.6× 104

20 3.2× 103 9.6× 104

Comprensus proves to disseminate the random linear mea-
surements not only in significantly less number of iterations,
but also using much less amount of in-network transmissions.
Using its efficient network coding technique, Comprensus
disseminates compressible data with low latency and high
quality while keeping the number of transmissions as low as
possible in order to preserve more battery power of the SNs.

V. CONCLUSION

In this paper, we introduced Comprensus, a light-weight
and efficient protocol for the dissemination of the sensed data
in a wireless sensor network. Comprensus allows each sensor
node to access the global state of the environment. Availability
of the global state of the environment at all sensor nodes allows
for a more flexible deployment of wireless sensor networks, for
example when a mobile sink wants to access all of the sensed
data by fetching data from any sensor node in its vicinity.

Comprensus is based on the recent advances in the com-
pressed sensing theory for the recovery of compressible data
from a limited number of random linear measurements. We
know that the spatial signals recorded by wireless sensor
networks admit highly compressible representations under an
appropriate linear transform such as Fourier, discrete cosine
transform or discrete wavelet transform. Comprensus exploits
this compressibility and reduces the number of in-network
transmissions required for the dissemination of the sensed data.



Our proposed protocol employs a novel network cod-
ing mechanism for the dissemination of the random linear
measurements that comply with isotropy and incoherence
properties as required by the compressed sensing theory. The
original spatial signal is then recovered from these random
linear measurements by running a reconstruction algorithm.
Depending on the hardware capabilities of the sensor nodes we
follow either of these strategies: the signal recovery is fulfilled
on the sensor nodes, or it can be offloaded to an external data
collector. We have discussed both scenarios and analyzed their
corresponding communication and computation complexities.

Apart from efficient measurement and dissemination mech-
anisms, Comprensus allows a high level of flexibility and
tunability according to specific application requirements. We
have investigated scenarios ranging from fast and energy-
aggressive data dissemination to slower and energy-preserving
dissemination of the sensed data. We have shown that our
protocol is easily adaptable to each of these requirements.

As a future work, we are going to extend Comprensus to
wireless sensor networks with dynamic topologies or mobile
sensor nodes.

ACKNOWLEDGMENT

The authors are partly supported by the Research Train-
ing Group (Graduiertenkolleg) 1362 of the German Research
Foundation (Deutsche Forschungsgemeinschaft - DFG).

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38(4):393 – 422, 2002.

[2] W. Bajwa et al. Compressive wireless sensing. In Proc. of the 5th
international conference on Information processing in sensor networks
(IPSN), pages 134–142, 2006.

[3] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak. Joint source-channel
communication for distributed estimation in sensor networks. IEEE
Trans. on Information Theory, 53(10):3629–3653, 2007.

[4] T. Blumensath and M. E. Davies. Iterative hard thresholding for
compressed sensing. Applied and Computational Harmonic Analysis,
27(3):265–274, 2009.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms:
design, analysis and applications. In INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, volume 3, pages 1653–1664 vol. 3, 2005.

[6] E. Candes and Y. Plan. A probabilistic and ripless theory of compressed
sensing. IEEE Tran. on Information Theory, 57(11):7235–7254, 2011.

[7] E. Candes and T. Tao. Near-optimal signal recovery from random
projections: Universal encoding strategies? IEEE Trans. on Information
Theory, 52(12):5406 –5425, 2006.

[8] E. J. Candes. Compressive sampling. In Proc. of the International
Congress of Mathematicians, volume 3, pages 1433–1452, 2006.

[9] E. J. Candes. The restricted isometry property and its implications for
compressed sensing. Comptes Rendus Mathematique, 346(910):589 –
592, 2008.

[10] Z. Charbiwala et al. Compressive oversampling for robust data trans-
mission in sensor networks. In IEEE INFOCOM’10, pages 1 –9, 2010.

[11] A. Ciancio et al. Energy-efficient data representation and routing for
wireless sensor networks based on a distributed wavelet compression
algorithm. In ACM IPSN’06, pages 309–316, 2006.

[12] R. Cristescu et al. Network correlated data gathering with explicit
communication: Np-completeness and algorithms. IEEE/ACM Trans.
Netw., 14(1):41–54, Feb. 2006.

[13] J. Dahl and L. Vandenberghe. CVXOPT: A python package for convex
optimization, http://www.abel.ee.ucla.edu/cvxopt, 2006.

[14] D. Donoho and J. Tanner. Observed universality of phase transitions in
high-dimensional geometry. Philosophical Tran. of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 367(1906):4273–
4293, 2009.

[15] M. Duarte et al. Distributed compressed sensing of jointly sparse
signals. In Conference Record of the 39th Asilomar Conference on
Signals, Systems and Computers, pages 1537 – 1541, 2005.

[16] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific
tools for Python, http://www.scipy.org, 2001–.

[17] K. Kanoun, H. Mamaghanian, N. Khaled, and D. Atienza. A real-
time compressed sensing-based personal electrocardiogram monitoring
system. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, pages 1–6, 2011.

[18] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-
point method for large-scale l1-regularized least squares. Selected
Topics in Signal Processing, IEEE Journal of, 1(4):606–617, 2007.

[19] C. Luo et al. Compressive data gathering for large-scale wireless sensor
networks. In Proc. of the 15th annual international conference on
Mobile computing and networking (Mobicom), pages 145–156, 2009.

[20] S. Mahfoudh and P. Minet. Survey of energy efficient strategies
in wireless ad hoc and sensor networks. In Proc. of the Seventh
International Conference on Networking, pages 1 –7, 2008.

[21] M. Mahmudimanesh, A. Khelil, and N. Suri. Reordering for better
compressibility: Efficient spatial sampling in wireless sensor networks.
Proc. of the International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing 2010, pages 50–57, 2010.

[22] M. Mahmudimanesh, A. Khelil, and N. Suri. Balanced spatio-temporal
compressive sensing for multi-hop wireless sensor networks. In Pro-
ceedings of the 9th International Conference on Mobile Ad hoc and
Sensor System, pages 389–397, 2012.

[23] A. O. Marco F. Duarte, Godwin Shen and R. G. Baraniuk. Signal
compression in wireless sensor networks. Philosophical Trans. of the
Royal Society, 370(1958):118–135, 2012.

[24] H. Niederreiter. Recent trends in random number and random vector
generation. Annals of Operations Research, 31(1):323–345, 1991.

[25] Olfati-Saber et al. Consensus and cooperation in networked multi-agent
systems. Proceedings of the IEEE, 95(1):215–233, 2006.

[26] A. Olshevsky et al. Convergence speed in distributed consensus and
averaging. SIAM J. on Control and Optimization, 48(1):33–55, 2009.

[27] M. Paselli, F. Petre, O. Rousseaux, G. Meynants, B. Gyselinckx,
M. Engels, and L. Benini. A high-performance wireless sensor node
for industrial control applications. In Third International Conference
on Systems, ICONS’08, pages 235–240, 2008.

[28] J. Polastre et al. Telos: enabling ultra-low power wireless research. In
4th Intl. Symp. on Information Processing in Sensor Networks, IPSN
2005, pages 364–369, 2005.

[29] M. Rabbat et al. Decentralized compression and predistribution via
randomized gossiping. In ACM IPSN’06., pages 51–59, 2006.

[30] P. Santi. Topology control in wireless ad hoc and sensor networks.
ACM Comput. Surv., 37(2):164–194, June 2005.

[31] K. Sohraby, D. Minoli, and T. Znati. Wireless Sensor Networks,
Technology, Protocols and Applications. Wiley-Interscience, 2007.

[32] H. O. Tan and I. Körpeoǧlu. Power efficient data gathering and
aggregation in wireless sensor networks. SIGMOD Rec., 32(4):66–71,
Dec. 2003.

[33] R. Verdone, D. Dardari, G. Mazzini, and A. Conti. Wireless Sensor
and Actuator Networks: Technologies, Analysis and Design. Academic
Press, 2008.


