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Abstract—Compressive Sampling (CS) is a powerful sampling
technique that allows accurately reconstructing a compressible
signal from a few random linear measurements. CS theory has
applications in sensory systems where acquiring individual sam-
ples is either expensive or infeasible. A Wireless Sensor Network
(WSN) is a distributed sensory system comprised of resource-
limited sensor nodes. Transferring all the recorded samples in
a WSN can easily result in data traffic that can exceed the
network capacity. There are ongoing attempts to devise efficient
and accurate compression schemes for WSNs and CS has proved
to be a key sampling method compared to many other existing
techniques. In this paper, specifically targeting the dominant
WSN deployments of multi-hop WSNs, we develop a novel CS-
based concept of sampling window as an efficient spatio-temporal
signal acquisition/compression technique. We show that much
higher energy-efficient signal acquisition is possible, if composite
temporal and spatial correlations are considered. Our model
is also capable of abnormal event detection which is a crucial
feature in WSNs. It guarantees balanced energy consumption by
the sensor nodes in a multi-hop topology to prevent overloaded
nodes and network partitioning.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) constitute a bridge be-
tween information systems and the physical world [1] and are
seeing varied applications such as surveillance, monitoring,
industrial automation, home control, etc [2]. A WSN is com-
prised of low-cost resource-constrained Sensor Nodes (SNs)
that result in a multi-hop wireless network via low-power
and low-range ad-hoc communication. Each SN is typically
equipped with a sensing device that records a physical param-
eter such as light intensity, motion, temperature and humidity,
radiation level, etc. These fine-grained sensor acquired values
are quantized and converted to digital data and transmitted
over the wireless network to a dedicated node called sink. The
sink is a sufficiently powerful computing unit that processes
the sensor data for the end user.

A. Motivation

The SNs are either battery-powered or self-powered, thus
their energy capability is often limited. The hardware capabili-
ties (processing and memory) of off-the-shelf SN platforms are
also basic. Therefore, the computation and data transmission is
highly constrained by the scarce resources of SNs. Naturally,
transferring all the obtained raw sensor readings overloads the
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network and also leads to energy-drained nodes to result in
network partitions and WSN degradation [3]. In particular,
nodes closer to the sink forward the traffic of all other nodes
and are critically endangered by a rapid battery depletion.

Several studies have shown that the sensor observations
are both spatially and temporally correlated [4]. Such spatio-
temporal data correlation encourages us to improve the
efficiency of data gathering schemes for WSNs by in-
corporating compression techniques. In several applications
like micro-climate monitoring, environmental protection, dis-
tributed acoustic measurement, etc. more efficient lossy com-
pression methods are preferred to resource-intensive lossless
compression techniques [5]. In such cases, data compression in
WSNs is closely related to distributed signal compression [6].
From signal processing point of view, the data recorded by the
SNs are modeled as a distributed spatio-temporal signal. Signal
compression usually reduces the amount of measurements that
are transmitted to the sink. Signal reconstruction or recovery
estimates the original signal from the received measurements.
The key challenge to design a signal compression technique
for WSNs is to make it efficiently implementable in a dis-
tributed manner.

B. State of the Art

There are ongoing efforts to achieve energy-efficient data
gathering without sacrificing the required accuracy [7]. In-
network compression [8] is an efficient technique especially
when there is an optimal coordination between routing and
compression algorithms. Such an optimal coordination is a
hard task that relatively degrades the practical value of those
methods. Distributed source coding [9] achieves a good per-
formance when the statistical attributes of the spatio-temporal
signal do not change drastically. However, its accuracy is
greatly degraded when unexpected patterns occur.

Compressed Sensing or Compressive Sampling (CS) [10]
has opened a new avenue in a magnitude of research areas
where a sparse or compressible signal is to be acquired from
fewest possible measurements. Distributed sampling systems
like WSNs are one of the most important fields in which CS
can be employed. CS-based spatial sampling introduces four
advantages to the traditional methods: First, the data acquisi-
tion is performed by random linear measurements, hence no
centralized control is needed. This significantly reduces the
coordination overhead. Second, the energy consumption is bal-



anced across SNs to avoid the occurrence of exhausted nodes.
Third, SNs perform simple data processing operations while
the complex signal reconstruction is conducted on the sink.
Finally, CS is robust against communication failures since
the messages transmitted through the network carry equally
valuable information pieces. Therefore, infrequent message
drops will not lead to significant losses. These properties
make CS a very attractive technique for efficient, balanced
and robust data collection in distributed sensor networks [11].

Spatial CS for WSNs was proposed in Compressive Wire-
less Sensing (CWS) [12] and developed to Compressive Data
Gathering (CDG) [13], [14]. Distributed Compressive Sensing
(DCS) [15] extends CS-based spatial sampling techniques for
WSNs to temporal domain by considering temporal as well as
spatial correlations between sensor observations. DCS model
is best suited for WSNs with star topology.

C. Paper Contributions

On this background, this paper addresses two key shortcom-
ings of the existing CS-based spatio-temporal sampling tech-
niques, namely: a) Implementing DCS on multi-hop WSNs
with tree topology leads to unbalanced energy consumption
and exhausted nodes, and b) Existing spatio-temporal CS
techniques for WSN usually consider discontinuous sampling
periods. Consequent intervals are treated separately when
acquiring measurements and recovering the signal. As we
show in this paper, temporal correlation of overlapping sam-
pling periods allows for non-interruptive and more efficient
measurement and signal recovery. In this paper, we signifi-
cantly enhance CS-based spatio-temporal sampling in multi-
hop WSNs by: 1) A new spatio-temporal CS model that puts a
balanced computation and communication load on all SNs, and
2) Applying the concept of sampling window to streamline the
process of compressive measurement and signal reconstruction
without imposing data acquisition delay.

D. Paper Organization

Section II describes our system model and reviews the
concepts of CS theory as relevant for the paper. Section III lists
the related work and briefly discusses their features. Section
IV presents our spatio-temporal model for multi-hop WSNs.
Section V evaluates our proposed models.

II. PRELIMINARIES

This section details the WSN models where CS is applied
as well as topics of CS utilized in this work.

A. WSN System Model and Requirements

We consider multi-hop WSNs consisting of static homo-
geneous SNs. We assume that SNs accurately record the
physical parameter of interest at the position they are located
and the quantization error of their sensors is negligible. A
WSN consists of n battery-powered SNs with limited memory
and processing capabilities. Data collected from the WSN
are transmitted to the sink. The sink is a high performance
computation unit. It is responsible for reconstructing the state

of the environment from the measurements collected and
transmitted through the network. The WSN should be able to
represent the current state of the environment periodically on
a regular basis. This representation should meet a certain level
of accuracy. Besides the regular monitoring, WSN should be
able to detect abnormal events like extremely high temperature
at a certain point. Since SNs have very scarce resources,
it is crucial to transmit as few data as possible. We are
especially interested in methods that reconstruct the state of the
environment at the sink from fewest number of measurements
collected from each SN.

Throughout this text, we may use the terms signal and
vector interchangeably. For example, a WSN consisting of
n SNs each of which recording r samples in every T time
units, produces a discrete spatio-temporal signal that can be
represented by a vector f ∈ RN where N = nr. In case of
sole spatial sampling, N and n are equal.

B. Basics of Compressive Sampling

Vector x ∈ RN is said to be S-sparse if ‖x‖0= S, i.e., x
has only S nonzero entries and its all other N − S entries
are zero. S-sparse vector xS ∈ RN is made from non-sparse
vector x ∈ RN by keeping S largest entries of x and zeroing
its all other N − S entries. Signal f is compressible under
orthonormal basis Ψ when f = Ψx and ‖x−xS‖2 is negligible
for some S � N . The matrix Ψ is an orthonormal matrix
with the basis vectors of the compressive system Ψ as its
columns. Hereafter, the terms system and domain may also
refer to either a measurement or a compressive basis. Most
signals recorded from natural phenomena are compressible
under Fourier transform, Discrete Cosine Transform (DCT)
and the family of wavelet transforms [16]. This is the fun-
damental fact behind every traditional compression technique.
CS is distinguished from traditional compression techniques in
signal acquisition method. It combines compression into the
sampling layer and tries to recover the original signal from
fewest possible measurements.

Definition 1. [17] Measurement matrix Φ is an m×N real
matrix consisting of m < N vectors randomly selected from
measurement basis Φ. It is used to produce a measurement
vector y ∈ Rm such that y = Φf .

Definition 2. [18] Coherence between the measurement basis
Φ and the compressive basis Ψ is denoted by µ(Φ,Ψ) and is
equal to max

1≤i,j≤N
|φi ·ψj | where for each 1 ≤ i, j ≤ N , φi and

ψj are basis vectors of Φ- and Ψ-domain respectively.

Theorem 1. [17] Suppose signal f ∈ RN is S-sparse in Ψ-
domain, i.e., f = Ψx and x is S-sparse. We acquire m linear
random measurements by projecting f on m randomly selected
basis vectors of the measurement system Φ. Assume y ∈ Rm
represents these measurements such that y = Φf where Φ is
the measurement matrix. Then it is possible to recover f from
y by solving the convex optimization problem:

x̂ = argmin
x̃∈RN

‖x̃‖1 subject to y = ΦΨx̃ (1)



Recovered signal will be f̂ = Ψx̂.

Signal recovery is possible when the number of measure-
ments follows

m > C · S · logN · µ2(Φ,Ψ) (2)

where C > 1 is a small real constant [18].
CS is specially targeted at incoherent Φ and Ψ bases such

that signal f can be compressively projected on Ψ [18]. From
Equation (2), it is clear why compressibility and incoher-
ence are crucial for the practicality/utility of CS. In order
to efficiently incorporate CS theory in a specific sampling
scenario, we need the measurement and compressive bases
to be as incoherent as possible to decrease parameter µ in
Equation (2). Moreover, compressive basis must be able to
effectively compress the signal f to decrease S in Equation
(2). When these two preconditions hold for a certain sampling
configuration, it is possible to recover the signal f from
m measurements where m can be much smaller than the
dimension of the original signal [19].

Interestingly, certain random matrices such as a Gaussian
matrix with independent and identically distributed entries
from a normal distribution N (0, 1) have low coherence with
any fixed orthonormal basis [17]. The elements of such a
random matrix can be calculated on the fly using a pseudo-
random number generator which is common between SNs and
the sink. When the Gaussian random number generator at
every SN is initialized by the id-number of that SN, the sink
can exactly reproduce the measurement matrix. Note that in
this case, the measurement matrix does not need to be stored
on the SNs. Therefore, using random measurement matrices
allows for more flexibility and requires less memory on the
SNs. The reproduced measurement matrix at the sink is used
to recover the signal according to Theorem 1.

In practice, the signal f cannot be always perfectly trans-
formed into a strictly sparse projection. Instead, it is always
transformed into a compressible form with many near zero
entries and few relatively large values. Candès [20] showed
that if ‖x−xS‖2< ε for some integer S � N and a small real
constant ε, then the recovery error by solving the optimization
problem in Equation (1) is bounded to O(ε).

III. RELATED WORK

There are a variety of compression techniques for WSNs
ranging from distributed source modelling [21] to distributed
transform coding [22] and distributed source coding [23]. A
comprehensive comparison of data compression techniques for
WSNs can be found in [24]. Duarte et al. has also conducted a
survey on existing signal compression techniques from a signal
processing perspective in [6]. This survey provides an in-depth
view of several spatial and spatio-temporal signal compression
techniques for WSNs. For each class of WSN applications, a
specific compression scheme may be chosen. We are not going
to compare various techniques, as such detailed comparative
surveys can be found in other works such as the papers by
Duarte et al. [6] and Sirooksai et al. [24]. These consider CS
as a key technique for distributed signal acquisition.
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Fig. 1. Distributed spatial sampling using CWS

We categorize related research on applications of CS in
WSNs into three subsections. First, spatial sampling with-
out considering temporal correlations is discussed. Second,
ongoing attempts to implement CS on common hardware
platforms of WSNs is studied. Finally, spatio-temporal CS-
based distributed signal acquisition for WSNs is investigated.

A. Spatial CS for WSNs

CWS [12] is a special implementation of CS for distributed
spatial sampling in WSNs. CWS models a WSN as a dis-
tributed sampling system in which every single SN records
the local value of the physical phenomenon of interest (such
as radiation level, temperature, humidity, light intensity, etc.).
Putting samples from each SN together, a discrete spatial
signal is composed that can be represented by a vector f ∈ Rn
where n is the number of SNs. CWS has introduced a
distributed method for computing the matrix multiplication of
Definition 1 in WSNs [12]. This is possible if the SN that
records the ith entry of the signal vector f , can access the ith
column of the matrix Φ in Definition 1 for all 1 ≤ i ≤ n.

Figure 1 shows a simple configuration in which n SNs are
directly connected to the sink. The ith SN can access the ith
column of the matrix Φ. This column might be embedded into
the SN before deployment or calculated on the fly when using
random measurement matrices. Note that since addition is a
commutative operation, the summation can be calculated in
any order. Therefore, CWS can be applied to any topology
like star topology, or multi-hop WSNs pertaining tree or
chain topologies. The cloud shape enclosing the summation
operator signifies that any tree-based topology can compute
the measurement vector y and deliver it to the sink.

B. Practical Implementation of CS in WSNs

CDG is one of the first detailed implementations of CWS
for large-scale WSNs introduced by Luo et al. [13], [14]. The
authors presented a comprehensive comparative discussion
showing that CS leads to a more efficient and stable signal
acquisition technique compared to some traditional methods



such as in-network compression [8] and distributed source
coding [25]. Using over-complete dictionaries [26] in solving
the convex optimization in Equation (1), CDG is also able to
tackle abnormal sensor readings and detect events. There is a
continuing research to incorporate CS theory in environment
monitoring as well as event detection [27]. In addition to
emerging theoretical concepts of CS, there is also ongoing
research to implement CS practically on WSNs of different
configurations and scales such as ZigBee networks [28]. Our
work constitutes a key advancement to realize the abstract
idea of distributed CS in WSN. As we approach a more
realistic implementation of CWS, more and more challenges
pop up [29], [30]. We aim to recognize those problems and
systematically solve them.

C. Spatio-Temporal CS for WSNs

DCS [15], [31] is an extension of the pure spatial CS-based
data acquisition techniques for WSNs to the temporal domain.
DCS equips each SN with its own independent random mea-
surement matrix. The signal reconstruction takes place using a
joint recovery algorithm. Duarte et al. in [15] have shown that
when the number of SNs is very large, their method requires
much less measurements than when applying CS individually
to every single SN. DCS exploits not only spatial but also
temporal compressibility. It is excellent for applications where
SNs can communicate directly to the sink and the temporal
sampling rate is relatively high, for example body-area sensor
networks [32]. Unfortunately, DCS does not preserve the key
property of CS, i.e., balancing the overhead across all SNs
as explained in more detail in the next section, where we
investigate DCS shortcomings for multi-hop topologies and
propose our new model preserving the balancing property.

Shen et al. [33] studied the concept of CS-based spatio-
temporal sampling in WSN from a different point of view.
They assume a heterogeneous WSN where every SN has its
own power profile. In their non-uniform CS measurement
technique, the available energy plays a more essential role
than the signal reconstruction accuracy required by the user. In
this work, we assume homogeneous SNs in a balanced power
consumption mode and try to maintain the energy consumption
balanced during the operation of the WSN. Our goal is to
achieve better accuracy with lower measurement ratios.

This paper is closely related to CWS and DCS. We try to
keep the measurement method computationally simple with
balanced energy consumption across the network. Similar
to CWS, we aim to maintain balanced energy consumption
by all SNs. However we propose a model for a general
spatio-temporal sampling scheme rather than plain spatial
sampling. Like DCS we consider a spatio-temporal model for
the recorded signal and try to exploit temporal as well as
spatial correlations between sensor observations. Next section
describes our spatio-temporal CS model as well as the concept
of sampling window used in this paper. We will discuss the
efficiency and accuracy of our proposed model. Then, we
examine how event detection can be applied to a streamlined
measurement model.

IV. SPATIO-TEMPORAL COMPRESSIVE SAMPLING

If we take another look at Equation (2), we realize that CS is
also very efficient in number of required measurements. The
number of required compressive measurements, namely the
parameter m in Equation (2), grows logarithmically with the
dimension of the signal f . This means that the real power of
CS is intrinsically visible for high dimensional signals when
N is large enough. In plain spatial CS methods like CWS,
the dimension of the spatial signal is equal to the number of
SNs. Therefore, simple spatial CS might be less useful for
small- to medium-scale WSNs. If we extend our model to the
temporal domain, we can exploit the desirable logarithmic cost
growth even in small- and medium-scale WSNs by increasing
the temporal sampling rate of individual SNs. This is the chief
motive for our spatio-temporal method.

A. Unbalanced Spatio-temporal CS for Multi-hop WSN

The DCS technique models jointly sparse signals in a
distributed system and introduces a new algorithm suited for
recovering jointly-sparse signals. In DCS, the measurement
matrix is a block-diagonal matrix composed of several tem-
poral measurement sub-matrices. Assume that the ith SN
is recording ri samples every T time units and build up a
vector f ′i ∈ Rri . Temporal values of each SN produce such
a discrete temporal signal and all of them together form a
discrete spatio-temporal signal f ′ = [f ′1

tr
f ′2

tr · · · f ′n
tr

]tr

of size N = r1 + r2 + ... + rn where [·]tr is the transpose
operator. The measurement vector y′ ∈ Rm is also composed
of n subvectors such that:

y′ :=


y′1
y′2
...

y′n

 =


Φ′1

Φ′2
. . .

Φ′n




f ′1
f ′2
...

f ′n

 (3)

where each Φ′i i ∈ {1, 2, · · · , n} has ri columns. Having

Φ′ :=


Φ′1

Φ′2
. . .

Φ′n

 and f ′ =


f ′1
f ′2
...

f ′n

 , (4)

Equation (3) can be written in the form of y′ = Φ′f ′.
Remembering Definition 1, we observe that Φ′ is a block-
diagonal measurement matrix. The spatio-temporal signal f ′

can be recovered from measurement vector y′ using Theo-
rem 1. Duarte et al. [31] have discussed joint sparsity models
and provided an algorithm to efficiently recover f ′ from y′.

Employing DCS in a multi-hop WSN, leads to unbalanced
communication overhead that eventually causes network par-
titioning and or coverage drops due to the depletion of the
batteries of more active nodes. Figure 2 shows what happens
when transmitting vector y′ in Equation (3) over a WSN
with chain topology. Every SN calculates its own component
of the measurement vector y′. In a multi-hop topology each
component is treated separately as a data packet. The message
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Fig. 2. Measurement mechanism of DCS in multi-hop WSNs

length increases as the data packets approach the sink. New
sub-vector components must be attached to the messages
received from previous hops. Apparently, DCS does not lead to
a balanced data acquisition mechanism for multi-hop WSNs.

B. Balanced Spatio-temporal CS for Multi-hop WSN

Yap et al. [34] have shown that block-diagonal random
measurement matrices can perform as good as dense random
measurement matrices in CS signal acquisition and recovery.
Similar to DCS, we also use a block-diagonal measurement
matrix. However, we propose a different model for spatio-
temporal signals and a new structure of the measurement
matrix. Let Φt and ft ∈ Rn denote the measurement matrix
and the spatial signal at time t, respectively. The measurement
vector at time t will be yt = Φtft. We perform the measure-
ment process T times and then recover the spatio-temporal
signal [f1

tr f2
tr · · · fT tr]tr from υ such that:

υ :=


y1

y2

...
yT

 =


Φ1

Φ2

. . .
ΦT




f1
f2
...

fT

 (5)

where for every 1 ≤ t ≤ T , Φt has mt rows and n columns.
There is a fundamental difference between measurement

matrices in Equation (4) and Equation (5). In Equation (4),
each block Φ′i i ∈ {1, 2, · · · , n} corresponds to a single SN
sampling over a period T . In Equation (5), each block Φt

t ∈ {1, 2, · · · , T} corresponds to spatial samples acquired by
all n SNs at time instance t. Note that in contrast to DCS,
each SN in our model transmits m = m1 + m2 + · · · + mT

measurements to deliver the measurement vector υ to the sink.
Therefore, our model still benefits from the balanced energy
consumption like CWS. Remember from Figure 2 that in the
extreme case of chain topology, the number of transmissions in
DCS increases in order of O(n2) as the measurements traverse
the network hop by hop to approach the sink.

Evaluations show that our model for the spatio-temporal
signal leads to a more compressible representation of the signal
especially when the spatio-temporal signal is acquired over
longer periods. As mentioned earlier, the logarithmic growth
of sampling cost in CS encourages us to try acquiring more
samples over longer periods. First, we formally define the
efficiency of a CS-based signal acquisition method in WSNs.
This efficiency is directly related to the compressibility of the
signal. We will assess our model of spatio-temporal signals by
investigating the level of compressibility that we achieve by
extending CS to the temporal domain over longer sampling
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Fig. 3. Spatio-temporal compressibility over longer periods using block-
diagonal measurement matrix

periods. We also need to exactly define sampling period and
sampling round.

Definition 3. Sampling period of length T is composed
of T sampling rounds. Each sampling round occurs at a
discrete time instance on a regular basis. During a sampling
round, all SNs record the sensed value at that time instance.
Compressive measurements are then calculated distributively
from the recorded values and transmitted over the multi-hop
WSN to the sink.

Definition 4. The efficiency of the signal acquisition in a CS-
based system is denoted by η defined as η = (N−m)/N where
m is the number of measurements according to Equation (2)
and N is the dimension of spatio-temporal signal.

When more measurements need to be acquired for a fixed
N , the efficiency will be lower. If the signal is recoverable
from fewer measurements, the efficiency increases. According
to Equation (2), for an efficiency of η, we require S/N to be
less than (1− η)/(C[µ2(Φ,Ψ)] logN). We have investigated
how this efficiency can be achieved by running numerical
experiments on real-world data sets. Evaluations are done
using real-world data of air temperature values collected
by the LUCE (Lausanne Urban Canopy Experiment) WSN
deployment at EPFL [35]. The dashed curve in Figure 3
shows S/N when efficiency is roughly equal to 90% and
recovery error is bounded to ±1◦C per SN. We have calculated
S/N under Haar wavelet and DCT transformation for spatio-
temporal signal with different sampling periods. We see that
when the sampling period T increases, the S/N drops quickly
under the limit that satisfies η = 90%. In Section V, we
will see how higher compressibility (i.e., lower S/N ) leads
to higher efficiency.

C. The Concept of Sampling Window

So far, we have seen improvements in compressibility of
spatio-temporal signals when using block-diagonal random
measurement matrices over longer sampling periods. The
trade-off is a delay equal to T sampling rounds. Increas-
ing T usually leads to better compressibility of the spatio-
temporal signal and improves efficiency. However, the signal



reconstruction is delayed by T sampling rounds. Here, we
introduce the concept of sampling window and show that the
delay affects measurements acquisition and signal recovery
only at initialization. Assume for any time instance τ ≥ T , the
measurement vectors yτ−T+1, yτ−T+2, ... , yτ are delivered
to the sink. Therefore, all of the vectors fτ−T+1, fτ−T+2, ...
, fτ which describe the sate of the environment during the
interval [τ − T + 1, τ ] are recoverable from υτ where:

υτ :=


yτ−T+1

yτ−T+2

...
yτ



=


Φτ−T+1

Φτ−T+2

. . .
Φτ




fτ−T+1

fτ−T+2

...
fτ

 . (6)

In the next sampling round, fτ+1 is sensed by the SNs and
should be reconstructed at the sink. Of course we do not want
to perform typical CWS from scratch at sampling round τ+1.
Having previous measurements using block-diagonal measure-
ment matrix in Equation (6), we can recover the signal at
the next sampling round from fewer measurements compared
with typical spatial CWS. Our spatio-temporal measurement
method should calculate the new measurement vector:

υτ+1 :=


yτ−T+2

yτ−T+3

...
yτ+1



=


Φτ−T+2

Φτ−T+3

. . .
Φτ+1




fτ−T+2

fτ−T+3

...
fτ+1

 . (7)

Comparing Equations (6) and (7), we observe that if υτ is
already present at the sink, then we only need yτ+1 to be
delivered to the sink in order to make υτ+1. In fact, a sampling
window of T allows us to efficiently recover the spatio-
temporal signal at any sampling round. Note that in this case,
to have yτ+1 (and consequently υτ+1) at the sink, only mτ+1

more measurements are needed which would be lower than
when running CWS on sampling round τ + 1 . Moreover, all
SNs transmit an equal amount of data proportional to mτ+1.

D. Benefits of Sampling Window

Here, we clarify the advantage of our sampling window
mechanism compared with the state of the art CS-based
spatio-temporal signal acquisition techniques discussed in
this paper. Sampling window as described above allows for
recovering the spatio-temporal signal from a history of the
current and previously acquired measurements. We recall that
CWS only considers instantaneous spatial measurements and
DCS operates over disjunct intervals. The advantages of our

proposed sampling window are twofold: First, total number of
measurements, namely

∑i=T
i=1mτ−T+i is much less than when

running CWS separately for T sampling rounds because con-
sidering temporal as well as spatial correlations leads to better
compressibility and hence more efficient signal acquisition.
Second, acquiring measurements and recovering the signal are
done seamlessly with a much less delay. Remember that DCS
recovers spatio-temporal signals after a delay proportional to
T when all measurements of the last T sampling rounds are
received at the sink. In particular, for an extensive multi-
hop WSN, our model decreases the delay by a factor of T .
Note that here, delay refers to the time required to acquire
measurements from the network and not the time required
by the recovery algorithm to reconstruct the spatio-temporal
signal. Many efficient CS reconstruction algorithms such as
orthogonal matching pursuit [36] are developed to recover the
signal in a timely manner.

E. Detecting Events

Luo et al. [13], [14] have proposed an effective method
to detect and handle sparse abnormal sensor readings using
overcomplete dictionaries [26]. We apply a similar method for
detecting abnormal events in order to trigger notification about
potentially harmful situations. What we are especially inter-
ested in, is how our sliding sampling window can detect the
new events occurring in the most recent sampling round. As-
sume few SNs record unexpected values at time u where u ≥
T . We can decompose fu into two vectors fc and fe such that
fu = fc+fe where fe is the sparse abnormal innovation vector.
We know that [f tru−T+1 f tru−T+2 · · · f tru−1 f trc ]tr = Ψξ
is compressible in the Ψ-domain. Substituting fu with fc + fe
we will have:

g :=


fu−T+1

fu−T+2

...
fu

 =


fu−T+1

fu−T+2

...
fc + fe

 =
(
Ψ I

)(ξ
ε

)
(8)

such that ε = [0tr fe
tr]tr, where 0 means a zero vector of

size nT − n. For recovering the original signal as well as
detecting abnormal events, we solve a convex optimization
problem similar to that in Theorem 1. From Equation (8), we
see that [ξtr εtr]tr is compressible under overcomplete system
Ψ′ = [ΨI]. Assume:

Λ =


Φu−T+1

Φu−T+2

. . .
Φu

 (9)

and z = Λg is the spatio-temporal measurement vector. If we
solve the l1 minimization problem:

x̂′ = argmin
x̃′∈RN

‖x̃′‖1 subject to z = ΛΨ′x̃′, (10)

then it is possible to recover the original spatio-temporal signal
g (including the abnormal samples). The recovered signal of g
will be ĝ = Ψ′x̂′. Here, x̂′ ∈ R2N and Ψ′ has 2N columns.



Note that when using a progressive sampling window, we
are mainly interested in detecting events at the most recent
sampling round. In this case, we see that the abnormal sensor
readings are not uniformly distributed over the spatio-temporal
signal. The abnormal observations only affect the last chunk of
the spatio-temporal signal vector. Detection capability of CS
using overcomplete dictionaries has been discussed in CDG
[13] for plain spatial signals with a uniformly random distri-
bution of event occurrence. However, this specific distribution
of abnormal events that only occur at the very end of the
spatio-temporal vector needs to be elaborated in more detail
as a future work.

V. EVALUATION

We have evaluated our proposed methods using real-world
data collected by the LUCE WSN deployment at EPFL [35].
The ambient temperature values of 64 SNs are used as the
physical parameter for evaluating our model. In the LUCE
dataset, some records were missing or too desynchronized,
i.e. the sampling rounds of the SNs were not aligned. There-
fore, we have preprocessed the dataset while preserving the
attributes of the spatio-temporal signal to have a synchronized
data set which is suitable for testing our model. We assume
that measurements are calculated while transferring to the sink
using a reliable hop-by-hop transport protocol [37].

Figure 4 shows the accuracy of signal recovery using a
block-diagonal measurement matrix as described in Equa-
tion (5). Figure 4(a) and Figure 4(b) illustrate the results
using DCT and Haar wavelet as the the compressive basis
respectively. This means that the Ψ-domain in Figure 4(a)
and Figure 4(b) is DCT and Haar respectively. For each
compressive domain, we have tested the measurement and
recovery for different sampling window lengths. Parameter
T in Equation (5) represents the initialization delay as well
as the width of the sampling window of our spatio-temporal
sampling model for multi-hop WSNs. The X-axis represents
the ratio of the number of measurements to the number of
all spatio-temporal samples, namely m/N as in Equation (2).
The accuracy of the signal reconstruction is measured by the
Signal to Noise Ratio (SNR). The Y-axis represents the SNR in
decibels (dB). We observe that in all cases, the quality of signal
reconstruction generally improves as the ratio m/N increases.

The evaluations are first done for T = 1 which is basically
equivalent to the plain spatial sampling case. Then, the width
of the sampling window is increased and the evaluation is
repeated for T = 2, T = 4 and T = 8. For larger T , we
see that higher signal reconstruction accuracy is possible for
lower m/N . This means that a higher reconstruction accuracy
can be achieved more efficiently if the width of the sampling
window T increases.

Rare abnormal readings discussed in Section IV.D are
simulated by deliberately modifying the values recorded by
3 SNs from the LUCE dataset. We have selected these SNs at
random and increased their recorded value at the last sampling
round to above 100 degrees Celsius. This may resemble a fire
starting in the environment that is sensed by three SNs. The

0.02
0.03

0.05
0.07

0.08
0.10

0.12
0.13

0.15
0.17

0.18
0.20

0.22
0.23

0.25
0.27

0.28
0.30

0.32
0.33

0

5

10

15

20

25

30

(b) Haar

T = 1
T = 2
T = 4
T = 8

m / N

S
N

R
 [d

B
]

0.02
0.03

0.05
0.07

0.08
0.10

0.12
0.13

0.15
0.17

0.18
0.20

0.22
0.23

0.25
0.27

0.28
0.30

0.32
0.33

0

5

10

15

20

25

30

(a) DCT

T = 1
T = 2
T = 4
T = 8

m / N

S
N

R
 [d

B
]

Fig. 4. Multi-hop spatio-temporal CS using block-diagonal measurement
matrix

sampling window during this simulation was set to T = 8.
Figure 5 illustrates how the compressive presentation of the
spatio-temporal signal is distorted in presence of abnormal
sensor readings. Figure 5(a) and Figure 5(b) show the pro-
jection of the signal contaminated with abnormal readings
on DCT and Haar wavelet respectively. The DCT projection
is not compressible any more. Haar wavelet projection leads
to a more compressible representation, since it can preserve
hard edges in the signal better than DCT. Now, we use an
overcomplete system Ψ′ = [ΨI] as discussed in Section IV.D
to recover the compressible projection. We use two systems
Ψ′DCT = [ΨDCTI] and Ψ′Haar = [ΨHaarI] where ΨDCT and
ΨHaar represent DCT and Haar wavelet bases respectively.
Figure 5(c) and Figure 5(d) show the recovered compressive
projections on Ψ′DCT and Ψ′Haar respectively. Naturally, we
observe that the projections of the spatio-temporal signal on
the overcomplete bases are much more compressible that
typical DCT and Haar bases.

Higher compressibility means that less measurements are
required to recover the signal with comparable accuracy, or in
other words, it is possible to achieve better signal reconstruc-
tion quality from the same number of random measurements.
Figure 6 verifies this statement. With low level of compress-
ibility that typical DCT and Haar projections provide, it is
impossible to recover the signal and detect abnormal sensor
readings. Using overcomplete dictionaries, the signal could be
recovered and the abnormal events are localized. Figure 6(a)
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Fig. 5. Compressive projection of the spatio-temporal signal contaminated
with abnormal readings
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Fig. 6. Event detection in multi-hop spatio-temporal CS using block-diagonal
measurement matrix and overcomplete compressive systems

and Figure 6(b) show the recovered signal at the last (8th)
sampling round using Ψ′DCT and Ψ′Haar overcomplete systems
respectively. Note that when the sampling window is filled and
the measurement process is streamlined, such abnormal events
can be detected very shortly as only the last measurement
vector is needed to be reported to the sink.

We have also compared our sampling method with that
of DCS. Figure 7 shows the same results as discussed in
explanation of Figure 4 for the DCS measurements. The sig-
nal reconstruction quality using our proposed block-diagonal
spatio-temporal measurement matrix is comparable to signal
reconstruction using spatio-temporal model of DCS. More
interestingly, we have observed that block-diagonal matrices
lead to almost the same performance of dense measurement
matrices as expected in [34]. Figure 8 shows the signal
reconstruction quality from measurement vectors produced
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Fig. 7. Reconstruction from DCS measurements

by dense Gaussian random measurement matrices. The SNR
is closely comparable to schemes with block-diagonal mea-
surement matrices like DCS and our spatio-temporal block-
diagonal model for CS measurements in multi-hop WSNs.

VI. CONCLUSION

In this paper, we have presented a generalized framework
for implementing spatio-temporal CS for multi-hop WSNs.
We have proposed a new model for spatio-temporal signals in
WSNs and introduced a CS measurement mechanism suited
for multi-hop WSNs. By incorporating the concept of sampling
window, we could streamline the process of spatio-temporal
CS measurement and signal recovery. Using overcomplete
dictionaries, abnormal sensor readings can be detected. When
the sampling window is filled and the measurement process is
fully streamlined, then only in-network communication delays
affect the timeliness of our composite spatio-temporal data
gathering and event detection technique. Evaluations show
that the performance of our method is comparable to that of
DCS measurement and even dense spatio-temporal Gaussian
measurement matrices. The advantage of our model over the
state of the art methods is balanced energy consumption and
streamlined sampling. This work helps to design practical
implementation of spatio-temporal CS for multi-hop WSNs.

REFERENCES

[1] J. Elson and D. Estrin, “Sensor networks: A bridge to the physi-
cal world,” in Wireless Sensor Networks, C. S. Raghavendra, K. M.
Sivalingam, and T. Znati, Eds. Springer US, 2004, pp. 3–20.



0.02
0.03

0.05
0.07

0.08
0.10

0.12
0.13

0.15
0.17

0.18
0.20

0.22
0.23

0.25
0.27

0.28
0.30

0.32
0.33

0

5

10

15

20

25

30

(a) DCT

T = 1
T = 2
T = 4
T = 8

m / N

S
N

R
 [d

B
]

0.02
0.03

0.05
0.07

0.08
0.10

0.12
0.13

0.15
0.17

0.18
0.20

0.22
0.23

0.25
0.27

0.28
0.30

0.32
0.33

0

5

10

15

20

25

30

(b) Haar

T = 1
T = 2
T = 4
T = 8

m / N

S
N

R
 [d

B
]

Fig. 8. Signal recovery using dense Gaussian measurement matrix

[2] K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks, Tech-
nology, Protocols and Applications. Wiley-Interscience, 2007.

[3] G. Dini, M. Pelagatti, and I. Savino, “Repairing network partitions in
wireless sensor networks,” in Proc. of IEEE Internatonal Conference on
Mobile Adhoc and Sensor Systems (MASS), 2007, pp. 1 –3.

[4] M. C. Vuran, zgr B. Akan, and I. F. Akyildiz, “Spatio-temporal correla-
tion: Theory and applications for wireless sensor networks,” Computer
Networks, vol. 45, no. 3, pp. 245 – 259, 2004.

[5] S. Arrabi and J. Lach, “Adaptive lossless compression in wireless body
sensor networks,” in Proc. of the Fourth International Conference on
Body Area Networks, ser. BodyNets ’09, 2009, pp. 19:1–19:8.

[6] A. O. Marco F. Duarte, Godwin Shen and R. G. Baraniuk, “Signal
compression in wireless sensor networks,” Philosophical Trans. of the
Royal Society, vol. 370, no. 1958, pp. 118–135, 2012.

[7] G. Anastasi et al., “Energy conservation in wireless sensor networks: A
survey,” Ad Hoc Networks, vol. 7, no. 3, pp. 537 – 568, 2009.

[8] A. Ciancio et al., “Energy-efficient data representation and routing for
wireless sensor networks based on a distributed wavelet compression
algorithm,” in Proc. of the 5th international conference on Information
processing in sensor networks (IPSN), 2006, pp. 309–316.

[9] Y.-W. Hong, Y.-R. Tsai, Y.-Y. Liao, C.-H. Lin, and K.-J. Yang, “On the
throughput, delay, and energy efficiency of distributed source coding in
random access sensor networks,” IEEE Trans. on Wireless Communica-
tions, vol. 9, no. 6, pp. 1965 –1975, 2010.

[10] E. Candes et al., “Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information,” IEEE Trans.
on Information Theory, vol. 52, no. 2, pp. 489 – 509, 2006.

[11] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Joint source-channel
communication for distributed estimation in sensor networks,” IEEE
Trans. on Information Theory, vol. 53, no. 10, pp. 3629 –3653, 2007.

[12] W. Bajwa et al., “Compressive wireless sensing,” in Proc. of the 5th
international conference on Information processing in sensor networks
(IPSN), 2006, pp. 134–142.

[13] C. Luo et al., “Compressive data gathering for large-scale wireless
sensor networks,” in Proc. of the 15th annual international conference
on Mobile computing and networking (Mobicom), 2009, pp. 145–156.

[14] C. Luo, F. Wu, J. Sun, and C. Chen, “Efficient measurement generation
and pervasive sparsity for compressive data gathering,” IEEE Trans. on
Wireless Communications, no. 99, pp. 1 –11, 2010.

[15] M. F. Duarte et al., “Universal distributed sensing via random pro-
jections,” in Proc. of the 5th international conference on Information
processing in sensor networks (IPSN), 2006, pp. 177–185.

[16] A. Graps, “An introduction to wavelets,” IEEE Compututer Science
Engineering., vol. 2, pp. 50–61, June 1995.

[17] E. Candes and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?” IEEE Trans. on Information
Theory, vol. 52, no. 12, pp. 5406 –5425, 2006.

[18] E. Cands and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Problems, vol. 23, no. 3, p. 969, 2007.

[19] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on Pure and
Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[20] E. J. Candes, “Compressive sampling,” in Proc. of the International
Congress of Mathematicians, vol. 3, 2006, pp. 1433–1452.

[21] A. Ali et al., “An adaptive and composite spatio-temporal data com-
pression approach for wireless sensor networks,” in Proc. of the 14th
ACM international conference on Modeling, analysis and simulation of
wireless and mobile systems (MSWiM), 2011, pp. 67–76.

[22] Ciancio et al., “A distributed wavelet compression algorithm for wireless
sensor networks using lifting,” in Proc. of the IEEE International Con-
ference onAcoustics, Speech, and Signal Processing (ICASSP), vol. 4,
2004, pp. 633–636.

[23] Z. Xiong et al., “Distributed source coding for sensor networks,” Signal
Processing Magazine, IEEE, vol. 21, no. 5, pp. 80 – 94, 2004.

[24] T. Srisooksai, K. Keamarungsi, P. Lamsrichan, and K. Araki, “Practical
data compression in wireless sensor networks: A survey,” Journal of
Network and Computer Applications, vol. 35, no. 1, pp. 37 – 59, 2012.

[25] G. Hua and C. W. Chen, “Correlated data gathering in wireless sensor
networks based on distributed source coding,” International Journal of
Sensor Networks, vol. 4, no. 1/2, pp. 13–22, 2008.

[26] D. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans. on
Information Theory, vol. 52, no. 1, pp. 6 – 18, 2006.

[27] J. Meng et al., “Sparse event detection in wireless sensor networks
using compressive sensing,” in Proc. of 43rd Annual Conference on
Information Sciences and Systems (CISS), 2009, pp. 181 –185.

[28] C. Caione, D. Brunelli, and L. Benini, “Compressive sensing optimiza-
tion over zigbee networks,” in Proc. of the International Symposium on
Industrial Embedded Systems (SIES), 2010, pp. 36–44.

[29] M. Mahmudimanesh, A. Khelil, and N. Suri, “Reordering for better
compressibility: Efficient spatial sampling in wireless sensor networks,”
Proc. of the International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing 2010, pp. 50–57, 2010.

[30] M. Mahmudimanesh et al., “Map-based compressive sensing model
for wireless sensor network architecture, a starting point,” in Proc. of
the International Workshop on Wireless Sensor Networks Architectures,
Simulation and Programming (WASP), 2009.

[31] M. Duarte et al., “Distributed compressed sensing of jointly sparse
signals,” in Conference Record of the 39th Asilomar Conference on
Signals, Systems and Computers, 2005, pp. 1537 – 1541.

[32] C. Seeger, A. Buchmann, and K. Van Laerhoven, “myhealthassistant: A
phone-based body sensor network that captures the wearerś exercises
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