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Abstract—Collection of the sensed data in a wireless sensor
network at one or more sink(s) is a well studied problem and
there are a lot of efficient solutions for a variety of wireless sen-
sor network configurations and application requirements. These
methods are often optimized towards collection of the sensed
data at a predetermined base station or sink. This inherently
reduces the agility of the wireless sensor network as the flow of
information is not easily changeable after the establishment of
the routing and data collection algorithms. This paper presents
an efficient data dissemination method based on the compressed
sensing theory that allows each sensor node to take the role of a
sink. Agile sink selection is especially advantageous in scenarios
where the sink or the end user of the wireless sensor network
is mobile. The proposed method allows availing the global state
of the environment by fetching a small set of data from any
arbitrary node. Our evaluations prove the better performance of
our technique over existing methods. Also a comparison with an
oracle-based approach gives sufficient experimental evidences of
a nearly optimal performance of our method.

I. INTRODUCTION

A Wireless Sensor Network (WSN) is a distributed sensory
system consisting of interconnected Sensor Nodes (SN) that
is employed for large-scale monitoring of the environment.
[1], [2]. In a conventional WSN, the sensed data are gathered
at a dedicated node called sink. The sink then processes the
received data and prepares it for the end user. This paper
studies the problem of availing the sensed data at any SN.
This allows an agile sink selection based on the specific
requirements of the end user. Agile sink selection gives the
end user more flexibility and mobility.

The paradigm of WSN data handling techniques is charac-
terized by three attributes of the SNs:

1) The power supply of a SN is commonly in form of
battery, and hence, is a limited source of energy.

2) Data transmission is the main energy drain of a
SN, thus reduction in the amount of transmissions
is advocated [3], [4].

3) The processing power and the memory of a SN is
often very limited.

Given these constraints, we propose a novel data dissem-
ination technique, called Comprensus, that efficiently dissem-
inates the sensed data to all SNs. The global state of the
environment is obtainable by querying a small set of data
from any SN. Comprensus draws its concepts from the well
known Consensus methods. Similar to Consensus, the global
state propagates in the network via local information exchange
by neighboring nodes. Our work distinguishes itself from

Consensus methods by considering the compressibility of the
sensed data. Comprensus reduces the amount of information
exchanges by applying the theory of Compressed Sensing
(CS).

A. Problem statement

Consider a WSN consisting of n static SNs that are labeled
from 1 to n. The value recorded by SN i is denoted by fi. We
make a vector f ∈ Rn by stacking the values recorded by the
SNs.

f =


f1
f2
...
fn

 (1)

The goal of our dissemination method is to make the vector
f available to all SNs within a certain time limit. The global
state can be recovered by fetching a limited amount of data
from any SN, e.g., when a mobile sink visits some SNs and
estimates the global state of the environment by extracting their
data.

There are two challenges to achieve this goal. First, the
number of transmissions by the SNs must be minimized in
order to meet bandwidth limitations and also save battery.
Second, the dissemination protocol must be light-weight such
that it can be easily implemented on the basic hardware
platforms of the SNs.

B. Contributions

Our approach has two advantages over the straightforward
solution that gathers data at a stationary sink and sends it to
the mobile end user.

1) Comprensus allows each SN to be a potential sink.
2) There is no need for the end user to be in radio range

of the stationary sink.

The mobile end user extracts the global state of the environ-
ment from any SN in its vicinity. This is especially useful for
in-door applications where the base station is not necessarily
accessible from any arbitrary location in the environment.

Our evaluations prove better performance of Comprensus in
comparison to the state of the art methods such as compression
and predistribution via randomized gossiping [5]. We also
compare the performance of Comprensus with an oracle-
based approach and show that it performs nearly optimal in a
noiseless environment. According to the CS theory, in presence



of the additive noise, the accuracy of the disseminated data is
degraded not much more than the noise magnitude.

II. BACKGROUND AND RELATED WORK

This section briefly reviews the fundamentals of the CS
theory and the terminology that is required for description
of our technique. It also reviews a closely related work
by Rabbat et al., namely the decentralized compression and
predistribution via randomized gossiping [5].

A. Compressed sensing

CS allows a more efficient acquisition of a signal by taking
advantage of its compressibility. A signal of size n is denoted
by a vector f ∈ Rn. Each element of the vector f corresponds
to a sample of the signal.

Definition 1. We call a vector φ ∈ Rn a sensing vector, and
the inner product of a sensing vector and vector f is called a
measurement.

Let y1, y2, . . . , ym be m measurements such that

yj = φj
T f + zj , j ∈ {1, 2, . . . ,m} (2)

where φj are the sensing vectors, {zj} is the white noise
sequence with variance σ2. This can be also written using
matrix notations:

y = Φf + z (3)

where y = [y1 y2 . . . ym]T is the measurement vector,
Φ = [φ1 φ2 . . . φm]T is the measurement matrix and
z = [z1 z2 . . . zm]T is the noise vector.

According to the CS theory, it is possible to recover vector
f from m < n measurements under certain conditions for f
and the sensing vectors as follows.

We assume that f can be sparsely represented under a
linear projection using an orthonormal matrix Ψ. Suppose that
f = Ψx for a suitably chosen orthonormal matrix Ψ such that
x is sparse. Vector x is called a sparse vector when it has
s � n non-zero components and all its other (n − s) com-
ponents are zero. Sparsity plays an important role in the CS
theory. The sparser the vector x is, the fewer measurements are
required to recover f . The spatial signals recorded by a WSN
admit a nearly sparse representation under an orthonormal
linear transform such as Fourier, Discrete Cosine Transform
(DCT) or Discrete Wavelet Transform (DWT) [6].

1) Isotropy and Incoherence: Isotropy and incoherence are
the other necessary conditions in order to recover f from y [7].
Let φ ∈ Rn be a random sensing vector with independent and
identically distributed components drawn from distribution F ,
i.e., φ iid∼ F .

Definition 2. [7] Distribution F has the isotropy property,
when φφT is expected to be the identity matrix. Mathemati-
cally,

E[φφT ] = I , φ ∼ F. (4)

The isotropy condition can be weakened to near isotropy,
i.e., E[φφT ] ≈ I and still f is accurately recoverable from the
measurement vector y [7].

Definition 3. [7] Coherence parameter µ is defined as the
smallest value µ such that

|φT
j ψi|2 ≤ µ (5)

for all sensing vectors φj and columns ψi of matrix Ψ,
j ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , n}.

We say that the sensing vectors are more incoherent if
the value of µ is a smaller number. According to [7], the
more incoherent the sensing vectors are, the less random
measurements are required for accurate recovery. Candes et
al. in their RIPless theory of CS [7] discuss some of the
random distributions F obeying the isotropy condition. These
include the Gaussian distribution, Rademacher distribution and
random Fourier sampling [7]. Randomized sampling brings a
key benefit for WSNs by eliminating the need for centralized
coordination [8], [9].

It is shown in [7] that if the isotropy condition holds and the
number of measurements m is in the order of O(µs log n), then
f can be recovered from y with an overwhelming probability.
Therefore, we need a basis1 Ψ and a set of sensing vectors
with isotropy property such that f is compressible under the
Ψ-transform and the columns of the transformation matrix Ψ
have the least coherence with the sensing vectors. In this paper,
we propose a novel network coding technique that fulfills these
conditions.

2) Signal recovery: In order to recover f from y, first we
need to solve the following convex optimization problem [7].

minimize
x̃∈Rn

1

2
‖ΦΨx̃− y‖22 + λσ‖x̃‖1 (6)

where λ = 10
√
m log n, ‖·‖1 is the norm-1 operator and ‖·‖2

is the norm-2 operator2.

Some of the efficient and accurate algorithms for solving
this problem can be found in [10] and [11]. If x̂ is the solution
to the convex optimization problem in Equation 6, then f̂ =
Ψx̂ will estimate the original signal f with an error bounded
by polylog(n)(s/m)σ2 [7]. In practice, signal f is not strictly
sparse under the Ψ-transform. Instead, x has a few components
with larger magnitudes and most of its remaining components
are nearly zero. Suppose that xs is a sparse approximation of
x by keeping s most significant components of x and zeroing
its remaining (n− s) components. It is shown in [7] and [12]
that, in such a case the recovery error will not grow much
more than O(‖x− xs‖2) .

B. Distributed compression and predistribution via random-
ized gossiping

Randomized gossiping is a data dissemination approach
which employs average consensus algorithm [5]. It makes
use of gossiping average consensus technique to compute and

1A basis for Rn is a set of vectors ψi, i ∈ {1, . . . , n}, such that any
vector f ∈ Rn can be represented as f =

∑n
i=1 xiψi where xi are called

the coefficients of f in basis Ψ. The corresponding transformation matrix Ψ
is made by putting the vectors ψi in a matrix, i.e., Ψ = [ψ1 ψ2 . . . ψn]
and f = Ψx where x = [x1 x2 . . . xn]T .

2For a real vector v ∈ Rn, norm-1 of v is defined as ‖v‖1=
∑n

i=1|vi|
and norm-2 of v is defined as ‖v‖2=

√∑n
i=1|vi|2



distribute random projections of the sensed data. These random
projections are the measurements yj where j ∈ {1, 2, ...,m}.

Let αi refer to the ith column of measurement matrix
Φ. Note that αi is generated in a decentralized manner by
employing a pseudo-random number generator. Suppose that
SN i computes fiαi and stores the result in an array of m
real numbers. Let wi[t] ∈ Rm refer to the content of the array
inside SN i at time t. SN l1 is activated uniformly at random
at time t and chooses one of its neighbors l2 uniformly at
random. SN l1 and SN l2 exchange wl1 [t] and wl2 [t] and
update wl1 [t+ 1] = wl2 [t+ 1] = (wl1 [t] + wl2 [t])/2.

According to the work by Rabbat et al. [5], when t →
∞, wi → Φf for all i ∈ {1, 2, . . . , n} [5]. Therefore, after
sufficiently many iterations of this protocol, the content of array
wi in all SNs will get close enough to y = Φf . According to
the discussion in Section II-A2, signal f can be recovered at
any SN after solving Equation 6. Since the size of y and also
the array wi is in the order of µs log n, randomized gossiping
requires O(µs log n) transmissions per iteration. The number
of required iterations depends on the network topology [5].

In practice, achieving a negligible recovery error requires a
large number of iterations. This is one important drawback of
randomized gossiping. Comprensus proves to be more efficient
in terms of number of iterations and transmissions required
for data dissemination. The novelty of the Comprensus is
its efficient network coding technique, which makes a faster
convergence to the minimum recovery error possible.

This paper proposes a novel network coding mechanism
which is still as simple as consensus, nevertheless, requires less
time and communications to disseminate the measurements. In
randomized gossiping [5], the SNs run a protocol such that all
of them converge to a measurement vector y which is common
among all SNs.

In Comprensus, each SN receives a different measurement
vector yi, i ∈ {1, 2, . . . , n}. We show that for all of these mea-
surement vectors, the isotropy and incoherence properties hold.
Therefore, Comprensus does not need too many iterations for
convergence to the same measurement vector among all SNs.
Instead, our proposed method guarantees that the same signal
f is accurately recoverable from each individual measurement
vector yi received by SN i, i ∈ {1, 2, . . . , n}.

III. THE COMPRENSUS PROTOCOL

In this section, we explain Comprensus, a simple dis-
tributed protocol to disseminate random linear measurements
in a WSN with static topology. We assume that the network
topology corresponds to a connected regular graph of degree
d. It is easy to create a regular graph topology in a WSN when
n×d is an even number. For a given degree d each SN selects
at most d neighbors with the highest Received Signal Strength
Indicator (RSSI) [13] assuming that each SN has at least d
SNs in its communication range. At the end of this process,
we will have a topology corresponding to a regular graph of
degree d.

We start by defining the variables and definitions used
in our protocol. Suppose that each SN is equipped with two
pseudo-random number generators as defined below.

• Rademacher random generator produces either +1 or
−1 each with probability 1/2.

• Bernoulli random generator produces 1 with
probability p = k/n and 0 with probability 1− p.

We assume that SN i keeps a real number ui in its
internal memory. SN i also keeps a list Li of real numbers
in its memory. The data type of the elements of Li is the
same as the data type of ui. Memory requirement for this
list is O(µs log n) items. We will see shortly that µ will be
a small constant. This list actually holds the random linear
measurements which are used thereafter for signal recovery.
One can have an estimation of s in an appropriate basis Ψ
based on a previous knowledge about the data gathered from
the WSN. Since this estimation is not necessarily accurate,
it is recommended to use a worst case estimation for s in a
real-world deployment of Comprensus.

A. Distributed Comprensus algorithm

The Comprensus protocol is executed in three phases:
Initialization, Dissemination and Recovery. The instructions
described below will be executed in parallel by every SN i,
i ∈ {1, 2, . . . , n}.

1) Initialization: First, the list Li is emptied. Then, SN i
reads the value fi from its sensor and stores it into variable ui.
We assume that each SN is given a unique id and initializes the
seeds of the Rademacher and Bernoulli random generators by
its id. By choosing an efficient and reliable pseudo-random
number generator we minimize the chance that two SNs
generate the same sequence of random values [14].

2) Dissemination: This phase is repeated r times in parallel
by all n SNs. At each iteration t ∈ {1, 2, . . . , r} all of the SNs
execute Algorithm 1 simultaneously.

• hi[t] is the value generated by the Rademacher random
generator of SN i at iteration t.

• bi[t] is the value generated by the Bernoulli random
generator of SN i at iteration t.

Algorithm 1 Dissemination phase of Comprensus
1: ui ← hi[t] · ui
2: if bi[t] = 1 then
3: Transmit ui
4: else
5: for all SN j in neighborhood of SN i do
6: if SN j is transmitting the value uj [t] then
7: ui ← ui + uj [t]/n
8: end if
9: end for

10: end if
11: if at least one neighbor has transmitted then
12: add ui to the rear of Li

13: end if

Remark: We assume that the SNs cannot transmit and
listen at the same time. Also the wireless channel of two
adjacent nodes cannot be used simultaneously. Therefore, if
a set of adjacent SNs want to transmit at the same iteration,



they transmit one by one according to the descending order
of their ids. They aggregate their received measurements in
a temporary variable and update their corresponding ui only
after all of these concurrent transmissions are completed.

If the SNs are perfectly synchronized, aggregation by signal
superposition helps to perform the dissemination phase faster.
Signal superposition allows multiple nodes to transmit simul-
taneously and the receiver accumulates the received values at
the same time [15], [16].

3) Recovery: SN i derives a vector yi by stacking the
entries in list Li. When all SNs agree on a common random
generator algorithm, the linear combinations that led to the
values in Li are reproducible as described in Section II-A.
These linear measurements are then placed in Equation 6 to
recover f . We show in Section III-C that the linear measure-
ments acquired in the dissemination phase obey the isotropy
condition and have low coherence with DCT.

Line 1 of Algorithm 1 generates a new Rademacher value
and multiplies it by the current value of ui which is first set
to fi in the initialization phase. Line 2 decides whether SN i
is to transmit in this iteration or not. Since bi[t] returns 1 with
probability k/n, this is equivalent to the case that almost k out
of n SNs select themselves uniformly at random to transmit.
Executing the line 3 consumes the most amount of battery
power, as using the radio in transmitting mode is the major
energy drain of a SN [17]. If SN i is not in transmitting mode
at iteration t, i.e., bi[t] = 0, then it listens to the communication
channel and accumulates the values sent by neighboring nodes
onto ui after dividing them by n as instructed in lines 5 through
9. Summing the received values from neighboring nodes can be
done arithmetically by using a simple Time Division Multiple
Access (TDMA) mechanism [18]. A faster alternative is signal
superposition when the SNs are perfectly synchronized [15],
[16]. It can also happen that no neighbor of SN i does a
transmission at iteration t. In this case, no value is added to
the list Li. This condition is checked in line 11, and thus,
line 12 is executed only when at least one neighboring node
has transmitted. We will explain shortly why this restriction is
necessary.

B. Matrix representation of the distributed protocol

In this section we examine the network-wide implication
of Algorithm 1 by using the equivalent matrix representation
of Comprensus.

Let Ni denote the set of the d neighbors of SN i.

Definition 4. Transition matrix Mt at iteration t is an n× n
real matrix with the following attributes.

1) Mt[i, i] = hi[t] for 1 ≤ i ≤ n.

2) Mt[j, i] = hi[t]/n when j ∈ Ni and bi[t] = 1.

It is easy to verify that after iteration t of the dissemination
phase,


u1[t]
u2[t]

...
un[t]

 = (Mt ×Mt−1 × · · · ×M1) f (7)

describes the contents of variables ui , i ∈ {1, 2, . . . , n}. We
address the effect of noise at the end of our matrix analysis.
We also define the n× n matrix Qt as

Qt :=


q1,t

q2,t

...
qn,t

 := Mt ×Mt−1 × · · · ×M1 (8)

where q1,t, q2,t , . . . , qn,t are the rows of matrix Qt.

We define a set Ri as

Ri := {t | ∃j ∈ Ni : bj [t] = 1} (9)

to refer to the set of iterations in which at least one neighboring
node of SN i is transmitting. We also define matrix Ai as

Ai := [qT
i,t1 qT

i,t2 . . . qT
i,tm(i)

]T (10)

where m(i) = |Ri| is the number of measurements received
by SN i and {t1, t2, . . . , tm(i)} = Ri. The number of received
measurements may differ from one SN to other. Nevertheless,
when the network topology corresponds to a regular graph, all
of the nodes are expected to receive almost the same amount of
measurements, since each SN has an equal chance to transmit
and receive messages. It can be shown that the measurement
vector y(i) made by stacking the values in list Li will be

y(i) = Aif + z (11)

where z is the additive noise. The noise is added either by the
communication channel or can be regarded as a side effect of
low precision floating pointing storage and processing inside
the SNs. We model z by a white Gaussian noise vector in our
simulations and experiments.

If the rows of Ai obey the isotropy property and have
low coherence with a compressive basis, then f can be re-
covered at SN i from y(i) with high probability as detailed
in Section II-A2. Now the reason for the restriction in Line
11 of Algorithm 1 becomes clear. We only let newly received
measurements to be aggregated and added to the measurement
list Li. Otherwise, Ai will have at least two rows which are
linearly dependent, and thus, Ai is not full rank. In other
words, we will have redundant measurements stored in Li if
we do not check the condition in Line 11 of Algorithm 1.

Suppose that m̄ is the average number of measurements
received per SN. m̄ should be in order of O(µs log n) to allow
successful recovery. When these conditions are fulfilled, the
signal vector f can be recovered at every SN after running
the Comprensus protocol. Next, we examine isotropy and
incoherence properties of our measurement matrix Ai for
i ∈ {1, 2, . . . , n}.

C. Numerical experiments

In this section, we investigate the isotropy and incoherence
of our measurement method through numerical experiments
on simulated WSNs. We perform comprehensive numerical
experiments on simulated WSNs consisting of n = 128 SNs.
The network graph is a random regular graph of degree d = 5
which is freshly generated in each experiment and the results
are averaged over multiple simulation runs.



We let the SNs to generate their corresponding hi and
bi random numbers and execute the Comprensus protocol for
varying values of r and k. Each experiment is run several times
and all of the results are averaged to eliminate randomness
effects.

In Section II-A1, we have seen that even if the set of
sensing vectors have the near-isotropy property, the signal f
can be recovered from measurement vector y. In Comprensus,
the set of the sensing vectors for SN i are the rows of Ai and
the measurement vector for SN i is y(i). We define a metric
for deviation from isotropy and show that the rows of Ai have
a very low deviation from the isotropy property.

Definition 5. Deviation from isotropy for a random sensing
vector a is defined as

∑
e∈Ea(1− e)2 where Ea is the the set

of eigenvalues of the square matrix E[aaT ].

This metric determines how much E[aaT ] behaves like an
identity matrix. In the ideal case, E[aaT ] = I and has only one
eigenvalue, i.e., 1, and thus, the deviation from isotropy is zero.
For random sensing vector a, if the eigenvalues of E[aaT ] are
all very close to 1, E[aaT ] behaves like an identity matrix and
deviation from isotropy as defined in Definition 5 will be low.

In our numerical experiments, a large set of measurement
matrices Ai are generated. Our random sensing vectors are
actually the rows of the randomly generated measurement
matrices Ai. For each row aT of these matrices, we calculate
aaT and sum up all of the results. E[aaT ] is then numerically
calculated by dividing this summation by the total number of
the randomly generated sensing vectors.

Observation 1 – near-isotropy: Deviation from isotropy
according to Definition 5 is calculated over all randomly
generated measurement matrices Ai, i ∈ {1, 2, . . . , n} and
a full range of experiments with k varying from 1 to n and
r ∈ {32, 64, 128}. The results as illustrated in Figure 1.a prove
that our measurement mechanism obeys the near-isotropy
property with negligible deviation, i.e., E[aaT ] ≈ I.

Observation 2 – low coherence: We set Ψ to be the
inverse DCT matrix and calculate the coherence with the
DCT basis according to Definition 3 for randomly generated
measurement matrices with k varying from 1 to n and r ∈
{32, 64, 128}. The averaged results over a large set simulations
as illustrated in Figure 1.b shows that the coherence factor is
also low.

Next, we evaluate the performance of Comprensus and
compare it with randomized gossiping and an oracle-based
approach.

IV. EVALUATION

We simulate the Comprensus protocol by distributed exe-
cution of Algorithm 1 for different values of r and k on a large
set of synthesized spatial signals. After running each instance
of the Comprensus protocol, the Signal to Noise Ratio (SNR)
of the recovered signal is calculated. The SNR is measured in
decibels (dB) and the recovery algorithm is run at a randomly
chosen SN. This guarantees that the recovery is possible at
any arbitrarily chosen node.
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Fig. 1. Near-isotropy and low coherence of Comprensus measurement scheme

If f is the original signal and f̂ is the recovered signal, we
define SNR as

SNR := 10 log10

(
‖f‖22
‖f − f̂‖22

)
. (12)

Figure 2 shows the results of simulating a network consist-
ing of 128 nodes. Number of iterations and number of active
nodes are varying from 1 to 128. Each point on the SNR
diagrams corresponds to one simulation run. Brighter area
shows higher SNR which means accurate signal recovery at an
arbitrary SN and darker area shows lower SNR which means
that signal recovery is not possible, and hence, the sensed data
are not accessible from an arbitrary node.

An interesting observation in our evaluations is that the
transition to the condition where accurate recovery is possible
is relatively sharp. Looking at the SNR diagrams of Figure 2,
the border between the bright area (successful dissemination)
and dark area (non-recoverability) has a recognizable contrast.
Sharp transition between recoverability and non-recoverability
states in CS is comprehensively studied in the Donoho-Tanner
universal phase transition inspections [19].

We conduct a large set of simulations with different config-
urations of the Comprensus protocol and for different values
of the sparsity parameter s. Next, we compare Comprensus to
randomized gossiping [5] for three illustrative values for s. Our
evaluations show that Comprensus outperforms randomized
gossiping in terms of message cost and the dissemination time.
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(a) Signal recovery for s = 5

0 20 40 60 80 100 120

Number of iterations

0

20

40

60

80

100

120

Nu
m

be
r o

f a
ct

iv
e 

no
de

s 
pe

r i
te

ra
tio

n

0

10

20

30

40

50

60

70

80

SN
R 

[d
B]

(b) Signal recovery for s = 10
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(c) Signal recovery for s = 20

Fig. 2. Accuracy of signal recovery for different sparsity levels
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Fig. 3. Measurement error decay with iterations of randomized gossiping

In Section IV-B, we show that Comprensus performs close to
the optimal case when no packet loss occurs.

A. Comparison to randomized gossiping methods

In this section, we compare Comprensus to decentralized
compression based on randomized gossiping [5]. We set our
SNR requirement for both protocols to 40 dB and compare
their performance in achieving this requirement. Network
topology and all other conditions are also the same for both
protocols.

As described in Section II-B, randomized gossiping re-
quires at least s log n data exchanges per iteration. The number
of required iterations is dependent on the network topology
and maximum allowed measurement error. Assume that wi[t]
is the content of the measurement vector of SN i at iteration
t of randomized gossiping as defined in Section II-B. As we
have seen in Section II-B, the difference between wi[t] and
y = Φf shrinks to zero when t→∞.

We define the measurement error of SN i at iteration t as

εi,t := ‖wi[t]− y‖2. (13)

We also define average measurement error at iteration t as
εt := (

∑n
i=1 εi,t)/n. From the arguments in Section II-A2 we

know that for recovering f with SNR of at least 40 dB, the
measurement error εi,t must be lower than ‖f‖2×10−4 for the
measurement vector received by SN i at time t.

Figure 3 shows how εt decays with the number of random-
ized gossiping iterations for a WSN consisting of n = 128 SNs
with a network topology corresponding to a connected regular
graph of degree d = 5. We observe that, average measurement
error goes below our required threshold after almost 1200
iterations. We round down this number to 1000 iterations in
favor of the randomized gossiping method.

Now we compare the total amount of transmissions in
Comprensus and randomized gossiping. We consider the three
test cases illustrated in Figure 2. For s ∈ {5, 10, 20}, ran-
domized gossiping requires s log n ≈ 2.1 × s transmissions
per iteration when n = 128, and thus, almost 2.1 × 103 × s
transmissions in total, since it requires to execute 1000 iter-
ations. Comprensus needs rk transmission corresponding to
point (r, k) that falls on the bright part of the SNR diagram of



Figure 2. For s being 5, 10 and 20 we set (r = 50, k = 30),
(r = 60, k = 40) and (r = 80, k = 40) respectively.
Looking at Figure 2, we see that these are rather conser-
vative selections and signal recovery is possible with fewer
numbers of transmissions. Nevertheless, we run Comprensus
with these conservative settings and compare its performance
to the randomized gossiping method. The comparison result is
summarized in Table I.

TABLE I. COMPARING COMPRENSUS TO RANDOMIZED GOSSIPING

s
Total number of transmissions

Comprensus Randomized gossiping

5 1.5× 103 1.0× 104

10 2.4× 103 2.1× 104

20 3.2× 103 4.2× 104

Comprensus proves to disseminate the random linear mea-
surements not only in significantly less number of iterations,
but also using much less amount of in-network transmissions.
Using its efficient network coding technique, Comprensus
disseminates compressible data with low latency and high
quality while keeping the number of transmissions as low as
possible in order to preserve more battery power of the SNs.

B. Comparison to oracle-based approach

Comparison with an oracle-based approach gives us a better
understanding of Comprensus’ performance in comparison to
the optimal solution. We assume that an oracle knows all of
the sensed data, i.e., the vector f in advance, and hence, it also
knows its sparse transform, i.e., x. The oracle broadcasts only
the s significant coefficients of x into the network. Thus, the
communication cost of the oracle-based approach is O(sn).
Note that broadcasting is performed hop by hop. For a limited
number of neighboring hops, the broadcast of a single data
item requires O(n) transmissions, and thus, the total number
of transmissions for broadcasting the s significant coefficients
of x is O(sn).

Figure 4.a and Figure 4.b demonstrate communication cost
of Comprensus for different values of sparsity and for 35
and 40 dB SNR-thresholds respectively. We observe that,
the communication cost of Comprensus is bounded between
O(s × n) and O(3 × s × n). These numerical experiments
indicate that Comprensus functions almost optimally under the
conditions that are applied for the simulation. A generalization
of these results or a formal proof of optimality of Comprensus
is regarded as an interesting direction for future work.

V. CONCLUSION

In this paper, we studied dissemination of compressible
data using local information exchanges between the nodes in a
wireless sensor network. Our approach is based on the theory
of compressed sensing. We present a novel network coding
protocol, named Comprensus, that enables each sensor node
of a wireless sensor network to operate potentially as a sink.
Our agile sink selection techniques can avail the full set of the
sensed data by querying a small amount of measurements from
any arbitrary node in the network. The techniques proposed in
this paper are particulary suitable for scenarios where the sink
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Fig. 4. Comparing the communication cost of Comprensus with the oracle-
based approach

of the wireless sensor network is mobile or when each node
should access the global state of the environment.

The main advantage of the Comprensus protocol is its
simple dissemination algorithm that is easily implementable
on the scarce hardware resources of the sensor nodes. The
complex part of the protocol, i.e., signal recovery is offloaded
to an external sink or data collector that possess enough
computation power.

Our evaluations show that Comprensus outperforms the
state of the art methods for data dissemination in wireless
sensor networks that are based on compressed sensing both
in terms of communication cost and the time required for data
dissemination. Our approach benefits from inherent resilience
of compressed sensing to communication and measurement
noise. Moreover, comprehensive simulation and experiments
of our method shows a nearly optimal performance of the
Comprensus protocol in a noiseless scenario. Our experi-
ments provides a basis for further theoretical and practical
investigations of our proposed method, especially for dynamic
topologies.
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