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Abstract—Compressed Sensing (CS) is a novel sampling 

paradigm that tries to take data-compression concepts down to 
the sampling layer of a sensory system. It states that discrete 
compressible signals are recoverable from sub-sampled data, 
when the data vector is acquired by a special linear transform of 
the original discrete signal vector. Distributed sampling problems 
especially in Wireless Sensor Networks (WSN) are good 
candidates to apply CS and increase sensing efficiency without 
sacrificing accuracy. In this paper, we discuss how to reorder the 
samples of a discrete spatial signal vector by defining an 
alternative permutation of the sensor nodes (SN). Accordingly, we 
propose a method to enhance CS in WSN through improving 
signal compressibility by finding a sub-optimal permutation of the 
SNs. Permutation doesn't involve physical relocation of  the SNs. 
It is a reordering function computed at the sink to gain a more 
compressible view of the spatial signal. We show that sub-optimal 
reordering stably maintains a more compressible view of the 
signal until the state of the environment changes so that another 
up-to-date reordering has to be computed. Our method can 
increase signal reconstruction accuracy at the same spatial 
sampling rate, or recover the state of the operational environment 
with the same quality at lower spatial sampling rate. Sub-
sampling takes place during the interval that our reordered 
version of the spatial signal remains more compressible than the 
original signal. 

Compressive Wireless Sensing; Spatial Sampling; Reordering; 
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I. INTRODUCTION 

Background: Sampling is the process of acquiring physical 
parameters and representing them in digital form. The result of 
sampling is a vast amount of raw data that can be stored or 
transmitted via a communication network for further 
processing  [1]. The term signal is used to address the physical 
signals that can be acquired by a digital sensory system. For 
example, a sound wave illustrates a 1-dimensional signal which 
shows the change of sound amplitude over time. An image is a 
2-dimensional spatial signal defined as the light intensity 
sensed by photocells of a digital camera. A Wireless Sensor 
Network (WSN) designed to sense the temperature of an 
environment, gives another spatial discrete signal containing 
thousands of temperature samples wirelessly reported by 
sensor nodes (SNs) to a base station, called the sink. Here we 
view the signal sensed by a WSN as a vector whose elements 
are the physical parameter values at the points where SNs are 
located. Therefore, WSN senses a 1-dimensional signal which 

can be mapped to a 2-dimmensional rectangular environment 
with the help of information from sensors localization  [2] [8]. 

A WSN has to sample the physical parameter(s) of its 
operational environment at discrete points where SNs are 
located. Therefore, in general WSN can be viewed as a 
distributed spatially discrete sampling problem (Note that the 
signal is also temporally discrete, because WSN samples the 
environment at discrete time instances). From now onwards, 
we only discuss discrete signals. We view a discrete signal 
sensed by a WSN as a vector consisting of n elements (n is the 
number of SNs). Every element is the value sensed by an 
individual SN. Under a suitable linear transform of a discrete 
signal such as the Fourier Transform (FT)  [3] or Discrete 
Cosine Transform (DCT)  [4], one can expect that most of the 
energy of the signal is concentrated on a few Fourier/DCT 
coefficients  [5]. It is known that physical signals sampled from 
natural phenomena are band-limited, i.e., their spectral 
representation is sparse. Consequently, the spectral 
representation (such as representation under FT or DCT) of 
almost all physical signals has a few relatively large 
coefficients and many other small (nearly zero) coefficients 
(that is DCT or FT coefficients). This is the main logic behind 
compression techniques. A sparser representation of a signal is 
easier to be densely encoded. Because most of such 
compression techniques apply a linear transform such as FT or 
DCT at the very initial step before encoding, they are also 
called transform-compression techniques  [6]. 

The Problem Area & Current Approaches: Transform-
compression methods are very efficient, but they are useful 
only when all the samples are centrally available and can be 
accessed simultaneously to apply linear transformation. This 
makes transform-compression inefficient  when acquiring the 
samples is cost-intensive. WSN is such an example where 
getting each sample requires not only the energy consumed by 
the active sensing node, but also all the SNs along the route 
from the source to the sink. As WSN nodes typically have very 
limited energy hence, it is critical to gather sensor data by the 
lowest sampling rate possible. 

Compressive Sampling  [7] or Compressed Sensing (CS) 
overcomes the limitations of transform-compression and 
proposes a sampling method which acquires the samples at a 
lower rate. CS tries to acquire only the samples that are 
necessary in constructing the original signal and to avoid extra 
sampling when the signal is sparse or compressible. CS states 
that it is possible to reconstruct a discrete signal from a set of 



randomly chosen values selected from a vector computed by a 
linear transform of the discrete signal vector. The 
reconstruction takes place by finding the solution to a convex 
optimization problem  [11]. CS is a vital sampling method for 
situations where acquiring individual samples is very expensive 
such as in WSN. 

Paper Contributions: In this paper, we propose a novel 
enhancement to CS in WSN. Our improvement does not 
change the basics of CS or its WSN implementation. 
Consequently, the proposed technique can apply to all the 
current achievements of CS  [15] [16] as a complementary or 
enhancement method. We show that if we view the signal 
vector under a reordering (mapping) function, it is possible to 
obtain a more compressible signal, i.e., a signal which is 
sparser in a certain domain such as FT or DCT. In brief our 
work offers a new approach  to the WSN sampling problem by 
enhancing the CS basis. The main contributions of this paper 
can be categorized as follows: (I) A relatively fast and simple 
polynomial-time algorithm that finds a permutation of samples 
of the discrete signal vector f, so that the linear transform of f to 
frequency domain is sparser than the original ordering of 
samples, (II) proposing an enhanced Compressive Wireless 
Sensing (CWS)  [16] model which is capable of adapting itself 
to the environment changes. When the state of the environment 
doesn't change quickly, our model is capable of reducing 
spatial sampling rate through constructing a more compressible 
view of the spatial signal, and (III) evaluation of our algorithm 
and enhanced CWS model on static and dynamic environments 
in different situations and varied WSN configurations. Our 
evaluations show that: (a) The improved permutation found for 
the spatial signal vector f representing the current state of the 
environment, keeps being superior to the original permutation 
in very next sampling intervals, and (b) our methodology is 
valid for many varied WSN instances. 

The paper is structured as follows. Section  II describes our 
system model. In Section  III, we present a brief introduction to 
CS, define basic terms and formulate our objectives. Section  IV 
refers to existing work related to our methodology. Precise 
problem formulation is described in Section  V. Our novel 
ordering technique to enhance CS in WSN is presented in 
Section  VI. We evaluate our solution using simulation and 
numerical experiments in Section  VII. We conclude our work 
and give future directions in Section  VIII. 

II. SYSTEM MODEL 

The sink has two main responsibilities: 1) Reconstructing 
the original signal from compressively sampled data. and 2) 
Computing sub-optimal reordering of the SNs with sparser 
DCT (or FT) representation. We assume the sink to be 
powerful in processing, i.e., computation and storage. 
Reconstructing the original signal from undersampled data is 
done by performing a search in the n-dimensional vector-space 
that matches the sampled data vector  [9]. Finding an improved 
view of the SNs through reordering also acquires plenty 
amount of processing. These computations should be 
performed in a reasonable amount of time to keep the WSN 
responsive enough. 

III. ENHANCED CS THROUGH SPARSITY IMPROVEMENT 

CS [7] states that if a discrete signal vector f of size n is 
sparse (having many near-zero samples and only a few 
meaningful relatively large elements), it is possible to 
reconstruct the signal from m randomly selected samples 
produced by a suitably-chosen linear transform   of f where 

nm 
ym

. In other words we can reconstruct signal  from 1nf

fnm1  if the signal f is sparse enough and   satisfies 
some preconditions dictated by the CS theory. Vector f is  
S-Sparse if it has at most S nonzero elements. In reality we 
usually deal with non-sparse (in time/space domain) signals. 
CS also shows that even if the signal itself is not sparse but can 
be sparsely presented in another domain named the Ψ-domain, 
it is still possible to reconstruct f with an overwhelming 
(asymptotically 1) probability from m samples [10] when: 

   nS,μCm logΨΦ2    

where  is a small constant, and S is the number of non-
zero elements in f and μ is the coherence 

1C
 [10] between the 

sampling domain (Φ-domain) and the sparse representation 
domain (Ψ-domain): 

 jk   max),(   (2) 
njk  ,1

where 's and k j 's are basis vectors of Φ- and Ψ-domains 

respectively. Note that the Ψ-domain must be chosen so that 
the projection of f under Ψ-transform results in a sparse vector. 
In most cases signals sampled from the nature are quite sparse 
in DCT or FT domain  [3]. The projection of a signal vector 
sampled from a natural phenomenon on to the frequency-
domain may not be actually sparse; instead it may have many 
negligible coefficients. We define a compressible discrete 
signal f as a vector whose Ψ-transform has mostly near-zero 
elements. 

We consider the standard WSN model composed of n static 
SNs randomly distributed in the area of interest. SNs are 
equipped with short range radios, and rely on batteries and 
limited processing resources. SNs sense and report 
environmental phenomena such as the air temperature at their 
position. SNs send their samples via multihop routing to a 
dedicated node called the sink. SNs are located on WSN area 
using localisation methods 

The m samples are selected uniformly at random from ΦΨf. 
It can be shown that if Φ is an orthogonal matrix uniformly 
sampled from unit sphere, then it has low coherence with any 
orthogonal representation basis Ψ  [6]. Signal reconstruction 
from compressed samples is performed by solving the 
following convex optimization problem  [11]: 

 [8], and their position is fixed 
through the sampling and virtual environment reconstruction 
process. Alternatively, individual SNs collectively define a 
discrete one-dimensional signal vector and the position of each 
SN maps the corresponding element of the vector to a point on 
the WSN area. This also corresponds to the CS view of the 
WSN. 

1

min
l

n xx  subject to xyMk kk ,  



where and },,3,2,1{ nM  fyMk kk  ,  which the 

last term means the projection of  on f k . It can be shown 

that this convex optimization problem can be cast to a linear 
program  [12]. In simple words, the program (3) tries to find the 
vector x in Ψ-domain with the least l1-norm that is consistent 
with the sampled vector y  [13] [14]. If the solution to program 
(3) is denoted by  then the recovered vector will 

be . If we define  as a sparse version of vector x 

which has only its largest S elements and all its other elements 
are set to zero, one can suffer no much more error than 

x
 x1f Sx

2lSxx   if m in Eq. (1) is determined assuming the signal is  

S-sparse – having only S non-zero elements. 

In most distributed CS applications, sampling and sparse 
bases are determined prior to the deployment of the sensor 
network. Therefore, according to Eq. (2), μ in Eq. (1) can be 
supposed to be constant because Φ- and Ψ-domains likely do 
not change after network deployment. Therefore, S is the only 
parameter that is effective on the minimum number of required 
samples m. If we succeed to decrease S, then we can 
reconstruct the original signal from fewer samples, saving 
valuable bandwidth and SNs energy.  

In some sampling problems such as WSN, the ordering of 
the samples is not dictated by an independent phenomenon. 
Mostly, we can assign the value sensed by one sensor to the 
first signal element and the other to the second one, and so on. 
This paper focuses on such conditions where we can determine 
the sampling order. It is important to differentiate the position 
and order of SNs here. Reordering only takes place at the sink 
and all its required computations are done outside the WSN. 
That's why our proposed model doesn't add overhead to the 
WSN nodes. In simple words, reordering is an alternative view 
of our WSN signal vector under which we can apply CS more 
efficiently. 

Our enhancement works by improving compressibility, that 
means increasing sparsity of f under Ψ-transform, which means 
decreasing S in Eq. (1). Then, from Eq. (1) it implies that a 
view of the signal that makes it appear to be more 
compressible, leads to lower compressive sampling rate 
required for signal reconstruction. Lower compressive 
sampling rate means more efficient bandwidth usage and 
decreased energy consumption prolonging WSN lifetime. In 
simple words: Energy consumption ~ Data transmission rate ~ 
Compressive sampling rate m ~ S ~ 1/Compressiblity. 
Compressibility is virtually increased by finding a mapping 
under which f is sparser in Ψ-domain, which is our main 
contribution in this paper. 

IV. RELATED WORK 

CWS  [16] by Bajwa et al. discusses how to compressively 
sample the discrete signal vector f. Their approach does not 
address the adaptation of CS to dynamic phenomena and 
network conditions. In this work, we allow for CWS adaptation 
by designing our sub-optimal ordering technique. 

According to Eq. (1), reordering the vector y in such a way 
that leads to a more compressible representation of the signal 

vector, decreases the minimum sampling rate to reconstruct the 
original signal vector f. In our initiative work  [17] we have 
benchmarked our intuitive model for a small WSN with only 
eight sensors, for lack of an algorithm that finds an improved 
permutation in reasonable processing time. Our previous work 
using an exhaustive search for the optimal permutation showed 
that if the order of samples is not strict, we can reorder the 
samples to make it into a more compressible discrete signal 
vector. Compressibility is of great importance to get better 
results in signal reconstruction from compressively sampled 
signals. In this paper, we present a greedy algorithm that finds 
a sub optimal permutation in polynomial time. We will show 
that a good reordering of the samples, can drastically improve 
compressibility. This novel work also considers dynamic 
environments.  With the help of our new polynomial-time sub-
optimal reordering algorithm, we can evaluate our 
methodology in varied and more realistic conditions. Our new 
evaluations on dynamic environments justify our previous 
results in  [17] while turning many of its hypotheses into solid 
principles. 

Adaptive sub-Nyquist sampling techniques are not a new 
topic in WSN. Backcating  [18] is a sampling technique for 
WSNs which adapts the spatial sampling rate (and hence 
energy consumption) to the current state of the operational 
environment and accuracy requirements of the user. This 
approach proposes a tree-shaped hierarchical sampling 
configuration with the SNs as leaves. Regions with more 
important data (higher spatial frequency) are densely populated 
by active SNs. On the other hand, fewer SNs located in regions 
with more redundancy (less spatial frequency) are activated. 
Data reported by SNs travel the hierarchical communication 
tree up to the sink. Although Backcasting is an adaptive 
technique according to region of importance and can reduce 
extra sampling, it limits itself to a fixed topology and may not 
well extend to random distribution of SNs. CS offers a more 
general method and is less constrained to preconditions as 
required by Backcasting. This makes CS quite universal and 
very independent of network and environment specifications. 
Therefore, our enhanced CS through compressibility 
improvement is quite extensible. 

V. PROBLEM FORMULATION 

WSN can operate in two modes that we name full mode and 
half mode. In full mode, from our previous knowledge of the 
operational environment, we determine an expected value for 
sparsity of the signal’s Ψ-transform, namely  with which the 
expected minimum CWS sampling rate (number of discrete 
samples)  is calculated (by substituting S with  in Eq. 

(1)). We acquire  samples according to the methods 
discussed in CWS 
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 [16]. In half mode, we calculate a sub-

optimal reordering of the signal at the sink. Then the sink 
broadcasts a new version of the sampling matrix nm with 
fewer rows, as the minimum required samples (m) is reduced 
because signal’s sparsity is improved through our reordering.  

Without loosing generality, we only limit our configuration 
to Φ being an orthogonal Gaussian random basis and Ψ to be 
the Fourier domain. The conclusions of this work also apply to 
any other pair of orthogonal incoherent sampling and sparse 



bases. One can apply this method to other bases such DCT or 
wavelets. In fact the method discussed here applies to any other 
transformation (projection) bases which can be presented in 
matrix multiplication form. For example one can assign the 
DCT matrix to be Ψ, and find the sub-optimal reordering as 
described by our method detailed in this section. It is important 
to note that here we simplify a pure combinatorial problem 
(Subsection  V. A) to a more tractable linear algebra problem 
and find a solution to the simplified translation (Subsection 
 V B) of the original problem.  

A. Combinatorial Problem Statement 

Let π be a permutation function defined as below 
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We define reordering of vector f under function π as fπ: 

 ))(()(},,1{ ififni     

Now let's define Π to be the set of all possible mutually 
different permutation functions π. The optimal permutation 
function  for vector f under a transformation matrix Ψ is the 
one that among all  possible π's leads to the sparsest 
representation of f in the Ψ-domain: 


!n

 is sparserthan   

 f: f

As mentioned before, we can apply our approximation method 
and assume compressible vectors to be sparse in Ψ-domain by 
zeroing negligible elements of f.  

B. Condensing the Energy of the Signal 

Fourier transformation projects a vector sampled in time- or 
space-domain to the frequency domain. It can be shown that 
Discrete Fourier Transform (DFT) is in fact a rotation and 
scaling of the discrete signal vector. Therefore, if we rearrange 
the signal vector so that its FT has much of the energy of the 
signal concentrated on few frequency coefficients we may 
expect that we can have a sparser representation of the signal in 
Fourier domain. The inverse projection of the unit vectors in 
the Fourier domain to the time/space domain, gives us some 
vectors in the sampling domain. If we find an order of the 
samples that best matches one of these basis vectors, we can 
expect that the FT of the optimally reordered sample vector has 
most of its energy concentrated on a few Fourier coefficients. If 
we assume Ψ to be the FT matrix, then the inverse projected 
basis vectors in the sampling domain will be the columns of 

(this is also valid for any other transform which can be 
represented as matrix multiplication). For each basis vector we 
can find the optimal permutation of the samples, resulting in n 
different permutation functions for each of the n basis vectors. 
Among these we choose the permutation that matches a basis 
vector better than the others.  

1

In our model f is the discrete spatial vector whose each 
element is the real value sensed by corresponding SN. Initially, 

the elements of f are ordered simply by SNs id’s. Our objective 
is to find a permutation  under which Ψ-transform of f is 
sparser. Now for each basis vector ψ we construct difference 
matrix Δ as below: 
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(7)

We define two vectors with least difference as most matching. 
Therefore, finding  in Eq. (6) is equivalent to finding n 
elements of Δ with minimum sum, so that no two of them are 
on the same row or column. 



VI. SUB-OPTIMAL REORDERING FOR ENHANCED WSN CS 

In the following, we introduce a simple greedy algorithm 
that finds such n elements in  which is slightly 
faster than Edmonds-Karp method, making it more desirable 
for running against many basis vectors. Next, we show how we 
use our algorithm to improve compressibility. Note that finding 
n constrained elements from Δ with the globally minimum sum 
requires  processing time 

)log( 2 nnO

)( 3nO  [19]. Even for some hundreds 
of SNs, it takes much time to compute the optimal permutation. 
Remember that we have to find such n elements with minimum 
sum against many basis vectors. Our algorithm is simple to 
implement and requires less computation time. This allows us 
to run our simulations over and over and generally investigate 
the performance of our methodology. Here we focus only on 
the effect of reordering on CWS performance. Even this simple 
reordering algorithm enhances CWS drastically. As a future 
improvement we can work on better algorithms that find a 
globally optimal permutation in a practical amount of time.  

A. Greedy Approximate Solution 

Here we introduce our algorithm (Algorithm 1) for finding 
a sub-optimal permutation of the samples, called the Sub-
Optimal Permutation (SOPerm). Note that this algorithm only 
compares two unit vectors (or two vectors of the same scale) 
and outputs a sub-optimal permutation to project the first 
vector on the second. Here ψ’s are the unit vectors of the sparse 
representation domain and f is our discrete signal vector. The 
basis vectors (ψ’s) are fixed and we have to find a permutation 
for f which is sub-optimal. We implicitly suppose that f and ψ 
are of equal scale, i.e. 

22 ll
f  . Even if f and ψ are not 

equal in scale, we can use their normalized versions in our 
proposed method and find the optimal permutation. Obviously, 
an optimal permutation found for normalized versions of f and 
ψ is also optimal for the original vectors f and ψ.  SOPerm first 
constructs the matrix Δ. Then, SOPerm runs n steps and at each 
step greedily selects the element which is not on a row or 
column of a previously selected element and the addition of 
that element to the sum of previously selected elements is 
minimum. This is equal to adding simply the smallest non-
constrained element of Δ, because all the elements of Δ are 
positive real numbers. 



In Algorithm 1, Lines 3-7 simply constructs the matrix Δ. 
Line 8 initializes the set of visited rows and columns (R and C 
respectively) to null. Our greedy approach is implemented in 
Lines 9-16. At each iterate of the for-loop an element at the ith 
row and jth column of Δ with minimum value is selected so 
that i doesn’t exist in R and j doesn’t exist in C. At Line 14 
inside the for-loop the ith row and the jth column are marked as 
visited by appending them to the sets R and C respectively. 

Algorithm 1: Sub-Optimal Permutation (SOPerm) 

1 [ , σ] = Sub-Optimal_Permutation ( f, ψ) 
2 begin 
3  for i ← 1 to n do 
4   begin 
5    for j ← 1 to n do 

6     
jiji

f 
,

 

7   end 
8  C ← φ, R ← φ, σ ← 0 
9  for k ← 1 to n do 

10   begin 
11    select Rni  },...,3,2,1{  and  

12        Cnj  },...,3,  so that  2,1{

13        
ji ,  is minimum among all i,j; 

14    R ← R ∪{i},  C ← C ∪{i}, σ ← σ +
ji ,   

15 
j

 ← i 

16   end 
17 end 

Because the spatial FT/DCT of a natural environment is 
supposed to have only low frequencies, we expect to find the 
sub-optimal permutation among low frequency basis vectors. 
Our simulations justify this hypothesis, as searching in higher 
frequencies resulted no better permutations than the one found 
among low frequencies. Therefore, to decrease processing time 
our SOPerm algorithm is run against lower frequency basis 
vectors. 

B. Using Reordering to Tune Distributed CS 

So far we have presented a practical method to redefine a 
model of the WSN under which we can improve signal sparsity 
and hence decrease compressive sampling rate. The SOPerm 
algorithm will be implemented on the sink (outside the WSN). 
SOPerm tries to find a reordering of SNs that leads to a sparser 
discrete spatial signal. For simplicity, we consider that the 
spatial CS takes place on a regular basis every T time units 
(Adapting T to the dynamics of the signal and characteristics of 
the operational environment is meaningful but not the scope of 
this work). According to the CWS model by Bajwa et al., we 
assume that there are efficient methods to acquire the 
compressively sampled vector y from the original spatial signal 
f at each time. Vector y is acquired by all the SNs in a 
distributed fashion  [15] [16]. The sink reconstructs the original 
signal by solving program (3). Note that at the initial point, we 
set the minimum required samples for reconstruction, to be  
calculated according to Eq. (1) with presumption of signal f 
being at most -sparse. SOPerm is then run for the 

reconstructed signal  which is almost exactly equal to f. 

SOPerm calculates a sub-optimal permutation  under which 

vector f is S-sparse and . For the next sampling round, 
we use this permutation and sample at a rate at least 

e
. We believe that π is still a 

good reordering for next T time units because the environment 
doesn't change so quickly over time. We emphasize again that 
our model applies only to WSNs with fixed SNs in an 
environment with moderate changes over time. Detecting 
events (quick impacts of the environment) in WSN by CS is 
another topic 

em
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 [20]  which is not in the scope of this paper. Our 
model enhances reconstruction techniques of the whole 
environment based on CWS. We can sample at rate rm   with 

mr 

m

 (that means sampling rate is little bit higher than m) to 
ensure that we acquire enough compressive samples to 
reconstruct the original signal. In the subsequent sampling 
rounds and with our new reordering, we can reconstruct the 
spatial signal f from fewer compressively sampled data vector y 
and repeat all this process for the following sampling round.  

 Figure 1 illustrates the overall architecture of our adaptive 
reordering model. Our model is in fact a closed-loop system 
that applies CWS every T time units and updates its internal 
model according to the changes in the operational environment 
(for example air temperature). Because m changes over time, 
the sampling matrix n  has to be broadcast to all SNs before 
each sampling round. This can be infeasible for very large 
networks, but we have to use broadcasting as our publishing 
method of sampling matrix because our system requires 
flexibility against environmental changes. As an alternative, 
one can find a way to publish only the integer number m and 
then SNs shall compute their own individual columns of Φ 
according to a predetermined seed for generating a pseudo-
random sampling matrix which can be also computed exactly 
at the sink. 

As illustrated in  Figure 1, our approach starts with a 
presumption about the operational environment and begins its 
CWS operation normally in full mode. At first no reordering is 
performed, i.e.,  n,,3,2 ,1 . After reconstructing signal 
from compressively sampled data vector, we apply SOPerm to 
improve signal sparsity under the new reordering . This new 
permutation may lead to a sparser signal vector in Ψ-domain 
(FT or DCT domain). The parameter λ (



 Figure 1) determines 
how many unit vectors from Ψ are compared by the SOPerm 
algorithm. As discussed in Subsection  VI. A, we can find a sub-
optimal permutation among very first unit vectors of the Ψ-
domain because the natural operational environment is 
expected to have only low frequency coefficients in its Ψ-
transform. The lower the parameter λ, the faster our approach 
computes sub-optimal reordering. The higher the parameter λ, 
the higher is the chance to find a better permutation. However, 
in search for matching to unit basis vectors among high 
frequencies, it is less probable to find a better permutation than 
the one we have found among the lower frequency unit basis 
vectors. Parameter 0  is a threshold which controls that with 
how much precision we consider a signal to be sparse in Ψ-
domain. The smaller the threshold η, the more accurate is our 
CWS reconstruction, but at the cost of higher sampling rate. In 
each cycle, the current reconstructed state of the environment is 
displayed to the user by mapping back the elements of  

f



under the inverse permutation indexing vector , i.e., 1
  1

  ff . 
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Figure 1. Enhanced CWS model with reordering 

VII. PERFORMANCE EVALUATION 

To evaluate our adaptive CS for WSN, we use simulations. 
After detailing the settings, we present the evaluation results of 
our reordering algorithms.  

A. Simulation Environment 

Our simulations are done in MATLAB. The simulation 
environment is defined as a rectangular area where a set of SNs 
are randomly distributed. Our simulation only evaluates the 
performance of reordering on sparsity of the signal and doesn't 
consider every details of the communication protocol. Our 
prototype scripts are in fact numerical experiments that show 
how the sparsity of the spatial signal is enhanced under 
reordering found by SOPerm.  

Due to lack of appropriate real world values of real physical 
phenomena, we simulate the behaviour of a natural 
environment and work with the generated synthetic data. As a 
proof of concept, we consider the air temperature of individual 
points on a rectangular area. We can view the temperature map 
of the environment as a 2-D greyscale picture. To construct 
such a 2-D image of the temperature map that behaves much 
like a real temperature map we need to construct a picture 
whose pixel intensities don’t vary sharply along x or y axis. 
The following steps show how we construct such a picture with 
smooth variations of pixels intensity. At the first step we paint 
all the pixels with intensity 0. The second step is to set some 
points of the image to random values other than zero. In our 
implementation of the environment simulator, we choose some 
points on the image, and set them a random real number chosen 
from a Gaussian random distribution with zero mean and 
variance 1.0. Finally, we apply a 2-D Gaussian filter on the 
resulting image.  Figure 2 depicts our method for a 64×64 
image.  Figure 2(a) shows the random guiding points. 
 Figure 2(b) shows the final simulated operational environment 
after applying a Gaussian filter on  Figure 2(a). 

  
(a) Random points on the 

temperature map 
(b) Gaussian filter applied on (a) 

Figure 2. Generation of synthetic data for the signal (here air temperature). 

B. Impact of Reordering on Signal Compressibility  

SNs are distributed randomly on the surface of a 
temperature map like  Figure 2(b). Signal vector f is composed 
of the intensity of the pixels located at the points where SNs 
are situated. Now our SOPerm algorithm comes into play. The 
SOPerm algorithm gives us a reordering of f so that its DCT 
transform is sparser. Note that in our numerical experiments we 
have chosen DCT as our Ψ-domain for simplicity, to avoid 
dealing with imaginary parts of complex numbers in our charts 
and diagrams. In another simulation discussed later in this 
section we use FT as the transformation matrix which has 
complex values to evaluate SOPerm on transformation 
matrices with imaginary parts.  Figure 3(a) shows the original 
discrete signal f of size 2000 composed of the sensed 
temperature values according to permutation of samples 
ordered by the original index (id) of the SNs.  Figure 3(b) 
depicts the DCT transform of the actual vector f. Then, we 
apply SOPerm on f with regard to the first 20 unit basis vectors 
in the DCT system, and finally we choose the best permutation 
among the 20 permutations found by the SOPerm runs. Let’s 
call the sub-optimal permutation as .   Figure 4(a) shows the 
sub-optimally reordered vector  computed by our SOPerm 

algorithm and 
f

 Figure 4(b) depicts its DCT transform. It is 
apparent that  is much sparser in the DCT domain than f. f
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(a) Indexed by SN id's (b) DCT transform 

Figure 3. Original signal 
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Figure 4. Signal after re-ordering 
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Sampling interval T depends on the configuration of our 
network and the characteristics of our environment. We have to 
consider also the time required to update sampling matrix Φ. 
With a rough estimate we may require about 100 seconds for 
updating and data gathering (performing one iteration of the 
closed loop represented in  Figure 1) for network consisting of 
1000 SNs (assuming we have a 256kbp broadcast channel). 
This may seem too long for catching real-time events. But as 
we have mentioned earlier our model only deals with 
reconstructing the state of environment with highest accuracy 
while consuming least energy. Event detection  [20] can operate 
in parallel with our model by embedding another sampling 
matrix specialized for event detection, making our WSN into a 
hybrid state-monitoring and event-detecting system. 

C. Impact of Reordering for Dynamic Physical Phenomena 

Now, we show that sub-optimal permutation computed for 
a discrete spatial signal at a specific moment, can be still sub-
optimal for upcoming moments in future, if the state of the 
environment doesn’t change very quickly over time. To 
simulate such a dynamic environment, we have upgraded our 
synthetic environment described in Section  VII. A to support 
changes in time. We have moved the random points ( Figure 
2(a)) over the image randomly to different directions. 
Simultaneously, we pass the image through a Gaussian filter to 
keep realistic-appearing distribution of temperature that 
changes over time.  Figure 5 shows the outcome of such a 
synthesized animated image. In  Figure 5, the points move 
around the rectangular image randomly in each direction to 
maximum 10 pixels away. This small steps causes that the 
environment doesn't change too quickly over time. In  Figure 5 
the environment changes in the sequence specified by the 
directed arrows. We have run the simulation for 64 time 
periods and the images shown in  Figure 5 are actually 8 
snapshots taken every 8 time units. During all this time, 200 
SNs are compressively reporting the value of the physical 
parameter under the points they are located. Therefore, at each 
time instance we have a different spatial signal vector. For each 
vector, we run SOPerm with regard to DCT domain and find a 
sub-optimal permutation. We keep a history of previously 
computed sub-optimal permutations.  Figure 6 shows how old 
permutations may still lead to sparser DCT transform of the 
signal at the current time. Equivalently, this means that a sub-
optimal permutation at a specific time is still sub-optimal for 
the following time instances. 

 

Figure 5. Dynamic synthesized simulation environment 

 Figure 6 shows that the sparsity of the signal with its 
normal order (denoted by □) stands always lower than sub-
optimal permuted signal vector and the signal vector reordered 

according to previously calculated sub-optimal permutations. 
At each time instance t, SOPerm is applied on the signal vector 

 and resulted tf t  as a sub-optimal permutation for the signal 

at instance t. Sparsity of   
ttf   is depicted with (*) on  Figure 

6. We have stored the indexing permutation vectors 

642 ,,1 ,  

642 ,,

 and then applied them on the final signal vector 

. This means we have calculated the sparsity of  under 64f

1 ,
64f

  . Sparsity of the signal vectors 

     
6421 64 ,,  f 64f64f   is depicted with △ on  Figure 6.  
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Figure 6. Change of signal sparsity in time 

The interesting result is that previously computed sub-
optimal permutations still make the signal sparser even for 
signal vectors at times later than the instance they have been 
computed. However, as it can be seen on the diagram, outdated 
permutations (previously computed t  where 30t ) don’t 
provide a good reordering anymore. As we approach closer to 
the present time (  till ) we see that previously 
computed 

30t 64t

t 's work as well as the SOPerm permutation which 

is especially calculated for . 64f

D. Impact of Reordering in different WSNs 

So far we have run our simulations only for a fixed WSN. 
Now we vary the number of nodes ( ), the most 
relevant WSN parameter for spatial sampling performance. 
Similarly, we first construct synthetic simulated operational 
environment. For each n, we randomly distribute n SNs over 
the 2D image representing our environment and acquire spatial 
signal f and then we apply SOPerm on f to see how much 
improvement in sparsity we can gain. For each of these WSNs, 
we run the same simulation 100 times and compare the 
averaged sparsity of discrete spatial signal f with and without 
using reordering by SOPerm. 

800200  n

 Figure 7 depicts the result of the 
experiment. The experiment is run with the Fourier domain as 
our Ψ-domain. This experiment also illustrates the validity of 
SOPerm algorithm for transformation matrices with imaginary 
elements. Because FT matrix contains both real and imaginary 
values, we can expect a decrease in sampling rate equal to half 
of the sparsity improvement illustrated in  Figure 7. During the 
test, the threshold η is set to 0.01. With the reordering resulted 



from SOPerm algorithm, environmental spatial signal stands 
always sparser than the original signal without reordering. This 
overall experiment shows that our proposed model is safe to be 
used as a universal method to enhance CWS and decrease 
sampling rate and energy consumption while delivering the 
same quality of environmental signal reconstruction. 
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