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Abstract—Wireless Sensor Networks (WSNs) are deployed in
a variety of topologies and configurations depending on specific
applications and requirements. In this paper, we study a simple
and yet very important class of the WSN topologies, the linear
or chain topology in which the Sensor Nodes (SNs) are connected
in a series and gather the sensed data at a single base station
or sink at the end of the chain. WSNs with linear topology have
many practical applications, e.g., in infrastructure monitoring
and surveillance of civil constructions. There is a large body of
research on efficient data gathering techniques to transmit the
sensed data over WSNs’ limited communication bandwidth. In
particular for linear topology, data collection technique has to put
a balanced load on all SNs to avoid breakage of the chain at the
exhausted nodes. Compressed Sensing (CS) is an efficient data
collection technique for WSNs that fulfills these requirements. In
a failure-free scenario, CS avoids exhausted nodes by balancing
the communication and processing load on the SNs. In this paper,
we examine the performance of a special implementation of CS
for WSNs, called Compressive Data Gathering (CDG) when a SN
in a chain WSN encounters a failure and cannot forward messages
to the next hop. We propose a method to enhance the robustness
of CDG in such failure scenarios by transmitting the messages to
the next healthy node and excluding the failed samples from CS
signal recovery mechanism. Evaluations show that our method
effectively withstands the failures without sacrificing the accuracy
of the collected data.

I. INTRODUCTION

A Wireless Sensor Network (WSNs) is an interconnected
set of battery powered Sensor Nodes (SNs) that is used for
large scale monitoring of a physical parameter of interest [1].
The primary objective of a WSN is to deliver the sensed
data to a base station or sink. Sink is a dedicated node with
sufficient power that post-processes the data and prepares them
for the end user. The SNs often possess limited computation,
power and bandwidth [2]. Therefore, it is crucial to efficiently
transmit the sensed data over the resource limited SNs.

WSNs are often self-configured networks and their topol-
ogy depends very much on the deployment and application
requirements. In a two dimensional field such as a farm
or a woodland, often a tree topology is preferred for data
collection. In this paper we target an important application of
the WSNs, i.e, monitoring and surveillance of civil structures
[3]. In particular, we study WSN linear topology that is often
employed for surveillance and monitoring of constructions
such as roads, railways, bridges, etc. We say that a WSN
possess a linear or chain topology, when the SNs are connected
in a series and transmit the data hop by hop to deliver to
the sink that is positioned at the end of this chain. Larger
deployments may require several segments of chain WSNs
with a sink at the end of each segment.
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Fig. 1. Baseline data transmission in a WSN with linear topology

The problem of efficient data gathering is especially chal-
lenging in a WSN with linear topology. Figure 1 illustrate
the baseline approach for data collection in a WSN with
linear topology. The value sensed by SN i is denoted by
fi. Since the communication is done hop-by-hop, each node
has to transmit its own data and also forward the data from
the previous nodes. SN i has to transmit fi and forward the
values {f1, f2, . . . , fi−1}. Consequently, the nodes closer to
the sink become highly overloaded. An effective solution to
this problem is to reduce the amount of the transmissions by
compressing the sensed data. Several studies show that, the
data recorded by the SNs are highly compressible [4], [5].
Thus, the use of compression algorithms to reduce the amount
of data sent to the sink is advocated.

An important requirement for the compression algorithm
is to be light-weight as it runs on the resource-limited SN
hardware platform [2]. In this paper we examine a simple and
yet efficient network coding mechanism, called Compressed
Sensing (CS) that effectively reduces in-network transmissions
[6]. Remarkably, it puts a balanced communication and pro-
cessing load on all SNs. This feature makes it particularly
useful for WSNs with linear topology.

A. Compressed sensing

The CS theory forms the basis of several decentralized
and distributed sensing methods that are especially suitable
for WSN applications. CS is often implemented in two stages:

1) A set of linear combinations of the sensed data are
calculated and transmitted to the sink. These linear
combinations are called measurements

2) The originally sensed data are then reconstructed
from the measurements using a recovery algorithm
which is executed on the sink.

The sensed data are usually referred to as the samples and a
set of samples is called a signal. Samples or sensor readings
are different from the measurements that are sent to the sink.
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We formally define these terms in Section II-A and explain
how the measurements are calculated from the sensed data.

Figure 2 shows the CS-based data collection in a WSN with
linear topology. It is simplistic illustration of the Compressive
Data Gathering (CDG) method that we explain in detail in
Section II-B. Each node computes an encoding of its sensed
value. The encoded value by SN i is denoted by bi. Since these
values are accumulated (arithmetically added) at each hop,
the amount of transmissions at all SNs remain equal. Thus,
the communication and computation load is balanced across
the network. This effectively avoids occurrence of exhausted
nodes.

B. Problem statement

WSNs are usually deployed in uncontrolled operational
environments, and hence, it can happen that some SNs get
damaged and cannot continue their function. This paper studies
the problem of CS-based data collection in a chain WSN in
presence of node failures. When a node encounters a failure,
it stops accumulating and forwarding the measurements to the
next hop. This failure causes a breakage of the chain at the
position of the failing SN.

Figure 3 illustrates a failure scenario in which SN 2
stops sending to the next hop. We assume that SN 3 detects
this failure since it does not receive any messages from
SN 2. Consequently, SN 3 fetches the measurement from the
first healthy predecessor node, i.e., SN 1. Looking at the
accumulated measurement that is received by the sink, we
observe that only maintaining the chain connectivity is not
sufficient to cancel the effect of node failure. The value of b2
is missing in the accumulated measurement that is received
by the sink. Consequently, the sink also has to exclude the
missing samples when it wants to recover the original data.
Therefore, a list of failed SNs must be communicated to the
sink which in turn requires more communication overhead.
Moreover, maintaining the consistency of such a list is a
cumbersome task especially in a large-scale WSN.

The objectives and related contributions of this paper are:

• Maintaining the connectivity of a chain WSN that per-
forms CS-based data collection by making auxiliary
links and isolating the failing nodes.

• Detecting the location of the failures without mod-
ifying the measurement mechanism at the SN level
and without sending health-monitoring messages to
the sink.

• Minimizing the effect of faulty or missing sensor
readings on accuracy of the CS recovery algorithm.

This paper presents a simple and effective enhancement to
CS-based data gathering for WSNs with chain topology that
is resilient to node and link failures as well as communication
noise. After detailing our system model in Section III we
present our solution in Section IV. Our evaluations in Section
V show the superior performance of our method in handling
node and link failures compared with the state of the art CS-
based data collection methods for WSNs which we review
shortly in Section II.

II. BACKGROUND AND RELATED WORK

In this section, we first shortly review the fundamentals of
the CS theory. Then, we review an adaptation of the CS theory
to data collection in WSNs with chain topology.

A. Compressed Sensing

For a WSN of size n, we give each SN an integer id in
the range [1, n] and denote the value sensed by SN i by fi.
The full set of the sensed data can be represented by vector
f = [f1 f2 . . . fn]T . Vector f is called a spatial signal and
each fi is called a sample of this signal. In CS, the signal is
not sampled and compressed directly. Instead, a set of linear
measurements of the samples are acquired. The original signal
is then reconstructed from these linear measurements.

We call a vector φ ∈ Rn, a sensing vector, and the inner
product of a sensing vector with f is called a measurement.
We assume that the measurements can be contaminated with
some additive white Gaussian noise:

yi = φi
T f + zi , i ∈ {1, 2, . . . ,m} (1)

where yi are the measurements, φi are the sensing vectors and
zi is the additive noise. This can be also written using matrix
notation:

y = Φf + z (2)

where y = [y1 y2 . . . ym]T is called the measurement vector,
Φ = [φ1 φ2 . . . φm]T is the measurement matrix and
z = [z1 z2 . . . zm]T is the noise vector.

CS allows accurate reconstruction of f from a few mea-
surements, when f is sufficiently compressible. We say that f
is compressible under the Ψ-transform, when f = Ψx for an
orthonormal n× n matrix Ψ and x is sparse [7]. Vector x is
called sparse when it has s � n non-zero components and
all its remaining (n − s) components are zero. The signals
recorded by WSNs are reported to be highly compressible
under a suitably chosen compressive basis such as Discrete
Cosine Transform (DCT) or Haar wavelet [8]–[10].

Candes et al. prove necessary conditions for the measure-
ment matrix Φ and the compressive matrix Ψ such that it is
possible to recover f from O(s log n) measurements [7], [11],
[12]. They show that when the elements of the measurement
matrix Φ are drawn from a normal random distribution and Ψ
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Fig. 4. CDG in a WSN with linear topology

is a dense orthonormal matrix, f can be accurately recovered
from O(s log n) measurements [11]. Randomized sampling
brings a key benefit for WSNs by eliminating the need for
centralized coordination [6], [10].

In order to recover f from y, first we need to solve the
following convex optimization problem [11].

minimize
x̃∈Rn

‖x̃‖1 , subject to ‖y −ΦΨx̃‖22 ≤ ε (3)

where ε is the upper bound of error magnitude, ‖·‖1 is the
norm-1 operator and ‖·‖2 is the norm-2 operator1 [7]. The
parameter ε is often set to the magnitude of the additive noise.
This problem is solved at the sink using an efficient convex
optimization solver [13]–[15]. If x̂ is the solution to the convex
optimization problem in Equation 3, then f̂ = Ψx̂ will estimate
the original signal f with an error bounded by the measurement
noise [7].

Having studied the foundations of the CS theory, we see
how this theory is applied in practice to WSNs.

B. Compressive Data Gathering

Compressive Data Gathering (CDG) is an adaptation of CS
for WSNs that suits the linear topology very well [10]. Basic
operation of CDG in a chain WSN is depicted in Figure 4.
Given the measurement matrix Φ as

Φ =


φ1,1 φ1,2 . . . φ1,n
φ2,1 φ2,2 . . . φ2,n

...
. . .

...
φm,1 φm,2 . . . φm,n

 (4)

we define the column vector αi as αi = [φ1,i φ2,i . . . φm,i]
T .

Each SN is given a unique id and runs a pseudo-random
number generator algorithm seeded by its id to produce αi.
All of the SNs run the same pseudo-random number generator
algorithm, though with different seeds. SN i senses the value
fi and multiplies this real number by the column vector αi.
If applicable, it accumulates the measurements received from
the previous hop and forwards the result to the next hop. The
same process is repeated by every SN till the measurement
vector y is delivered to the sink, see Figure 4.

The measurement matrix Φ can be easily reproduced at the
sink by executing the same pseudo-random number generator
seeded by the SN id’s. Therefore, Φ does not need to be
communicated between the SNs and the sink. Having Φ and
y, the sink can recover f from y after solving Equation 3. This
process forms the main building block of many distributed data
gathering techniques based on CS [8], [10], [16].

1For a real vector v ∈ Rn, norm-1 of v is defined as ‖v‖1=
∑n

i=1|vi|
and norm-2 of v is defined as ‖v‖2=

√∑n
i=1|vi|2

C. Improvement over the state of the art

In failure-free scenarios, the measurement vector y is
received by the sink after running the network coding of
CDG. When a node fails, what is received by the sink is
different from what is expected to be received. As we show in
Section IV, this causes anomalies in the signal that degrades
the accuracy of the recovered signal.

The advantage of our work over CDG is that it handles
node failures. By node failure, we mean the situation where a
node gets damaged and cannot transmit or forward the mea-
surements to the next hop. We propose a method to maintain
the connectivity of the chain and rebuild the connection at
the position of the failing node. Then we present our solution
that applies a post-processing phase to detect the location
of the failures and exclude the missing samples from the
recovery process. If our connectivity restoring technique does
not succeed due to a heavy damage to a burst of SNs, our
detection method still precisely determines the location of
chain breakage and also excludes the missing segment of the
signal from signal recovery.

III. SYSTEM MODEL

We consider a WSN with linear topology consisting of
static SNs and a single static sink at the end of the chain. The
goal is to collect all of the sensed data at the sink.

A. Communication cost

The communication cost depends on both communication
range and the number of messages. Sending more data con-
sumes more battery power. Also achieving a more distant
receiver requires to transmit with higher radio power. While
the energy consumption grows linearly with the size of the
transmitted data, it grows quadratically with the communica-
tion range. Total communication cost to transmit m messages
to a receiver in the distance of d is O(md2).

For simplicity we assume that the nodes are placed on
equal distances of each other. For a chain WSN consisting of
n nodes, the distance between each two consecutive nodes is
the same and equal to d. Let P0 be the radio power required
for communicating a unit of data between nodes i and i+ 1.
Thus the radio power required for communication between
nodes i and i + 2 is 4P0, and in general, the radio power
for communication between nodes i and i+ k is k2P0.

B. Sensor validation criteria

It is required that the range of valid sensor readings
are known. A SN calculates and transmits the measurements
only when the sensor reading is within a finite range. For
example, when a temperature sensor which is designed to
measure values between -50 degrees to +500 degrees Celsius
reports a value of -1000 or +2000, then the SN regards this
value as invalid and does not compute the measurement, and
consequently, no message will be sent by this SN.

Note that the term measurement is formally defined in
Equation 1. It differs from sample or the value recorded by
the sensor.



If the range of floating point numbers that a SN can store
in its memory is [BL, BU ] and the range of valid sensor values
is [sl, su], we require that

|sl − su| � |BL −BU |. (5)

The range of valid sensor readings must be bounded and the
length of this range must be a small fraction of the range of
numbers that can be stored in the memory of the SN.

IV. DETECTING AND ISOLATING FAILURES

In this Section we describe our connectivity maintenance
and failure detection technique in three steps using an illus-
trative example. First, we describe our technique for restoring
the connectivity of the WSN when one or more nodes fail
in the network. Second, we propose a method that detects
the exact location of failing nodes without transmitting any
health monitoring messages. Finally, we show that our failure
detection technique withstands the extreme failures in which
the connectivity of the chain is not recoverable.

A. Restoring the connectivity of the chain

In a normal operation of the WSN, all nodes are accu-
mulating and transmitting their measurements hop by hop to
deliver the measurement vector y to the sink. As described in
Section III-A, the nodes are regularly located in a series with
distance d from each other. All nodes are transmitting with the
radio power P0 to communicate with their direct neighboring
nodes.

All nodes are placed in a series arranged from node 1 to
n as depicted in Figure 4. When node i ∈ {1, . . . , n} fails to
transmit to node i+1, node i+1 detects this failure since it does
not receive any messages from its previous hop. Consequently,
it tries to contact the node i − 1 and fetch its measurements.
According to our system model, this requires 4P0 radio power
since the nodes i− 1 and i+ 1 are placed in a distance of 2d.

Definition 1. Step-back count is defined as the number k when
node i + 1 successfully fetches the measurements from node
i− k in case that the nodes i− k + 1, i− k + 2, . . . , i fail to
deliver their encoded values to node i+ 1.

A step-back of size k requires the nodes i − k and i + 1
to transmit with radio power (k+ 1)2P0. Note that node i+ 1
sequentially tries to fetch data from nodes i− 1, . . . , i− k+ 1
until it reaches the first healthy predecessor i−k. Respectively,
these trials has a cost of 4P0, 9P0, . . . , k

2P0 before reaching
the healthy node i− k.

The maximum allowed step-back count is obviously not
unlimited. Depending on the capabilities of SN’s radio module,
there is a limit for the maximum communication range.

Definition 2. Step-back limit kmax is the maximum step-back
count k that is allowed by the communication capabilities of
the radio module of a sensor node.

Depending on the success of the connectivity maintenance
phase, one of the following cases may occur:

• Successful network restoration: The information
flow continues by stepping back by k ≤ kmax hops.

In this case, the connectivity of network is restored,
though the samples i−k+1, i−k+2, . . . , i are missing
due to node failures.

• Unrecoverable chain breakage: Restoration mecha-
nism cannot rebuild the chain because even the node
i−kmax does not respond to the measurement fetching
request that is sent by node i+ 1. All of the samples
1, 2, . . . , i will be missed because of chain breakage.

In Section IV-B we show that when the recovery algorithm
at the sink does not detect and isolate the missing samples from
the recovery process, the overall accuracy of the reconstructed
signal decreases significantly. In Section IV-C we propose a
simple method that detects the exact location of the failing
nodes. Next in Section IV-D we present a modified version of
Equation 3 that excludes the missing samples caused by failing
nodes. Finally, Section IV-E studies the case where the chain
breakage is not restorable. We show that our method can also
handle this case and isolate the missing part of the signal from
the recovery, thus preservers the accuracy of the genuine part
of the signal.

B. Degrading effect of missing samples on recovery phase

Here, we consider an illustrative synthesized spatial tem-
perature signal that is compressible under DCT. Our discussion
can easily extend to sensing any other physical parameter
that is compressible in some compressive basis. Consider a
WSN consisting of temperature sensors with linear topology
consisting of n = 256 SNs. The values of the samples sensed
by the SNs are represented as a spatial signal vector f of size
256.

In failure-free operation of the WSN, all of the SNs are
transmitting their fiαi, and thus, the measurement vector y is
correctly received by the sink. Suppose that when none of the
samples of f are missing, the vector f is compressible under
DCT. More precisely, f = ΨDx where ΨD is the n×n inverse
DCT matrix and x is sparse. We set the sparsity of x to 10
in the synthesized signal of our example. To make it more
realistic, we add a white Gaussian noise to the measurement
vector y. We have set the power of the noise to be 5% of the
signal power.

According to our setup, to estimate the original signal f
from the measurement vector y, we have to solve the following
convex optimization problem.

minimize
x̃∈Rn

‖x̃‖1 , subject to ‖y −ΦΨDx̃‖22 ≤ ε (6)

If x̂ is the solution to Equation 6, then the original signal is
estimated by f̂ = ΨDx̂.

In the failure-free case, the recovered signal f̂ shows a
good accuracy compared to the original signal f , see Figure
5.a. When the connectivity of the chain is maintained, node
failures are equivalent to missing samples in the signal vector
f . When some of the samples are missing due to node failures,
the corresponding elements of vector f suddenly drop to zero.
When this happens, there is no guarantee that f is compressible
under DCT anymore, and hence, we cannot accurately recover
the original vector f by solving Equation 6. Looking at
Figure 5.b we observe that the accuracy of signal recovery
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Fig. 5. Degraded signal recovery due to missing samples

significantly decreases. Furthermore, it is not possible to detect
which nodes are failing. Next, we present a method that exactly
detects the location of failures and excludes the failing SNs
from the signal recovery process.

C. Signal elevation during measurement

From our system model description we recall that the
values recorded by the SNs are bounded between a lower and
upper bound, namely sl and su respectively. In our exemplified
WSN, we assume that the temperature values are bounded
between 0 and 25. Note that sl and su can be any positive or
negative real numbers. We take 0 and 25 just as an example
here. This discussion also applies to signals recorded from any
other physical parameter other than temperature.

Suppose that each SN elevates its recorded value by an
offset before applying the measurement mechanism illustrated
in Figure 4. Formally speaking, when SN i senses the value
fi, it first adds fi by a positive real number c that we call it
offset and then multiplies αi by fi + c.

We choose c to be two or three order of magnitudes larger
than |sl − su|. The reason is that when node failures occur,
the missing samples are better distinguished from the genuine
samples. In fact, the offset elevates the range of valid values to
a higher level. In our current example, if we select c = 1000,
then the range of offsetted values will be [1000, 1025] instead
of [0, 25].

Note that when all nodes perform the offsetting, the whole
signal vector f is elevated by the offset c. Let g ∈ Rn be the
elevated version of f , i.e.,

g = f + cn (7)

where cn is a column vector of size n with all of its elements
being equal to c.

D. Detection and exclusion of the missing samples

When some nodes fail, their corresponding values in g
will also drop to zero, since they cannot transmit their mea-
surements. In this case, the compressibility of f (and also g)
under DCT decreases. However, g shows high compressibility
under Haar wavelet transform [17]. In order to find out which
nodes are missing, we try to recover g by solving the following
convex optimization problem.

minimize
ũ∈Rn

‖ũ‖1 , subject to ‖y −ΦΨH ũ‖22 ≤ ε (8)

where ΨH is the inverse Haar transformation matrix.

If û is the solution to Equation 8, then ĝ = ΨH û estimates
the original elevated signal g. The size of the signal must be
a power of two when applying the Haar transform. In this
example, the size of the signal is equal to the number of SNs,
i.e., n = 256. When the number of nodes is not a power of
two, one can pad sufficient number of pseudo-samples with a
predetermined value. Pseudo-samples with a value of c is a
suitable choice here.

Recovery result using Haar wavelet is depicted in
Figure 6.a. Here, sl = 0, su = 25 and c = 1000. While
recovery using DCT cannot distinguish the failing SNs, using
Haar wavelet as our compressive basis, we can exactly detect
the location of the failing nodes. The estimated signal ĝ
recovered by solving Equation 8 shows significantly lower
values at the failing nodes, see Figure 6.a. By employing
signal elevation and performing the reconstruction using Haar
wavelet, the exact location of the failures in a chain WSN is
determined.

After detecting the position of the missing samples, we
exclude those samples and rerun the signal recovery on that
part of the signal that actually contains valid sensor readings.

Using matrix representations, the measurement vector re-
ceived by the sink is given by

y = Φg + z (9)

where z is the additive noise.

Let M be the set of failing nodes and k be the number of
failing nodes, i.e., k = |M |. We define an m× (n− k) matrix
Φ′ by removing the columns m1,m2, . . . ,mk from Φ where
{m1,m2, . . . ,mk} = M .

Φ′ := [Φi,j ] i ∈ {1, . . . , n} , j ∈ {1, . . . , n} −M (10)

We define the vector g′ of size (n − k) by removing the
elements gi from g where i ∈M .

g′ := [gi] i ∈ {1, . . . , n} −M (11)

It is easy to show that:

Φg = Φ′g′. (12)

We also define the column vector f ′ by removing the
elements fi from f where i ∈M .

f ′ := [fi] i ∈ {1, . . . , n} −M (13)
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According to the definitions of g and g′, we know that:

g′ = f ′ + c(n−k) (14)

where c(n−k) is a column vector of size (n − k) with all of
its elements being equal to c.

Since f is compressible under DCT and f ′ is equal to
f except some missing samples, it is still expected to be
sufficiently compressible under DCT, i.e.,

f ′ = Ψ′Dx′ (15)

such that Ψ′D is the (n − k) × (n − k) inverse DCT matrix
and x′ ∈ R(n−k) is the (nearly) sparse projection of f ′ under
DCT. Note that any compressive basic other than DCT can also
apply here. Choosing DCT is independent of our offsetting and
detection mechanism using Haar wavelets. We use DCT as a
an example and this discussion can be generalized to any other
compressive basis Ψ when f = Ψx and x is sparse or nearly
sparse.

Putting Equation 12 in Equation 9 we have:

y = Φ′g′ + z (16)

and by substituting Equation 14 we have:

y = Φ′(f ′ + c(n−k)) + z

= Φ′f ′ + Φ′c(n−k) + z
(17)

We define a vector w ∈ Rm as:

w := y −Φ′c(n−k) (18)

According to the definition of w and Equation 17, we have:

w = Φ′f ′ + z. (19)

Therefore, we can recover x′ by solving a modified version of
Equation 3 as follows.

minimize
x̃′∈Rn

‖x̃′‖1 , subject to ‖w −Φ′Ψ′Dx̃′‖22 ≤ ε (20)

If x̂′ is the solution to Equation 20, the original signal
excluding the missing samples, i.e., f ′ is then estimated by
f̂ ′ = Ψ′Dx̂′. The recovery result is shown in Figure 6.b for
our current example.

By comparing Figures 6.b and 5.b to each other, we see
that, a much more accurate signal recovery is possible after
excluding the missing samples. Figure 5.b shows the recovery
when some of the samples are missing due to node failures.
Figure 6.a shows how our technique can exactly detect the
samples that are lost due to failing SNs. Figure 6.b shows
the recovery of the same signal after excluding the missing
samples. We observe a significantly more accurate signal
reconstruction after exclusion of the missing samples.

Note that in Figure 6.b the size of the recovered signal is
251 instead of 256, because 5 samples corresponding to the
failing SNs are excluded.

E. Detecting unrecoverable chain breakage

In this section we study the situation where the chains
breaks at some node and our chain rebuilding procedure as
described in section IV-A does not restore the connectivity. We
do not want the next hops after the failing nodes to wait for the
retransmission of the lost encoded values. In particular, when
the failing nodes face an unrecoverable error, those encoded
values may never be retransmitted and the next hop will wait
forever for the missing part of the measurement vector. We
apply the same technique as discussed in the previous section.
The SNs elevate their sensed values by an offset c. Then, we
first perform signal recovery using Haar wavelet to detect the
position of the failure. Finally, we exclude the missing portion
of the spatial signal and rerun the recovery on the valid part of
the signal using the compressive basis under which the genuine
data are compressible.

The conditions are the same as our example in the pre-
vious section. The signal f is compressible under DCT and
records temperature values between 0 and 25 degrees which
are elevated by c = 1000. We inject a failure in SNs
{50 − kmax, . . . , 50}. Thus, the sensed values from nodes
{1, . . . , 50} will be lost as the chain restoration mechanism
at node 50 is unsuccessful.

Recovery of the elevated signal after solving Equation 8 is
depicted in Figure 7.a. We observe that recovery using DCT
cannot exactly determine the location of the failing node. It
gives only a rough estimation of the location where the chain
is broken. On the other hand, recovery using Haar wavelet
exactly distinguishes the missing segment of the signal and
determines the position of the failure.

Signal recovery using DCT without excluding the missing
segment still gives us a good accuracy. However, it erroneously
detects low temperatures for SNs 1-50, see the dotted curve in
Figure 7.b. The recovered signal after excluding the missing
segment retains its accuracy and also distinguishes the missing
samples for nodes 1-50, see the dashed curve in Figure 7.b.

V. EVALUATION

Throughout the paper we have tested our technique on
different simulated WSNs with our illustrative synthesized
compressible signals. In this section, we apply our method



0 50 100 150 200 250 300
SN id

0

500

1000

1500

re
co

rd
e
d
 t

e
m

p
e
ra

tu
re

 v
a
lu

e
 +

 o
ff

se
t (a) Detecting the location where the chain is broken

elevated signal

recovered by DCT

recovered by Haar

0 50 100 150 200 250
SN id

5

0

5

10

15

20

25

re
co

rd
e
d
 t

e
m

p
e
ra

tu
re

 v
a
lu

e

(b) Exluding the missing segment

original

rec. by DCT with exclusion

rec. by DCT without exclusion

Fig. 7. Detecting the location of unrecoverable chain breakage

on real-world datasets and put the WSN under stress tests to
evaluate the performance of our failure detection technique.

The simulations are performed on a real-world dataset form
the Sensorscope deployment [18]. Since not all of the SNs in
the testbed were sampling synchronously, we selected 64 SNs
with the most amount of synchronously sampled data. The
sensed data from LUCE dataset is applied in our simulated
network that possesses a linear topology. We take the data
from the real-world dataset while the network topology is
determined in our simulation program to be a linear topology.
We employ our implementation of the recovery algorithm
which uses CVXOPT software package [19]. The simulation
is implemented in Python using the NumPy/SciPy scientific
programming libraries [20].

First, we evaluate the effectiveness of our step-back method
introduced in Section IV-A. In particular, we want to analyze
the behavior of the step-back method for different values
of kmax and different number of failure occurrences. We
assume that each node has an independent probability p of
failure. We simulate the chain WSN of size 64 with different
values for kmax ∈ {1, 2, 3} and different values of node
failure probability p ∈ [0.01, 0.15]. Looking at Figure 8.a,
we observe that the step-back method effectively reduces the
amount of lost samples. Without the step-back method, i.e.
when kmax = 0, we loose a lot of samples whenever a single
node fails to transmit its values. This happens because when
kmax = 0 and no step-back takes place, any node failures lead
to a chain breakage. The step-back method tries to maintain
the connectivity of the network when a node failure occurs.
With higher kmax each node tries to fetch the values from
farther predecessor nodes when their direct predecessor does
not send them any data.
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Fig. 8. Analysis of the step-back method

Observation 1. The step-back method significantly reduces
the lost samples when restoring the connectivity of the chain
succeeds.

Another interesting observation is that the average amount
of increase in power consumption and the balance of load
on the SNs mainly depends on the probability failure p.
Figure 8.b illustrates the increase in communication cost and
its standard deviation across the network after applying the
step-back method for different values of p and kmax. We
observe a moderate increase in average power consumption
when applying the step-back method. The standard deviation
shows how the load is distributed on the network. Higher
standard deviation indicates that the nodes that are restoring
the chain connectivity are overloaded.

Observation 2. Higher step-back limit kmax increases the
ability to restore the chain connectivity. Changes in power
consumption of the WSN is prevalently determined by the
failure probability p rather than step-back limit kmax.

According to Observation 2 it is recommended to use a
higher step-back limit kmax as long as the hardware capabili-
ties of the SN allows it.

Now, we put the WSN under stress test and measure the
accuracy of the recovered signal. The stress test deliberately
fails some of the SNs, i.e., zeros their corresponding samples in
the spatial signal. We measure the accuracy of signal recovery
when the number of failures increases. The accuracy of the
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recovered signal is given by Signal-to-Noise Ratio (SNR)
which is measured in decibels (dB). In our simulated network,
setting kmax = 5 effectively maintains the connectivity of the
chain. Figure 9 illustrates the signal reconstruction accuracy
of our method and compares it to CDG for chain topology
[10]. Equipping CDG with out failure detection and isolation
mechanism improves the accuracy of the recovered signal.
Note that each unit dB increment of SNR roughly corresponds
to 25% higher accuracy of the reconstructed signal as we
measure the SNR by a logarithmic scale.

Observation 3. Detection and isolation of the missing samples
improves the accuracy of the recovered signal in Compressive
Data Gathering.

VI. CONCLUSION

This paper provides an enhancement to Compressive Data
Gathering (CDG) in chain Wireless Sensor Networks (WSNs).
CDG is based on the theory of Compressed Sensing (CS)
that allows an efficient and robust data collection method for
large-scale WSNs and especially WSN with linear topology.
CS-based data collection methods for WSNs like CDG are
inherently robust to additive communication noise. In addition
to communication noise, a WSN also faces another source of
erroneous data collection. The WSNs are usually deployed in
harsh operational environments, and thus, it is likely that some
SNs gets damaged and cannot continue their function. Thus,
the SNs of a WSN are at the risk of temporary or permanent
defects. In this paper, we studied the performance of CDG in
WSNs with linear topology under circumstances where a SN
encounters a failure and cannot transmit its measurements or
forward the accumulated measurements from other SNs.

We proposed a simple and effective method based on a
best-effort technique to maintain the connectivity of the chain
topology. We also introduce an enhancement to CS measure-
ment and recovery that excludes the missing samples due to
node failures without transmitting health monitoring messages.
Our proposed technique, first determines the location of the
missing samples that are caused by node failures. Then, the
recovery algorithm is executed on the remaining part of the
signal that contains genuine data. Our evaluations prove that
exclusion of the missing samples significantly improves the
accuracy of the recovered signal.
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