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Abstract. – Cloud computing is increasingly playing an important role in the service provisioning domain given the 
economic and technological benefits it offers. The popularity of cloud services is increasing but so are their 
customers’ concerns about security assurance and transparency of the Cloud Service Providers (CSPs). This is 
especially relevant in the case of critical services that are progressively moving to the cloud. Examples include the 
integrated European air traffic control system or public administrations through the governmental clouds. Recent 
efforts aim to specify security in cloud by using security service level agreements (secSLAs). However, the paucity of 
approaches to actually control the fulfillment of secSLAs and to react in case of security breaches, often results in 
distrust in cloud services. In this paper, we present a solution to monitor and enforce the fulfillment of secSLAs. Our 
framework is able to (a) detect occurrences that lead to unfulfillment of commitments, and (b) also provide mitigation 
to the harmful events that may or do compromise the validity of secSLAs.  

Highlights: 
• A novel specification model to specify security information in SLAs. 
• Quantification of SLAs with development of metrics and measurements for attributes. 
• An SLA monitoring approach to detect events causing SLA violations. 
• An automated reaction schema for addressing anomalies causing SLA violations. 
• Specification of remediation actions to avoid or mitigate SLA violations. 
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1. Introduction 
The economic and technological benefits of cloud computing are noticeable with an increasing 
number of CSPs offering diverse cloud-enabled services,  and also the increasing number of actors, 
such as companies or governments that are moving their infrastructures or services to the cloud [1]. A 
recent survey [2] showed that 82% of potential customers consider security to be a major 
consideration for deciding to use a cloud service. Furthermore, critical services or services that handle 
sensitive information are moving to the cloud. This is the case of the European Organization for the 
Safety of Air Navigation (Eurocontrol) that is leveraging a cloud approach [3] to implement the 
integrated European air traffic control systems (SESAR) [4]. Also, an increasing number of 
governments are using the cloud to interact with their citizens [5]. As a result, security assurance is 
becoming even more relevant when referring to services moving to the cloud and customers willing to 
use them.    

Many public Cloud Service Providers (CSPs) have adopted security control frameworks to represent 
the degree of security assurance and transparency provided to Cloud Service Customers (CSCs), e.g., 
ISO/IEC 27002 [6], the CSA’s Cloud Control Matrix (CCM) [7], and the NIST’s SP 800-53 [8]. By 
implementing their security control frameworks, CSPs can only assume the type of data that a CSC is 
going to generate and use, and are not aware of the requirements and controls that are necessary to 
actually protect CSC’s data [9]. Thus, CSPs and CSCs need mechanisms and tools that enable them to 
understand and guarantee a demanded level of security. To this end, the cloud community (e.g., 
ENISA [10], ISO/IEC [11], NIST [8], and EC [13]) has moved towards the specification of security 
parameters in security service level agreements (termed as secSLA in the literature). SecSLAs are 
useful for defining common security related semantics among CSPs and CSCs.  

However, the establishment of secSLAs only partially serves the needs of CSPs and CSCs especially 
if it is not linked to the management of the secSLA commitments. CSPs need tools and mechanisms 
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to react to eventualities that may threaten the fulfillment of the secSLA commitments (e.g., attacks, 
disasters, changes or regulation). The efficient detection and reaction to potentially harmful security 
related events becomes an essential activity to be carried out by CSPs in order to provide CSCs with a 
trustworthy service and also fulfill the agreed assurance levels. Thus, secSLAs become an essential 
element in this process. In the QoS context, SLAs typically include indicators that are subject to a 
progressive degradation that announce a potential violation of the SLA (for example, disk failures that 
might anticipate a degradation of the performance indicator of the cloud service). However, in the 
security context, the detection of such eventualities is something mostly unexplored. Typically, 
security indicators lack the aforementioned progressive degradation; for example, if an attacker 
breaks an encryption key, there is no apparent indicator that announces the potential security breach 
and the protected information is automatically exposed. In such situation, the minimization of the 
damages and its automated remediation is crucial. To this end, secSLAs are used in this paper for 
managing minimization of damages by providing with an automated remediation procedure supported 
by the continuous monitoring of secSLAs that enable detection of and reaction to potential and actual 
violations of the agreements. 

The secSLA remediation approach presented in this paper was partially developed over the FP7-ICT 
project SPECS [37], [38], whose main objective is to provide a framework for automated 
management of secSLAs and enhancing CSPs’ security offers by automatically deploying security 
mechanisms that implement security features negotiated by CSCs.  All processes and the secSLA 
model presented in this paper have been designed and implemented by the SPECS team. The code 
with descriptions is available at the project’s Bitbucket account [48]. 

1.1 Contributions 
This paper addresses issues for trust and security assurance of cloud services by advocating an 
approach to manage secSLAs through the following contributions:  

1) SecSLA model definition. We provide with a novel secSLA representation that (a) provides a 
formal specification of security requirements and constraints in cloud environment and (b) 
enables automated management of its life cycle. The model is based on current standards and 
working groups and relies on the definition of security controls and Security Level Objectives 
(SLOs). The novelty of our approach lies in the new layer of the existing SLA hierarchy, 
namely the measurement layer that is required to evaluate the fulfillment of the committed 
SLOs.  

2) SecSLA monitoring. Through the use of secSLAs, we propose a methodology to detect events 
that either represents a potential or an actual violation of any of the security commitments 
included in the secSLA. To this end, we use the concept of monitoring rules generated from 
the secSLAs content.   

3) SecSLA remediation. In addition, we propose an approach to automatically react to events that 
might or do entail a violation of security commitments specified in the secSLA. The designed 
methodology analyses detected events and selects remediation actions to be executed in order 
to avoid or recover from an invalidation of any clause of the secSLA.  

4) SecSLA management case study. We validate the proposed methodology by means of a case 
study based on a real secSLA. 

The organization of the rest of the paper is as follows. Section 2 describes the current related work in 
the area of secSLAs. The secSLA terminology and secSLA model is outlined in Section 3. Section 4 
presents a high level approach to management of secSLAs in the cloud. In particular, we describe the 
approach and the software for automated management of secSLAs developed in SPECS. Further 
details about secSLA monitoring are presented in Section 5, the automated secSLA remediation is 
elaborated in Section 6, and the overall approach validated with a real use case in Section 7. Finally, 
our conclusions are presented in Section 8.  



2. Related Work 
Several approaches are emerging to represent security in cloud computing. The security policies 
specification (as defined in [6] and [14]) is a transversal aspect for all the participants in the service 
supply chain. Some industry efforts (Monahan and Yearworth [15] and Undheim [16]) have 
contributed to the security SLAs approaches. However, the format that providers are using to 
represent security policies or SLAs varies from one provider to another, namely because there is no 
common vocabulary to represent the different security aspects that are provided by them. The CSA 
provides a common format for the security provisions to be included in security policies and secSLAs, 
such as the STAR repository [17]. A machine-friendly approach that expresses the security provisions 
is considered by Casola [18], Luna [19], and Taha [20]. Savola [21] and CSA with the CCM [7] go 
one step beyond by organizing these security provisions into categories derived from a taxonomy. In 
[23] authors improve those models by including also dependencies between provisions that may also 
affect to the subsequent reasoning. 

Contemporary research advocates assessing the security provided by CSPs by comparing secSLAs 
with respect to CSC’s security requirements (e.g., the QHP [20], QPT [23], and REM [24] 
techniques). However, there is still a conspicuous gap in what regards the real usefulness of the 
information included with a secSLA. Furthermore, the approaches to monitor security in CSPs are 
noticeably scarce. Most existing monitoring techniques focus on the monitoring of performance 
indicators, as shown in [25], [26], and [27]. In the cloud context, Amazon’s CloudWatch [29] is one 
of the main approaches but the solution is limited to their proprietary domain. DeSVi [28] includes 
the detection of SLA violations, while Brower [30] presents continuous monitoring for detection of 
intrusions and malicious attacks for web service providers or cloud environments. Finally, NIST’s 
SCAP specifications [31] and Cloud Security Alliance’s Cloud Trust Protocol [32] provide interfaces 
for extracting monitoring data from clouds.  

With respect to approaches to automatically react to SLA violations, the gap is even broader, 
especially when looking for the remediation of security aspects. Most of the literature refers to QoS 
indicators. That is the case of [33] that detects SLA violations of performance indicators based on 
resource measurements. However, this detection is not used to design remedies but to study the 
propagation of the effects of the violation into the system. Other approaches, such as [34], are focused 
on SLA violations but only in terms of determining penalties associated to them, not going into the 
remediation before applying the penalties. In [35] SLAs are used to adapt performance parameters of 
cloud services according to a model to monitor and evaluate them. However, this approach sets users 
aside and is focused just on the optimization of the provider resources. Finally, the SLA@SOI project 
[36] developed an infrastructure to monitor QoS related SLAs (mainly performance indicators). The 
model is based on modelling potential errors (and its possible dependencies) that might affect an 
enforced SLA, providing adjustment actions to solve them based on prediction models.  

In the reminder of this paper we illustrate a new methodology that aims to solve the above discussed 
issues.  

3. Cloud Security SLAs 
This section presents the core secSLA terminology used in this paper. We also describe the SLA 
model used to formalize the CSC’s requirements and CSPs commitments for the acquired cloud 
service. 

SecSLAs constitute the “contracts” that specify the commitments (specification of services delivery 
and the liabilities for shortcomings) across the CSPs and CSCs for providing agreed upon levels of 
security for the chosen set of security attributes.  The main part of these documents are the Service 
Level Objectives (SLOs) undertaken by CSPs in order to be fulfilled during the service operation. 
SecSLAs are also used to model CSP’s security at the service level by defining a collection of 
security statements that describe the services that the CSP agrees to provide. As a paper contribution, 



this led us to the definition and usage of metrics and their underlying measurements that are essential 
for enforcing, monitoring, and remediating secSLAs.  

Typically, SLOs are the targets for service levels that the provider agrees to meet. If an SLO is not 
fulfilled, the customer may request a remedy (e.g., a new configuration, a new service or a financial 
compensation). In order to assess if the agreed SLA is being fulfilled, we need a way to quantitatively 
evaluate SLOs, which is critical in the case of secSLAs. Together with the problem of how to model 
secSLAs comes a challenge on how to design mechanisms to automatically enforce them. These are 
the main issues that this paper addresses.  

Figure 1 illustrates the secSLA model developed and used in this paper. We use the concept of SLOs, 
where one SLO is an extension of exactly one quantitative metric. While each metric defines a 
various set of possible values associated to a certain security aspect, an SLO represents the 
commitments of the CSP with regards to a particular guaranteed value for one specific metric. As we 
detail in Section 5, SLOs extends the metric element with additional attributes necessary to verify the 
fulfillment of the secSLA, such as the operator used to check the assigned value (i.e., “higher than”, 
“equals to”) or the level of importance with respect to other SLOs. Metrics are categorized according 
to the CSA’s CCM, in a hierarchical structure, into control groups called security controls. Similarly, 
security controls belong to a set of control categories that represent the highest level of abstraction in 
the hierarchy. Of course, security metrics could be categorized according to any security control 
framework, for example, according to NIST’s SP 800-53 [8]. The choice of the control framework 
and mapping of metrics to controls is the responsibility of the CSP. 

Our model combines the approaches advocated by practitioners of security controls frameworks, such 
as the CSA’s CCM [7], the ISO/IEC 19086 [11], the NIST’s RATAX working group [12], and the 
approach presented by Luna [47]. Whereas current standards and working groups consider a three 
levels model (control category, security control, SLO/metric), which are essential in SLA negotiation 
phase, our model adds the level of measurements. This level is the crucial one that enables monitoring 
and facilitates an automated process of remediating SLA violations. 

 

 
Figure 1. The cloud secSLA specification 

As an example, let us suppose that a CSP implements the secSLA Control Vulnerability/patch 
management (i.e., TVM-02) from the CSA CCM v3 [22]. As observed in Figure 2, this control is 
actually contained within the group Threat and vulnerability management (i.e., TVM). After selecting 
TVM-02, the same CSP then refers to the SLO list provided in the C-SIG SLA report [13] (or any 
other relevant standard) and finds out that this control is associated to the SLO Vulnerability scanning 
frequency time period. This SLO is then mapped by the CSP to a specific security metric, namely 
Vulnerability scanning frequency. The specification of the security metric defines the possible values 
for its corresponding SLO. Figure 2 also shows the measurement layer that allows monitoring the 
current state of the corresponding metric (i.e., validity of the associated SLO). 



 
Figure 2. Example of the cloud secSLA hierarchy 

Table 1 shows an example of the measurements required to assess the state of the metric Vulnerability 
scanning frequency. This metric represents the time elapsed between two sequential vulnerability 
scans. The current state of the metric is obtained with four measurements while the value of each 
measurement is obtained directly by monitoring the CSP’s service. Further details about the 
relationship among metrics and measurements are provided in Section 5. 
 

Metric Description Possible values Measurements Value type 

Scanning 
frequency 

Sets the vulnerability 
scanning frequency 
(Example: Scanning 
frequency is 24h) 

Integer > 0 
(hours) 

Scanning report age int (hours) 
Repository availability boolean 
Vulnerability list availability boolean 
Scanner availability boolean 

Table 1. Example of a security metric and its measurements 

Control categories and control levels are normally used to represent customers’ requirements and are 
used to support the security assessment of CSPs (as in [20]), However, for the scope of this paper we 
focus on (a) the SLOs, (b) the metrics, and (c) the measurement levels, that together constitute  the 
key elements to enforce, monitor, and remediate SLOs. 
 
If any of the committed values for the SLOs is not fulfilled, then the secSLA is violated and a 
remediation process has to be initiated. In real-world cloud scenarios, the metrics are subject to 
possible dependencies. Thus, in order to plan and carry out remediation actions required for potential 
or actual violations, it is necessary to define these dependencies since one event may affect more than 
one SLO. Dependencies among metrics commonly appear in relevant standards and best practices, 
where metrics are directly depending in order to allow their composition to generate more complex 
ones. The Cloud Service Metrics model from NIST [12] supports these direct dependencies through 
the notion of concrete and abstract metrics. In this paper, we define dependencies among 
metrics/SLOs through their associated measurements. 

4. Cloud SLA Management 
As described in Section 3, a secSLA is an agreement between a CSC and a CSP about the level of 
security provided by the CSP for the cloud services acquired by the CSC. Figure 3 represents the 
phases of the secSLA life cycle. 

During the preparation phase, the CSP defines security metrics to be included in the secSLA, their 
possible values, and their relevance according to the type of service offered. For example, in the cloud 
storage domain the most important metrics would be associated to data confidentiality and integrity, 
whereas a CSP offering web servers would give higher priority to metrics associated to availability 
and performance. Capabilities are also defined by CSPs according to their infrastructure. For example, 



a CSP offering web servers can only define a metric defining the number of different web servers to 
be deployed on virtual machines if it supports at least two different web servers. 

	
Figure 3. The secSLA life cycle 

The agreement is formalized in the second phase of the secSLA life cycle, termed as the negotiation 
phase. During this process, the CSC chooses a set of offered security features (i.e., chooses security 
metrics) and determines their configurations (i.e., decides on metric values). For example, if a CSP 
providing web servers offers configurable software vulnerability assessment of virtual machines 
hosting the web servers, the CSC might be able to choose a metric related to the frequency and depth 
of vulnerability scans and assign preferred values to the chosen metrics (e.g., vulnerability scans 
should be conducted every 24 hours and vulnerability scans should include the entire operating 
system and all running applications). The set of chosen metrics and their values imply a set of SLOs 
to which the CSC assigns levels of importance. The resulting secSLA is then verified by the CSP and 
signed by both parties. 

As we discuss in Section 5, the levels of importance along with the values of the chosen metric 
determine the frequency of actions performed by the CSP to enforce the secSLA, and the frequency of 
measurements taken on the system to evaluate the state of the signed secSLA. Metrics in SLOs with 
higher level of importance are evaluated more often as those with lower level of importance. In 
Section 6 we elaborate how importance weights also serve as a guideline for concurrent occurrence of 
violations of more than one SLO for the same secSLA. In such cases, the importance levels determine 
which part of the secSLA is remediated first. 

When all services are negotiated, they are implemented by the CSP during the implementation phase. 
In this phase the CSP configures delivered services to automatically enforce and monitor negotiated 
security features. After configuring the services, the CSC's secSLA enters the monitoring phase. If 
any deviations from what is specified in the secSLA are detected by the CSP’s monitoring tools, the 
secSLA undergoes remediation phase.  

In order to automate the remediation process, the CSPs have to (a) define measurements for all the 
metrics they offer, (b) specify all detectable incidents and failures related to the defined 
measurements, and (c) project remediation actions for specified alerts and violations. Despite precise 
planning, not all incidents and failures can be automatically mitigated. In such a case, the CSC is 
notified about the occurrence, compensated (if applicable), and offered to renegotiate invalidated 
secSLA. Of course, in cases where automated remediation process fails to mitigate the risk of having 
a secSLA violation or fails to recover from one, not only the CSC but also CSP is notified about the 
event. In this way the CSP has the opportunity to manage the remediation process manually before 
offering the CSC a renegotiation (a new cycle of the negotiation phase) of the invalidated secSLA. 

In Table 2 below we summarize the roles and responsibilities of CSPs and CSCs according to the 
described preparation step and the four secSLA phases. 

 



 Actor 
Phase CSP CSC 
Preparation  
 

• Define security metrics to be offered 
and their possible values, levels of 
importance, measurements, and 
frequencies. 

• Define actions with which the defined 
metrics are automatically enforced and 
monitored. 

• Define security incidents/failures and 
remediation plans for the defined 
measurements. 

/ 

secSLA 
negotiation 

• Present supported security features in 
terms of negotiable security metrics. 

• Select preferred security metrics 
and specify their values and 
levels of importance. 

Sign the secSLA. 
secSLA 
implementation 

• Configure cloud resources and deploy 
security mechanisms able to 
enforce/monitor the signed secSLA. 

/ 

secSLA 
monitoring 

• Collect and filter monitoring data. / 

secSLA 
remediation 

• Analyze and automatically remediate 
detected secSLA violation. 

• Renegotiate the secSLA if 
remediation is unsuccessful. 

Table 2. Roles of the CSC and the CSP 

It is true that the main public CSPs (such as AWS [50] and Azure [51]) today offer no room for SLA 
negotiation. They provide their secSLAs on their web sites where the customer either accepts the 
terms and signs the secSLA or not accept the terms and decline their services. Nevertheless, the 
approach to the secSLA management presented in this paper will become an important solution when 
in the future (due to the rising number of cloud providers and more and more demanding and security 
aware cloud users) the secSLA negotiation phase becomes a reality in the public cloud domain. Until 
that point, the presented approach is applicable to a more private scenario, for example, a private 
cloud of a computing center, or to let developers specify their requirements to the infrastructure for 
the (off-premise) operators. 

As outlined in the introduction, the presented approach to the automated management of secSLAs has 
been developed over the European FP7-ICT research project SPECS [37], [38]. In SPECS, we have 
implemented a set of components that oversee negotiation, implementation, monitoring, and 
remediation phases. As seen in Figure 4, the CSC accesses the SPECS web application through which 
she/he acquires a cloud service and negotiates its security level. The negotiation phase is orchestrated 
by the Negotiation module. The signed secSLA is sent to the Planning component of the Enforcement 
module, which prepares a so-called implementation plan which specifies resources to be set up, 
security mechanisms to be deployed in order to enforce and monitor the negotiated security features, 
and their configuration. The implementation plan is later executed by the Implementation component. 
During the SLA monitoring phase, the Monitoring module collects and filters the monitoring data. 
Any detected deviations from what is expected (according to signed secSLAs) are notified to the 
Diagnosis component which analyses notified events. According to the analysis done, the 
Remediation Decision System component identifies the optimal remediation plan, which is executed 
by the Implementation component. The code for the components that orchestrate the described SLA 
life cycle is available at the project’s Bitbucket account [48]. 



	
Figure 4. SPECS architecture 

The following Sections 5 and 6 respectively detail the automated monitoring and remediation phases.  

5. Monitoring SLAs 
With every signed secSLA, the CSP does not only commit to providing a certain set of security 
services but also to sustain the guaranteed level of security of chosen services. For example, if a CSP 
agrees to offer vulnerability scans of provided resources, they should be executed and they should be 
executed as often as specified in the secSLA. For the purpose of continuously assessing the state of 
each signed secSLA and guaranteeing its fulfillment, as already introduced in the description of the 
secSLA model, each metric has a defined set of measurements. 

Every metric is associated with at least one measurement, but can also be mapped to more than one 
measurement. Similarly, every measurement corresponds to at least one metric but can also be 
mapped to more than one metric. For example, the vulnerability list update frequency (VLUF) metric, 
which assures that the data related to published vulnerabilities is retrieved from a public repository 
and the corresponding report with the list of disclosed vulnerabilities is generated periodically, is 
evaluated with measurements vulnerability list age (VLA) and repository availability (RAV). At the 
same time, the measurement RAV is used to evaluate also, for example, the metric related to the 
frequency of vulnerability scans (VSF), which is enforced by periodically retrieving vulnerability data 
from the public repository, generating vulnerability list, and executing vulnerability scans. This metric 
is evaluated with more than one measurement, for example, also with the age of the produced 
scanning report (SRA) and availabilities of the vulnerability list (VLAV) and vulnerability scanner 
(SAV), as depicted in Figure 5. 

 
Figure 5. Relationship among metrics and measurements 

For each security metric exactly one of the associated measurements should be the core one, and the 
rest of the measurements are additional. With the core measurement we are able to detect violations, 



but the additional ones enable detection of possible violations (i.e., alerts) even before they occur. For 
example, metric VLUF has one core (VLA) and one additional measurement (RAV), and metric VSF 
has one core (SRA) and three additional measurements (RAV, VLAV, and SAV). 

The set of agreed upon SLOs (i.e., metrics, their values, associated operators, and assigned levels of 
importance) is transformed into a set of enforcement and monitoring actions (i.e., actions executed by 
the CSP in order to enforce and evaluate the state of all associated metrics), a set of monitoring rules 
(i.e., measurements and associated operators and thresholds), and accompanied enforcement and 
monitoring frequencies; see Figure 6. 

For the example above, an SLO stating VLUF = 24h with a high importance weight would transform 
into a couple of enforcement actions related to retrieving vulnerability data, generating vulnerability 
list, and checking its age every 24 hours. The set of monitoring actions would be related to evaluating, 
for example, every 4 hours, if the monitoring rules are respected. The associated monitoring rules 
would be defined as VLA ≤ 24h and RAV = yes. 

Similarly, an SLO stating VSF = 48h with a low importance weight would transform into the 
following actions and rules. Enforcement actions, executed every 48 hours, would entail retrieving 
vulnerability data, generating vulnerability list, executing vulnerability scans, generating scanning 
report, and checking its age. Monitoring rules would be specified as SRA ≤ 48h, RAV = yes, VLAV = 
yes, and SAV = yes. And the set of monitoring actions would be related to verifying, for example, 
every 24 hours, validity of monitoring rules. 

 
Figure 6. Transformation of SLOs into a set of enforcement actions and monitoring rules 

Due to dependencies among security metrics that are indicated through their mapping to 
measurements, it may happen that two or more SLOs in the same secSLA imply some identical 
enforcement and monitoring actions. In such a case, those actions are only executed once but the 
frequency is determined by taking the most restrictive values out of all implied by SLOs. Similarly, 
whenever two or more SLOs with different importance weights imply the same measurement, its 
operator and threshold are determined by taking the most restrictive values out of all implied by 
SLOs. 

Monitoring frequencies depend not only on importance weights, but also on the nature of the metric 
(e.g., assuring frequency of some action, assuring availability of some service) and the type of the 
measurement (core vs. additional). Core measurements and the ones monitoring availability of 
services should, in general, be taken more often than the rest.  

All these details about how to plan enforcement and monitoring action, how often to execute them, 
and how to optimize them in order to allow parallel management of secSLAs, depend on the entire 
assortment of services offered by the CSP and its underlying infrastructure. Therefore, they should be 
defined by the CSP. 

During the SLA monitoring phase (Figure 7), all measurements are continuously taken by security 
mechanisms deployed on cloud resources and evaluated against the defined thresholds (implied by all 
signed secSLAs and maintained by the Monitoring module). Any deviation from the expected 



threshold should be further analyzed. Thus all measurement results indicating suspicious behaviour 
immediately trigger remediation phase (the detected suspicious events are notified to the Diagnosis 
component of the Enforcement module which analyses them) and all measurement results that comply 
with assigned thresholds are stored for possible future risk assessment and auditing (in the archiver 
component of the Monitoring module).  

	
Figure 7. SecSLA monitoring 

6. Automated Remediation of SLA Violations 
The remediation phase starts when the CSP’s monitoring processes detect anomalous behaviour, i.e., 
whenever the monitoring detects that some measurement value deviated from the defined threshold.  

The first step of the remediation process is an analysis of the event with respect to the associated 
secSLA. As illustrated in Figure 8, the set of metrics and SLOs that the measurement is linked to is 
identified. Based on the type of the measurement defined for each metric, the type of the event is 
determined for each affected SLO. If the measurement is the core measurement for a metric, this 
implies an SLO violation, and if the measurement is an additional measurement for a metric, the event 
implies an SLO alert. If the event represents an alert to all affected SLOs in the secSLA, then the 
entire secSLA is labelled as alerted, but if at least one of the affected SLOs is violated by the 
measurement’s deviation, the entire secSLA is violated. According to the event type and considering 
importance weights of the alerted/violated SLOs, the risk or severity level can be determined for an 
alerted or a violated secSLA, respectively. 

 

Figure 8. Diagnosis process 

It is possible that the monitoring tools detect a deviation of several measurements for one secSLA at 
“the same time”. In this case, risk/severity levels determine the sequence in which all detected events 
should be handled in order to avoid performing different reconfigurations on the system for one 
secSLA simultaneously and possibly causing more damage. 

After the diagnosis process, a remediation plan is identified for the measurement associated to the 
notified incident/failure. A remediation plan is built specifically for each measurement and comprises 
a set of remediation actions and a clear sequence in which they should be executed. A remediation 
action is composed of some monitoring activity (i.e., take some measurement) or an enforcement 



activity followed by a monitoring action (i.e., change some configuration and check if the 
reconfiguration was successful).  

Remediation plans are built by CSPs possessing detailed information about their infrastructure, the 
services they offer, and the metrics they offer for negotiation. Since CSPs may over time change the 
set of offered services, the plans many need revisions to match the changes. Also given the 
continually changing attacker behaviors, the remediation plans require frequent revisions to match 
newly discovered vulnerabilities and due to increased risk of exposure to attacks which are becoming 
more complex and more targeted. 

As depicted in Figure 9, a sequence of remediation actions is executed until either the event is 
resolved or until there are no more remediation actions available. Regardless of the event type and the 
result of the remediation process, the CSC is always notified about the occurrence and about the 
outcome. In case of an alert, the secSLA reenters the monitoring phase, and in case of a violation, the 
CSC is entitled to a compensation as specified in the secSLA. If the violation is resolved, the CSP 
compensates the CSC and the secSLA reenters the monitoring phase, but if planned remediation 
activities failed to recover from the violation, the CSC is compensated and also offered a 
renegotiation of the invalidated secSLA. 

 
Figure 9. Remediation flow 

Note that the assumption in the presented remediation methodology is that CSP’s monitoring 
processes only observe parameters associated to the measurements defined for all offered security 
metrics, i.e., parameters associated to SLOs in undertaken secSLAs. Thus each detected 
incident/failure is always associated to at least one measurement/metric and associated remediation 
procedure to handle the event. 

As mentioned above, all alerts and violations related to the same secSLA should be handled one by 
one in order to avoid different reconfigurations on the system simultaneously. But in order to allow 
for a better service and ensure higher level of security, various events related to different secSLAs can 
be handled in parallel, as long as reconfigurations do not affect the same system (e.g., the same VM). 
Determining compatibilities among remediation actions in order to identify those that can be executed 
in parallel is up to the CSPs since it depends on the CSP’s infrastructure, services they provide, and 
security metrics they offer.  

In order to evaluate penalties associated to a violated secSLA, the CSP has to consider all violated 
SLOs. This means considering all SLOs affected by the deviation of the measurement initially 
reported in the notification of the event, and also all SLOs affected by the deviation of measurements 
taken during the remediation process. For example, consider a secSLA with which a CSP guarantees a 
set of VMs with web servers and assures software vulnerability assessment of provided VMs by 



means of periodic vulnerability scans. At some point the vulnerability scan fails because one of the 
scanners installed on one of the VMs is unresponsive. The process of remediation reveals that the 
cause for it is a crash of the entire VM hosting it. The CSP should consider a violation to the 
metric/SLO related to the frequency of vulnerability scans as well as the metric/SLO associated to 
assuring web server replication (assuring availability of web servers and VM replicas). Note that the 
actual calculation of penalties is related to the business side of the secSLA and is out of scope for this 
paper. 

In some cases, a remediation plan or even a specific remediation action may cost the CSP more than 
paying penalties for the associated secSLA violation. It is up to the CSP to plan appropriate 
remediation processes for cost tradeoffs across remediation/mitigation/recovery actions for business 
continuity, reputation, and profitability. 

Remediation plans depend on the CSP and on the security mechanisms that it implements. Namely, 
every CSP decides (i) on cloud services to provision, (ii) on security features to offer for the defined 
cloud services, and (iii) on security mechanisms able to enforce and monitor them. Hence the 
remediation plans depend on security metrics considered by the CSP and on functionalities supported 
by security mechanisms implemented by CSPs. 
For example, let us consider two CSPs that offer web servers and assure resilience to security 
incidents through the following features: 

• Level of Redundancy (LOR), i.e. the number of server replicas;  
• Level of Diversity (LOD), i.e. the number of different types of web servers; 
• Maximum acceptable CVSS score of vulnerabilities (MCS), i.e. the maximum acceptable 

CVSS score [40] for the unfixed software vulnerabilities detected on the system. 
Furthermore, let us assume that one of the CSPs (CSP1) only offers 2 different types of web servers 
and that the other CSP (CSP2) supports 3 different types of web servers. Let us now take a CSC that 
signs a secSLA with objectives LOR=2, LOD=2, and MCS=5, which means that the CSC requires 
two different web servers for which only vulnerabilities with CVSS<5 are acceptable. If at some point 
a serious vulnerability is discovered and published (for example, with CVSS=9) for one of the offered 
web servers (which would represent a secSLA violation for the SLO associated to the MCS metric), 
CSP2 could replace the vulnerable web server and simply recover from the secSLA violation, 
whereas remediation plans for the CSP1 would involve applying patches to the vulnerable web server. 

A practical example that demonstrates the introduced approach to the automated secSLA remediation 
is provided in the next section. 

7. Validation: A Practical Example 
As discussed in Section 4, in SPECS we have developed a framework that orchestrates the presented 
approach to secSLA monitoring and remediation. Moreover, we have developed a set of security 
mechanisms that are able to enforce and monitor different sets of security properties in the cloud. For 
example, we have developed the End-to-End Encryption (E2EE) mechanism [49] that offers to CSCs 
client-side encryption and monitors write-serializability (i.e., consistency among updates) and read-
freshness (i.e., assurance that the requested data is always fresh as of the last update), and the 
Software Vulnerability Assessment (SVA) mechanism that offers to CSCs periodic vulnerability 
scans, penetration testing, and automated patch management. The code for the mechanisms that are 
deployed to cloud resources through the SPECS framework in an automated way according to SLOs 
specified in signed secSLAs is available on the project’s Bitbucket account [48]. 

Every CSP can offer to its cloud customers different security features (associated to data 
confidentiality, data integrity, denial of service protection, etc.) that are enforced and monitored with 
different security mechanisms. As a proof of concept we consider in this section one set of features 
implemented by one security mechanism, namely the SVA mechanism. In particular, we consider a 
CSC signing a secSLA with a CSP offering the SVA mechanism, and we discuss automated 



management of a set of security incidents/system failures according to the procedures presented in 
this paper (according to Table 2). 

Preparation phase – definition of metrics and measurements for the SVA mechanism 

The SVA mechanism is offered to CSCs through a set of various security metrics related to frequency 
of vulnerability scans, depth and breadth of scanning coverage, penetration testing, detection of 
misconfigurations and presence of unauthorized components or libraries, etc. As a proof of concept, 
we consider the security metrics reported in Table 3.  

ID Name Description Possible values 

VSF Vulnerability scanning 
frequency Set the vulnerability scanning frequency. 

integer > 0 
(hours); 

default 24 

MCS 
Maximum acceptable 
CVSS score of 
vulnerabilities 

Set the maximum acceptable CVSS 
score for the unfixed software 
vulnerabilities detected on the system. 

0 < integer < 10 
(CVSS score); 

default 4 
Table 3. SVA security metrics 

In order to perform vulnerability scans and enforce metric Vulnerability scanning frequency (VSF), a 
list of published software vulnerabilities (including misconfigurations) has to be provided to the 
scanner. And to assure meaningful scans, the list should be repeatedly updated. Since many 
repositories exist that provide data related to security vulnerabilities (e.g., [39], [40]), the SVA 
mechanism can not only retrieve this data at any point, but it can also retrieve it from many different 
sources, if needed (e.g., when one repository is unavailable, the mechanism can switch to another 
source). 

When the vulnerability scan is conducted, the SVA mechanism generates a scanning report outlining 
all detected security vulnerabilities, their characteristics, and their impact in terms of CVSS scores 
[40]. On the basis of the produced scanning report, the CSP can determine the maximum CVSS score 
of all discovered vulnerabilities. The CSC can configure desirable security level of the resources 
acquired with the CSP by setting the upper thresholds for the severity of unfixed software 
vulnerabilities detected on the system through metric Maximum acceptable CVSS score of 
vulnerabilities (MCS). With this metric the CSP guarantees automated remediation of all detected 
vulnerabilities with higher security risk (e.g., assures automated patching, assures automated updates 
and upgrades of detected vulnerable libraries). 

The following table lists all measurements defined for the considered security metrics that are needed 
to support mechanism’s functionalities and assurances. 

Measurement Security metric 
ID Name Type VSF MCS 
SRA Scanning report age core ●  
MDCS Maximum CVSS score of detected vulnerabilities  ● 
RAV Repository availability 

additional 
● ● 

VLAV Vulnerability list availability ● ● 
SAV Scanner availability ● ● 

Table 4. SVA measurements 

Preparation phase – definition of enforcement and monitoring actions, their frequencies, and 
levels of importance 

As discussed in Section 5, each metric has an associated list of enforcement actions. For example, in 
order to enforce metric VSF and check validity of the SLO associated to it, the CSP should (a) 
retrieve data related to published vulnerabilities, (b) generate vulnerability list, (c) perform 
vulnerability scan, (d) generate scanning report, and (e) check if the age of the report is under the 



threshold set by the CSC (to ensure that the report has been generated). Similarly, in order to enforce 
and verify validity of the SLO associated to metric MCS, the CSP (a) retrieves data related to 
disclosed vulnerabilities, (b) generates vulnerability list, (c) performs vulnerability scan, (d) generate 
scanning report, (e) determines maximum CVSS of all detected vulnerabilities, and (f) checks if the 
risk level of the vulnerability with the highest CVSS score is below the threshold set by the CSC. 
Table 5 below presents all main actions required for automated enforcement, and also all 
supplemental actions required for automated monitoring and remediation of the considered security 
metrics. 

For the considered example, where we offer three importance levels, high (H), medium (M), and low 
(L), we assume enforcement and monitoring frequencies as shown in Table 6. 

Enforcement/monitoring action 
Security metric 
VSF MCS 

Main Actions 
ID Type Description Enforcement step 
EA1 enforcement Retrieve data related to published vulnerabilities. 1 1 
EA2 enforcement Generate vulnerability list. 2 2 
EA3 enforcement Perform vulnerability scan. 3 3 
EA4 enforcement Generate scanning report. 4 4 
EA5 monitoring Check if SRA ≤ VSF value. 5 / 

EA6 enforcement Determine maximum CVSS score of detected 
vulnerabilities. / 5 

EA7 monitoring Check if MDCS ≤ MCS value. / 6 
Supplemental actions 

EA8 monitoring Check if RAV = yes. 
EA9 monitoring Check if VLAV = yes. 
EA10 monitoring Check if SAV = yes. 
EA11 enforcement Reconfigure repository. 
EA12 enforcement Restart scanner. 
EA13 enforcement Check for available patches for detected vulnerabilities. 
EA14 enforcement If possible, apply patches2. 
EA15 enforcement Determine maximum CVSS score of unfixed detected vulnerabilities. 

Table 5. SVA enforcement actions 
 

Action type 

Security metric 
VSF MCS 

Importance level 
H M L H M L 

enforcement VSF value VSF value VSF value 12h 24h 48h 
monitoring VSF value/6 VSF value/4 VSF value/2 2h 6h 24h 

Table 6. SVA frequencies 

Preparation phase – definition of security incidents/system failures and associated remediation 
actions 

Based on the defined metrics and measurements, the CSP is able to detect events presented in Table 7. 

 

 

																																																													
2 This includes checking for possible updates and upgrades of vulnerable libraries, packages, etc. If an update or 
upgrade is performed, this includes removing old version of vulnerable software. 



Event Security metric 
ID Description Type VSF MCS 
E-SRA SRA > VSF value violation ●  
E-MCS MDCS > MCS value  ● 
E-RAV RAV = no 

alert 
● ● 

E-VLAV VLAV = no ● ● 
E-SAV SAV = no ● ● 

Table 7. Detectable SVA events 

For each detectable event, the CSP defines a remediation plan in order to eliminate its occurrence. As 
described in Section 6, a remediation plan comprises a set of remediation actions, and each 
remediation action consists of one or more enforcement/monitoring actions. Table 8 specifies all SVA 
remediation actions and the sequence of enforcement/monitoring actions each of them imply. 

Remediation action Enforcement/monitoring actions 
ID Description Step 1 Step 2 Step 3 Step 4 

RA1 Check if configured repository for vulnerability data 
is available. EA8    

RA2 
Download vulnerability data from the configured 
repository, generate vulnerability list, and check if it 
is available. 

EA1 EA2 EA9  

RA3 Reconfigure vulnerability data repository and check if 
it is available. EA11 EA8   

RA4 Check if the vulnerability list is available. EA9    
RA5 Check if the installed scanner is responsive. EA10    

RA6 Perform vulnerability scan, generate scanning report, 
and check if its age is below the threshold. EA3 EA4 EA5  

RA7 Restart installed scanner and check if it is responsive. EA12 EA10   

RA8 

Check for available patches for detected 
vulnerabilities and apply them if possible, determine 
the maximum CVSS score of unpatched detected 
vulnerabilities, and check if it is below the threshold. 

EA13 EA14 EA15 EA7 

Table 8. SVA remediation actions 

 

 
Figure 10. SVA remediation plans 



Finally, in Figure 10 above we present remediation plans associated to all SVA events listed in Table 
7. Since all remediation actions conclude with a monitoring activity that either results in a true or a 
false (in diagrams a true corresponds to a 1 and a false corresponds to a 0), each remediation plan can 
be constructed as a decision tree. 

Each remediation of an event can either end successfully (i.e., the end node, denoted with M, 
represents the monitoring phase that the secSLA can reenter) or with a demand for further CSP’s 
and/or CSC’s assistance (i.e., the end node, denoted with R, represents the renegotiation phase that 
the secSLA enters in worst case scenario3). 

Negotiation phase 

Consider a CSC who wants to acquire a pool of web servers and secure them with the SVA 
mechanism. Let us assume that the CSC signs a secSLA with two SLOs, namely SLO1 with medium 
importance defined as VSF = 24h and SLO2 with low importance defined as MCS = 4. According to 
Table 4, the CSP has to monitor all defined SVA measurements, and the following monitoring rules 
have to be periodically evaluated: SRA ≤ 24h, MDCS ≤ 4, RAV = yes, VLAV = yes, and SAV = yes. 

Implementation and monitoring phase 

In order to enforce SLO1, the CSP has to execute enforcement actions EA1-EA4 every 24 hours, and 
in order to enforce SLO2, the CSP has to execute enforcement actions EA1-EA4 and EA6 every 48 
hours (see Table 5 and Table 6). Thus the final setting is to perform enforcement actions EA1-EA4 
once every 24 hours and action EA6 once every 48 hours.  

In order to check validity of SLO1, the CSP has to execute monitoring actions EA5 and EA8-EA10 
every 6 hours, and in order to verify validity of SLO2, the CSP has to execute monitoring actions EA7 
and EA8-EA10 every 24 hours. Hence, the CSP executes monitoring actions EA5 and EA8-EA10 
once every 6 hours, and monitoring action EA7 once every 24 hours. 

All actions and associated frequencies related to enforcing and monitoring signed secSLA are 
summarized in Table 9. The actual schedule is up to the CSP who manages scheduling of actions for 
all undertaken secSLAs in an optimized and efficient way (i.e., scheduling the same actions for 
different secSLAs in the same time slots). But in general, for example, the availability of the 
vulnerability list should be verified (monitoring action EA9) prior to vulnerability scans (enforcement 
actions EA1-EA4) and age of the scanning report should be verified (monitoring action EA5) after 
each scan. 

Action Description Frequency Related SLOs 
SLO1 SLO2 

EA1 Retrieve data related to published vulnerabilities. 24h ● ● 
EA2 Generate vulnerability list. 24h ● ● 
EA3 Perform vulnerability scan. 24h ● ● 
EA4 Generate scanning report. 24h ● ● 
EA5 Check if SRA ≤ 24h. 6h ●  

EA6 Determine maximum CVSS score of detected 
vulnerabilities. 48h  ● 

EA7 Check if MDCS ≤ 4. 24h  ● 
EA8 Check if RAV = yes. 6h ● ● 
EA9 Check if VLAV = yes. 6h ● ● 
EA10 Check if SAV = yes. 6h ● ● 

Table 9. Frequencies of actions for the secSLA with SLO1 and SLO2 

																																																													
3 Of course, the CSP could try to resolve the incident/failure manually or even provide a new VM, install 
different and/or newer OS, and migrate entire service requested by the CSC, before offering renegotiation of the 
invalidated secSLA. 



Remediation phase – Example 1 

Let us now consider that during one of the periodic vulnerability scans the scanner crashes due to a 
missing vulnerability list. We assume that the list has been maliciously or accidentally deleted or 
corrupted by an attacker or the CSP during the vulnerability scan which means that the absence of the 
list was not detected between the verification of its availability (EA9) and the planned vulnerability 
scan (EA3). 

After the planned vulnerability scan CSP’s monitoring tools detect that the scanning report has not 
been updated (SRA > 24h) which corresponds to the event E-SRA (see Table 7). The occurrence is 
immediately analyzed as depicted in Figure 8. The involved measurement (SRA) is the core 
measurement for metric VSF which indicates that the occurred event represents a violation of SLO1. 
Since VSF is the only metric affected by the event, the SLA is labelled as violated. According to 
CSC’s assigned importance weight to SLO1, the CSP can determine the severity level of the detected 
violation.  

According to defined remediation plans (see Figure 10), remediation of event E-SRA starts with 
verifying availability of the vulnerability list (remediation action RA4). Since availability list is 
missing, the next step (i.e., the next remediation action RA2) is to download all data related to 
published vulnerabilities, generate new vulnerability list, and verify again its availability. This time 
we assume the list has been successfully generated and is now available. Next remediation action 
(RA5) indicates checking if the vulnerability scanner installed on the system (i.e., acquired VM 
hosting one of the web servers) is responsive. We consider the scanner to be reactive, thus the CSP 
can (according to the next remediation action RA6) execute another vulnerability scan, generate 
scanning report, and verify that its age is below the set threshold (i.e., SRA < 24h). The last 
remediation action is successful and remediation process ends with a resolution of the detected 
secSLA violation. The secSLA reenters the monitoring phase, the CSP calculates penalties to be paid 
to the CSC, and notifies CSC. 

Remediation phase – Example 2 

Next, let us consider the situation where the CSP’s monitoring tools at some point detect 
unavailability of the vulnerability list (VLAV = no) which corresponds to the event E-VLAV (see 
Table 7). The CSP’s remediation tools react according to remediation process defined in Figure 8. 
Measurement VLAV is an additional measurement for both metrics, VSF and MCS, thus the event 
represents an alert for both SLOs in the secSLA, and the secSLA enters the alerted state. According to 
CSC’s assigned importance weights to both SLOs, the CSP can determine the risk level of the 
detected incident/failure. 

Following remediation plans presented in Figure 10, remediation of event E-VLAV starts with 
verifying availability of the configured repository (remediation action RA1). We assume that the 
repository crashed after the monitoring tools last checked its availability. Since the repository is 
currently unavailable, the next step (i.e., the next remediation action RA3) is to reconfigure repository 
(i.e., use a different repository) and verify again its availability. Since we presume that the replacing 
repository is available, the CSP can (according to the next remediation action RA2) download all 
vulnerability data, generate new vulnerability list, and check its availability. We consider the last 
action to be successful, thus the remediation process ends with a resolution of the detected alert, the 
CSC is notified about the event, and the secSLA reenters the monitoring phase. 

Remediation phase – Example 3 

The last example we consider is the occurrence of the event E-MCS which indicates that at some 
point vulnerability scanners detected a software vulnerability of a too high CVSS score (for example, 
scanning reports shows a presence of a vulnerability with a CVSS score 6, thus MDCS > 4). The 
involved measurement MDCS is the core measurement for the metric MCS, so the event represents a 



violation of SLO2 and thus a violation of the entire secSLA. The CSP can determine the severity level 
of the violation according to CSC’s assigned importance weights to SLO2. 

According to remediation plans (see Figure 10), the only planned remediation action (i.e., action 
RA8) for the event E-MCS is to check for availability of patches for the detected high risk 
vulnerability, to apply it if possible, check if the vulnerability is remediated, and check if the 
maximum CVSS score of all persisting vulnerabilities on the system is below the assigned threshold. 
In our example we assume that the detected high risk vulnerability is new and that patches for it are 
not yet available. This results in an unresolved SecSLA violation and the CSC is offered to 
renegotiate the agreement. 

Technical notes 

Note that all presented enforcement, monitoring, and remediation actions can be implemented by one 
of the existing open source configuration, orchestration, and management tools (like Chef [42], 
Puppet [43], Salt [44] or Ansible [45]) due to its capability of managing large number of devices. For 
example, it is highly probable that once a new software vulnerability is found and disclosed, a large 
number of virtual machines in a cluster (if not all) will be affected and will require remediation 
actions (like patching the vulnerable software as in the Heartbleed bug case [46]). In SPECS project, 
where the remediation process was developed, the adopted orchestration tool is Chef. 

8. Conclusions 
Developing techniques and tools for automated and dynamic management of secSLAs is a 
challenging task. One needs to define security metrics such that the resulting security assurances and 
the corresponding secSLAs are not only enforceable by CSPs, but also that they can be  monitored 
and remediated in case of detected failures and incidents. 

In this paper, we have described a secSLA specification model and a methodology to manage security 
commitments included in the secSLA. We have proposed a comprehensive model and processes to 
enable detection of deviations from agreed upon security settings. Most importantly, we have 
introduced an automated remediation process for potential and actual secSLA violations. 

The proposed secSLA model and secSLA management methodology are based on defining a set of 
measurements for each security metric with which the CSPs are able to evaluate the validity of 
guaranteed SLOs. For each SLO we have identified a set of detectable alerts and violations, and for 
each deviation from what is assured and expected, we have defined actions to be taken in order to 
prevent or recover from secSLA violations. When developing remediation part of the secSLA 
management framework, we have considered not only how to predict, prevent, and eliminate secSLA 
violations, but also how to handle corrective and reactive actions in order to avoid causing more 
damage. 

The procedure presented in this paper is focused on the management of security aspects represented 
by secSLAs. However, the approach is flexible enough to be applied to other contexts and domains 
(to performance and privacy SLAs or even to non-cloud scenarios where the CSCs run their services 
on off-premise resources) as long as SLOs, metrics, measurements, and remediation plans are defined. 
As mentioned in the related work, the cloud security domain has high need for standardized 
representation for both the security characteristics of cloud services and also security related 
guarantees offered by CSPs. Moreover, the cloud security domain currently lacks processes for clear 
and a transparent SLA management. Consequently, the SLA model and monitoring and remediation 
procedures presented in this paper specifically focus on management of secSLAs.   

When referring to cloud monitoring (in security or any other domain), the trustworthiness is the main 
issue to overcome in our approach. It is well known that the current techniques and available 
technologies to actually monitor the SLAs are internal to CSPs, and the lack of trustworthiness in the 



veracity of the information provided and handled by them might be a stopper to this kind of solutions. 
Current research activities supported by some working groups (including Cloud Security Alliance) are 
focused on the use of independent/external auditors and protocols to provide with a common model to 
get information from CSPs. However, as long as CSPs have the control of the data extracted from 
their infrastructure, the problem still persists. Developing mechanisms to check the validity and 
veracity of monitoring information (by enforcing proof-based systems based on attestations like the 
E2EE security mechanism developed in SPECS) remains as an open challenge and future work that 
will contribute to reach a higher level of trustworthiness and reliability to the proposed model. 
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