AttackDive: Diving Deep into the Cloud Ecosystem
to Explore Attack Surfaces

Salman Manzoor, Jesus Luna and Neeraj Suri
Technische Universitidt Darmstadt, Germany
Email: {salman,jluna,suri} @deeds.informatik.tu-darmstadt.de

Abstract—A multitude of issues affect the broader adoption
of Cloud computing, with security arguably being amongst the
most significant. To address security concerns, the process of
threat analysis is advocated to assess potential attacks that
can undermine the security goals. However, conducting threat
analysis for the Cloud is a non-trivial task given the plethora of
attack surfaces entailed in the multiple layers of the operational
stack and the resource/customer interfaces. Consequently, con-
temporary Cloud threat analyses approaches primarily focus on
specific services/layers without analyzing the malicious behaviors
over the complete multi-layered Cloud ecosystem. Hence, the
need is of a comprehensive Cloud threat analysis approach that
can (a) analyze the spectrum of malicious behaviors stemming
from the vulnerable service interactions across the multi-level
operational stack, and (b) correspondingly enumerate the attack
surface exploitability by varied types of attackers.

We achieve such a holistic Cloud threat analysis via a novel
multi-level modeling of Cloud operations to obtain a comprehen-
sive behavioral profile of its underlying services. Our proposed
approach, using Petri Nets, targets the identification of core
operational states to enumerate the normal sequence of Cloud
operations along with the triggers that provide the state tran-
sitions. The obtained states transition enumerate comprehensive
multi-level state space baseline of ‘“normal” sequences and also
constitutes to identify multi-level vulnerabilities not recognizable
by the traditional single-level threat analysis.

Index Terms—Cloud security; Petri Nets; Cloud threat analysis

I. INTRODUCTION

As the usage of the Cloud proliferates, the corresponding
need for the often lacking security assurance (including the
threat analysis) from the Cloud Service Providers (CSPs) also
grows. From the perspective of the CSP, providing security
assurance is not trivial given the multitude of possible attack
surfaces to consider. These arise not only from the traditional
threats entailed in the classical Internet protocol stack, but also
from the newer Cloud-specific architectures.

One of the advocated methods to provide security assurance,
and to alleviate the customer’s security concerns, is to conduct
threat analysis i.e., evaluating the system for vulnerabilities
that can be exploited by adversaries. Threat Analysis (TA)
[1], [2] is an approach to investigate potential attacks that
can undermine security goals. However, due to the plethora
of services/technologies involved in the Cloud operational
stack and interfaces across varied resources and customers,
the current Cloud threat analysis approaches typically focus
on a particular service or consider only a particular technology

Research supported in part by EC H2020 MSCA-ITN NECS GA #675320
and ESCUDO-CLOUD GA #644579

[3]-[5]. Hence, most TA schemes reveal attack surfaces that
are pertinent only to that particular service/technology, and
without covering the holistic operations of the Cloud. Conse-
quently, the current TA approaches fail to analyze behavioral
repercussions of the vulnerable service/technology across the
varied levels of operational stack in the Cloud ecosystem.

Hence, a comprehensive threat analysis of the Cloud is
required that can (a) analyze malicious behaviors stemming
from the interactions of vulnerable services across the multi-
level operational stack, and (b) correspondingly enumerate the
multi-level attack surface exploitability by attackers.

Consequently, the goals of this paper address two aspects.
The first is to develop a comprehensive multi-level model of
the Cloud operations to elaborate the lifecyle and the interac-
tion of services involved in the Cloud ecosystem. We consider
the Cloud operations in launching a Virtual Machine (VM)
to (a) profile the behavioral characteristics of Cloud services
and their interconnections, and (b) analyze the detailed flow
of information among the services over varied Cloud levels
to launch a VM. This information is utilized in our proposed
approach to identify the base Cloud operational states, enumer-
ating the “normal” sequence of Cloud operations along with
the triggers that provide the state transitions. The Cloud model,
developed using Petri Nets, forms the basis to identify multi-
level vulnerabilities not recognizable by traditional/single-level
threat analysis.

Consequently, the second paper aspect is to investigate
the anomalous sequences of operations from varied attacker
profiles e.g., insider/outsider attackers. On this background,
the main contributions of the paper are the following:

1) Development of a comprehensive multi-level Cloud oper-
ational model and the rules to detail the information flow
between services and transitions.

2) Development of an approach to analyze the behavioral
properties of the services to a) characterize the baseline
sequences of Cloud operations, and b) identify anomalous
sequences over varied attacker profiles.

The paper is organized as follows. Section II models Cloud
operations using Petri Nets with the primary focus on services
interaction. In Section III, we validate our Cloud model and
analyze malicious behaviors in the Cloud. Section IV reviews
contemporary threat analysis approaches for the Cloud.

II. DESIGNING AND MODELING OF THE CLOUD

In this section, we model the Cloud operations by consider-
ing the essential services and their interaction in launching a
Virtual Machine (VM). As the VM is an elemental component
behind Cloud services, hence our focus is on the services
involved in launching it. We surveyed multiple open source
Cloud computing environments [6], [7] and identified the core
services involved in the process of launching an instance
of a VM in these environments. We profile the behavioral
characteristics of the services with a focus on information
flow and interactions among these services. We utilize the
acquired information to develop our multi-level Cloud model
using High Level Petri Nets (HLPN). The HLPN forms the
basis to analyze behavioral and structural properties of the
Cloud under normal operations and under varied attackers
manipulations. The obtained model is shown in figure 1, with
the description and data types of the HLPN places listed in
Table I. Furthermore, we define the rules (pre/post conditions)
that govern the flow of information among these places. These
rules enable the firing of transitions and HLPN place token
(information) from the input place(s) to the respective output
place(s).

TLL: Auth F

U rred)l\ red T2.1: Sess_F
fail Crea 4

Ucred TL2 Cred

Auth S U_sess
S T2.2: Sess_S
U_sess ess Sess,
_ses::|~U7\/M7data
% Path T2
~ U_sess

U_VM_data VM_config

T221:VM_F
VM _data
L‘)‘\ua\:/a:|

VM_datag))9 ym s

U_VM_dat
VM_id

em conllg
Coordinator

Path T2: Received VM requesl

Path T3: VM data is verified. TA2:
VM_run

Path T4: VM data is verified & i config

Path T3
VM_config

T3.1.
Srvr_lookup srve

@ \/Miconﬂg—b|—srv

server is selected.

T4l
Final_configs

Fig. 1: Petri Nets based Cloud Model

Path T4

VM _srvr_data

TABLE I: Description and Data Type of the Places in Cloud Model

Before describing the details of the model, we first overview
the process of initiating a VM instance in the Cloud. The
VM initiation begins with authenticating the customer (T1.1
in Figure 1 - top left). Following a successful authentication,
the customer provides the desired set of properties for the VM
(e.g., CPU, RAM, disk space) and thereafter, the scheduler
service is invoked to determine a potential physical machine
for the VM. Once the scheduler selects and provides server
details to the coordinator, the coordinator then invokes multiple
services to, assign disk image, initialize a virtual network
interface card and assign MAC/IP addresses. These config-
urations are pushed onto the hypervisor which configures the
VM instance accordingly and initiates the VM on the selected
server.

In the following section, we detail the service interactions
and model their behavioral characteristics by defining rules
that govern the flow of information between the services.

A. Information flow in the Cloud

The process of initiating a VM follows a specific set of
services that interact to successfully launch a VM. We define
the rules that describe the information flow and processing of
the information in the services to trigger the related transitions
as shown in figure 1. As the request is initiated through
authentication, hence a new token is generated each time the
customer tries to log in via the Cloud interface. This initiates
the execution of transitions in the path 71 and transitions
Auth_F and Auth_S determine whether the customer’s cre-
dentials are valid or invalid. These transitions are then mapped
according to the rules shown in equations 1 and 2.

R(Auth_F) =Vcred € Cred : U_cred[1] # cred|1] n
VU _cred[2] # cred2)V U _cred # cred
R(Auth_S) =Vcred € Cred : U_cred[1] = cred]]1] 2

AU_cred|2] = cred[2] AU _cred = cred

Equation 1 depicts a mismatch in the credentials provided
by the customer and stored at the provider. Thus, the customer
is again required to enter the correct credentials. The transition
Auth_S is fired after the customer provides valid credentials.
Consequently, a session is initiated and access privileges are

Place Description Data type .

Usr_ini | Interface 10 enmter user credentials | Siring x Siring granted to the customer based on the access policy and quota
(user_namexPassword). of the customer. The next place VM_req allows the customer

Ath_srvy Authentication Service from the CSP. String x String .

VM _req | VM requested instance (CPUXRAMXDISK). Tnt % Tni X Tt to enter the desired VM data such as CPU, memory, and

Sess Session details of the customer | Inf x String x storage. These values are passed to the coordinator whose
(Sess_IDxSess_PolicyxSess_Exp). String

VM_buff| Temporarily stores VM request value and session Sess x VM _req primary JOb 1s to manage and share respective information with
details for verification. the next place that satisfies the precondition(s). The conditions

VM _conf | Holds VM data and configurations. Sess x VM _req . P .

Ad_conf Holds quota and access policy of the customer String x Stringx for next places and their descrlp tion are shown in Table II.
and administrator configurations. String

DB_ent Initial entry of the VM in the database | Int X VM_req TABLE II: Condition for Selecting Next Place from Coordinator
(VM_IDxVM_req).

Schd Receives VM details to find a potential server. DB_ent Next Place Condition Description

Serv_loc Selection of the server for the VM (Locationx- String x String T2/VM_buff| Transition T1.2 is fired. VM data is available.
Data_Center). T3/Schd Transitions 72.2 and Session is active and VM data

VM _srvr Receives server and VM details. Serv_loc x Schd T2.2.1 are fired. is verified.

Hyp Receives all the configurations and launches the DI x DHCP x T4/VM_srvr | Transitions 72.2, T2.2.1 VM data is verified and the data
VM. NIC x VM _srvr and T3.1 are fired. center and server is selected.

Since the condition for path 72 is satisfied, the next place
VM_buf fer receives and stores VM and session details tem-
porarily for the next transitions to validate the session and
verify the VM properties. The rules for successful session and
VM validation are shown in equations 3 and 4.

R(Sess_S) = Vsess € Sess : U_sess[1] = sess|[1] 3

AU _sess[2] = sess[2] AU _sess[3] < sess|[3] ©)

Equation 3 is then fired if; (a) the session is active, and (b)
the access policy of the customer matches the policy assigned
by the administrator. Thus, a successful session verification
leads to equation 4, which validates the VM configurations.

R(VM_S) =VVM _data € VM _data : U_VM_data|[1]

€ VM _data[l| N\U_VM_data[2] € VM _data|2) 4)
ANU_VM_data[3] € VM_data|3]

Equation 4 successfully validates VM request by verifying
access privileges for the requested VM and validating config-
uration of the requested VM with the quota of the customer.
Thereafter, Eq 4 assigns a unique value for the identification
(ID) of the VM request. This ID enables the rest of the
services to distinguish between multiple VM requests from
the same customer. The combined information of the VM and
the session (VM_IDUU_VM_data\UU _Sess) is then written
in the database.

The verification of the VM data enables the condition for
path T3. Consequently, the scheduler service is invoked to
find an appropriate data center location and an appropriate
server. The selection of the server enables the second condition
(cf., Table II) of the path T4, hence, multiple services are
invoked with the requisite information to assign the varied
configurations. The rule of Fi_Conf transition is shown in
Equation 5 and the outcome of firing the transition is config :=
(VM_configUsrvrUmap).

R(Fi_Conf)=3im € DI : get_di = im,| im — map]1],

| Vmac3vnic : ((mac <> dhep[l]) <> map[2]) ©)

The disk image service is responsible for providing a VM
image from the repository. The network service initiates a
virtual network interface card, assigns a MAC address and
allocates a mapping between the virtual and the physical
interfaces of the machine. DHCP is responsible to assign and
manage IP address and a mapping between the IP and the
MAC address of the virtual instance. These configurations are
pushed onto the hypervisor, which then starts the VM on the
physical hardware according to the received configurations.

These rules enable the flow of information in the Cloud
ecosystem and describe the behavioral interactions of the ser-
vices. Having established how the services interact with each
other in the Cloud ecosystem, the next step is to validate our
Cloud model and utilize the state space analysis to determine
normal behaviors and to identify behavioral changes in the
presence of a vulnerable service.

ITII. VALIDATION OF THE CLOUD MODEL

In this section, we validate the proposed Cloud model and
also analyze the behavioral properties of the services using

CPN tools [8]. These tools simulate and validate the HLPN
to verify the model properties under a variety of conditions.
One of the characteristic feature of the CPN tools is the
ability to perform state space analysis of the given model.
In the following sections, we demonstrate the effectiveness of
CPN tools by developing a state transition schema consisting
of all “normal” behaviors and state transitions of potential
misbehaviors resulting from services manipulation.

A. State Space Analysis of the Cloud Model

We begin our behavioral analysis by simulating the Cloud
model and validating the sequence of transitions under the
rules described in Section II-A. These rules describe the
benign interaction of services under normal Cloud operations.
For example, equation 6 illustrates one of the possible correct
sequence of operations.

R(cret_op) = U _cred € cred,| VM_data € Ad_conf,| ®

im € DI,| ((mac <> dhcp) <> im))

In order to demonstrate the comprehensive “all” sequences
of operations, we utilize the state space analysis from the CPN
tools. The analysis results in a large number of states and
their interconnections, making illustrating the complete state
diagram to be impractical. Therefore, we outline a partial state
diagram of the model in figure 2' and analyze the structural
and behavioral properties in this state diagram.

Fig. 2: Services behavior in Cloud IaaS

Figure 27 shows state transitions that are trivial to the
normal Cloud operations and also the state transitions that are
invalid and hence should not lead to a successful instantiation
of a VM. As an example of the nefarious behavior for the
sate DB_ent would be to interact directly with VM_srvr state
and this interaction should not lead to further transitions. This
prevents the state DB_entr to pass wrong information (e.g.,
server details and VM configurations) directly to VM _srvr
under normal interactions.

However, in presence of a vulnerability or a service miscon-
figuration, anomalous behaviors may arise that are invalid but
could still lead to the instantiation of the VM. To investigate
this, we classify states according to their accessibility to the

I'The CPN tools assign numeric numbers to the nodes in state space which
makes the analysis and diagram difficult to comprehend. Thus, we map these
numeric numbers to the respective state description of the IaaS model to make
it understandable for the reader.

2Figures 2 and 3 are extracted from the Cloud model in Figure 1

attacker and partition state space accordingly. In this paper,
due to space limitations, we investigate malicious behaviors
resulting from an insider attacker manipulations.

B. Insider Attacker

An insider attack is orchestrated by entities responsible for
managing the Cloud operations. They usually have elevated
access to the services and also possess intimate knowledge of
the infrastructure. This makes an insider attack have high po-
tential for damage, and we analyze their potential misbehaviors
from an insider perspective. Equation 7 depicts the interaction
of misconfigured Ad_Conf with other services while figure 3
depicts this interactions graphically.

R(wr_ad) =3U _cred € cred,| Ad_conf[1] = VM_data,|
Ad_conf[2] = Sess,| Ad_conf — VM_srvr,| VM_srvr — Conf
@)

Vulnerable/
Misconfigured service
Impact of the
“——— vulnerable service

<« — — SQL injection Path

Fig. 3: Insider attacker state space

As evident from Figure 3, the behavior of the transitions
changes when an insider attacker misconfigures the Ad_Conf
service. The misconfiguration in the Ad_Conf leads to the
state VM _srvr which violates the normal sequence as the
VM _srvr must always be followed by Srvr_loc. The miscon-
figured Ad_Conf also affects Conf which is responsible for
the VM configurations (i.e., mapping between the virtual and
physical network interfaces, and assigning IP/MAC address).

The second service considered for analysis is the Schd
service, responsible for finding an appropriate server for the
requested VM. The misconfigured Schd service has a limited
impact as it can only change the location of the server. The
implication of selecting a wrong server is severe as it may fail
to instantiate the requested VM. For completeness, a path in
figure 3 is presented for the case of an SQL injection attack
in which an insider writes malignant entries directly to the
database. This results in skipping a number of transitions and
directly pushing the maligned server and VM configurations
onto the hypervisor which will then instantiate the VM with
wrong configurations on an attacker controlled server.

IV. RELATED WORK

Threat analysis is a well utilized approach to identify
software/system threats. However, it is typically constrained to
a specific configuration and for a specific attacker profile. The

initial efforts led by Microsoft introduced a threat modeling
approach called STRIDE [9]. It is an attacker-centric approach,
applicable to data flow diagrams to find potential weaknesses
and security flaws exploitable by a specific attacker. The
approach presented in [10] develops an attack tree of the
Cloud and utilizes a “what if” analysis to traverse paths in
the tree to determine potential exploit(s). In [11], the authors
formally analyzed open source Cloud environments for as-
sessing correctness properties. In [5], the authors characterize
vulnerabilities in the hypervisor by considering their impact on
the functionality of selected popular hypervisors. The security
issues of hypervisors was also analyzed by Tsai et al [3].
Their analysis focused on security issues over VM hopping
and VM mobility. In [4], Bugiel et al., analyzed publicly
available VM images in the Amazon EC2 repository. Their
analysis focused on public interfaces to therein extract private
information to launch attacks such as starting a botnet or
launching an impersonation attack.

Our work differs from the above as we (a) model the
influence of a vulnerable service on other services in the Cloud
in a technology agnostic manner, and (b) analyze malicious
behaviors for their impact on the full set of Cloud operations
considering varied insider/outsider attacker profiles.

V. CONCLUSION

Our work explored multi-level Cloud attack surfaces by
characterizing the fundamental information flows in Cloud
services. To achieve this, we comprehensively analyzed Cloud
operations to design and model varied levels of the operational
stack and interfaces. The resultant Petri Nets model formed
the basis to comprehensively identify the operational states
for outlining the “normal” sequence of Cloud services, and to
determine anomalous sequences of operations resulting from
the vulnerable service interaction across the multi-level Cloud
operational stack. Correspondingly, we enumerated the multi-
level attack surface exploitability by attackers based on their
accessibility of the service to explore attack surfaces across
varied levels of the operational stack.

REFERENCES

[1] F. Swiderski and W. Snyder, Threat modeling. Microsoft Press, 2004.

[2] S. Myagmar and et al, “Threat modeling as a basis for security
requirements,” Proc. of SREIS, pp. 1-8, 2005.

[3] H. Tsai and et al, “Threat as a service?: Virtualization’s impact on cloud
security,” IT Professional, vol. 14, pp. 32-37, 2012.

[4] S. Bugiel and et al, “Amazonia: when elasticity snaps back,” Proc. of
CCS, pp. 389-400, 2011.

[5] D. Perez-Botero and et al, “Characterizing hypervisor vulnerabilities in
cloud computing servers,” Proc. of SCC Cloud, pp. 3-10, 2013.

[6] O. Sefraoui and et al, “Openstack: toward an open-source solution for
cloud computing,” IJCA, vol. 55, pp. 38-42, 2012.

[71 D. Nurmi and et al, “The eucalyptus open-source cloud-computing
system,” Proc. of CCGRID, pp. 124-131, 2009.

[8] K. Jensen and et al, “Coloured petri nets and cpn tools for modelling and
validation of concurrent systems,” IJSTTT, vol. 9, pp. 213-254, 2007.

[9] S. Hernan and et al, “Uncover security design flaws using the STRIDE

approach,” MSDN Magazine, Nov. 2006.

P. Wang and et al, “Threat risk analysis for cloud security based on

attack-defense trees,” Proc. of ICCM,, pp. 106111, 2012.

S. Malik and et al, “Modeling and analysis of state-of-the-art vm-based

cloud management platforms,” IEEE TCC, vol. 1, pp. 50-63, 2013.

[10]

(11]

