
Trust Validation of Cloud IaaS: A Customer Centric
Approach

Salman Manzoor, Ahmed Taha and Neeraj Suri
Dept of CS, TU Darmstadt, Germany

Email:{salman, ataha, suri}@deeds.informatik.tu-darmstadt.de

Abstract—A multitude of issues affect the broader adoption of
Cloud computing, with the perceived lack of trust on the Cloud
Service Providers (CSPs) often listed as a significant concern.
To address this, CSPs typically set up Service Level Agreements
(SLAs) that contractually list what the CSP is obligated to provide
to meet the customer requirements. While SLAs are promising
as a concept, the inadequacy of schemes to actually monitor and
validate the run-time compliance of SLAs limits the customer’s
capability to evaluate the offered services to assess the actual
trust to put in the CSPs.

In this paper, we propose a methodology to validate SLAs and
detect service violations over the life of the service. The SLA
consists of a list of service attributes that are required by the
customer and committed by the CSP. In order to validate an SLA,
we evaluate each SLA attribute either qualitatively or quantita-
tively as relevant. The evaluation provides reproducible assurance
to a customer for trusting the CSP based on its fulfillment of the
customer’s requirements. We classify requirement violations into
“trust states” according to the customer defined preferences and
the CSP can be in varied trust states depending on the severity
level of the violations. We demonstrate assessing the trust state of
a CSP based on the services involved in launching and migrating
a virtual machine in Infrastructure-as-a-Service (IaaS) offering.

I. INTRODUCTION

Cloud computing delivers on-demand, scalable and shared
resources to customers in the form of three broad types of
services offered by Cloud Service Providers (CSPs) [1]. The
first being SaaS (Software as a Service), that offers software
applications as a service and allows a Cloud customer to
control only the application configurations. The second, PaaS
(Platform as a Service), provides the customers a platform
for developing applications, and the customer controls the
hosting environment. Finally, IaaS (Infrastructure as a Service)
provides computing and storage resources where the customer
controls everything except the data center infrastructure. With
IaaS as a highly flexible service, we focus on IaaS in this
paper.

While these service types are attractive, the non-transparent
architecture of Cloud, the paucity of mechanisms to provide
definitive assurance about the fulfillment of user requirement
by Cloud Service Providers (CSPs), and the unclear assurance
on security facets on service delivery impede many businesses
from deploying Cloud services. These often result in Cloud
Service Customers (CSCs) being unable to trust the CSPs.
Broadly, trust implies reliance in something that is expected
to behave or deliver as promised [2]. In the context of the
Cloud, we refer to trust as the degree of reliance on the

services offered by the CSP with respect to the customer’s
requirements.

Members of the Cloud community1 advocate specifying
service provisions in Service Level Agreements (SLAs) to
establish common semantics to provide and manage assurance.
Fundamentally, an SLA represents a formal contract between
a customer and a CSP which specifies service provisions with
respect to the customer’s requirements. The SLA includes a list
of attributes which are the measurable elements that specify
service levels provided by the CSP in comparison to the
customer’s requirements along with the agreed upon quality
level for each attribute (e.g., latency, throughput etc) along
with penalties for non-delivery of services. Thus, a logical
way to assess trust of the CSP is to validate the SLA.

Although the state of the art predominantly focuses on
the methodologies to negotiate and design Cloud SLAs [3]–
[6], most of these methodologies assume that the CSPs are
actually providing the services as agreed in the SLAs. The
techniques to detect SLA violations are conspicuous by their
paucity. A violation happens if an agreed SLA is not fulfilled
by the CSP. In other words, the SLA is violated if the CSP
is not provisioning the services according to the customer’s
requirements. Therefore, it is important to provide customers
with a comprehensive support in order to (i) validate the SLA
through the course of time and operations at the CSP and (ii)
enable an automatic detection of SLA violations.

A. Contributions

This paper aims to solve the aforementioned issues by
proposing a novel reasoning approach to:

1) Assess the qualitative and quantitative attributes ‘to-be-
provided’ by the CSP and ‘required’ by the customer.
We use set theory for the qualitative attributes, and
propose pairwise comparators for quantitative attributes.
This comparison forms the basis to validate the SLA
and detect violations on the customer’s requirements.

2) Classify violations into “trust states” according to the
preferences specified by the customer.

3) Validate the trust of Cloud IaaS by applying our method-
ology to detect SLA violations during the launch and
migration of a virtual machine.

1For example, standard bodies such as NIST, the European Network
and Information Security Agency (ENISA), Cloud Security Alliance (CSA),
ISO/IEC, and the European Commission.

The paper is organized as follows. Section II introduces
the basic concepts on SLAs. Section III reviews contempo-
rary SLA validation approaches. Subsequently, Section IV
describes our proposed methodology, and in Section V we
present case studies to evaluate the services involved in a
Cloud IaaS. Section VI summaries the methodology.

II. BASIC CONCEPTS

A Cloud SLA describes the provided services, and repre-
sents a binding commitment between a CSP and a customer.
The SLAs outline the desired services, each of which contains
a list of attributes. Each attribute is composed of one or
more metrics, as relevant, that help in the measurement of
the Cloud services by defining parameters and measurement
rules. Hence, the SLA contains a list of attributes, with
corresponding desired values, that the CSP is committed to
fulfill. If any of these committed values is not fulfilled by
the CSP, then the SLA is violated. In practice, one way to
assess trust of the CSP is through periodically validating the
SLA. Thus SLA monitoring schemes are used to quantitatively
validate what a CSP is providing and which assurances are
actually met.

Based on the analysis of the state of practice presented in
[7], Cloud SLAs are typically modeled using a hierarchical
structure as shown in Figure 1. The root of the structure
defines the main container for the SLA. The intermediate
levels (second and third levels in Figure 1) are the services
and the lowest level represents the actual attributes committed
by the CSP and consequently offered to the customer. These
attributes form the threshold values which are specified in
terms of metrics in relation to the customer’s requirements.

The concept of a SLA is formalized using the following
definition.

Definition. An SLA consists of a set of services S = s1, . . . ,sn.
Each service s consists of a finite positive number n of
attributes ki; where i = 1 . . .n. Each attribute ki consists of
m different values vi; such that ki = vi,1,vi,2, . . . ,vi,m. Each
value implies a different service level offered by the CSP
and required by the customer. Each ki value is mapped to
a numerical value according to its type/range.

Note that, the attributes can have varied types/ranges of
qualitative and quantitative values. Hence, a process for com-
paring different attributes across the customer’s requirements
is needed in order to detect SLA violations by the CSP. We
present this comparison methodology in Section IV.

III. RELATED WORK

With the rapid growth of Cloud services, multiple ap-
proaches have emerged to assess the functionality and security
of CSPs. In [8], the authors proposed a framework to compare
different Cloud providers across performance indicators. In
[5], an Analytic Hierarchy Process (AHP) based ranking tech-
nique was proposed that utilizes performance data to measure
various Quality of Service (QoS) attributes and comparatively
ranks the CSPs. In [9], a framework that enables a comparison

Fig. 1: Cloud SLA hierarchy

of Cloud services based on critical characteristics is presented.
However, these studies (i) focused on assessing performance
of Cloud services but not their security properties and (ii) did
not consider SLA validation for identifying violation-prone
service providers.

Security requirements for non-Cloud scenarios have been
addressed by Chaves et al. [10] who explored security in SLAs
by proposing a monitoring and controlling architecture for web
services. In [11] and [12], the authors proposed a technique
to aggregate security metrics from web services. However, the
authors did not propose any techniques to assess Cloud SLAs
or empirically validate the proposed metrics. Luna et al. [3]
presented a methodology to quantitatively benchmark Cloud
security with respect to the customer’s defined requirements
(based on control frameworks). In [4], the authors presented
a framework to compare, benchmark and rank security levels
provided by two or more CSPs. However in both of them, the
SLA validation was not covered.

An SLA validation framework can help in identifying
violation-prone service providers. However, in order to serve
the customer best, a trust model should take into account all
the available sources of information including the customer’s
requirements and feedback. In [13], the authors proposed a
multifaceted Trust Management (TM) to identify trustworthy
Cloud providers in terms of different attributes. However, their
assessment considered trust as a security service level and
furthermore they did not manage and maintain dynamically
changing trust values. In both [14], [15], the authors consid-
ered the SLA validation as the main factor for establishing
trust on grid and web service providers. However, they only
considered QoS attributes.

The methodology presented in this paper differs from the
above mentioned works in respect to the attributes under
consideration and maintaining the dynamic state of trust. Trust
models for Cloud computing need to take Cloud specific
attributes into account and these go beyond the usual QoS
parameters. In this paper we consider Cloud specific attributes
by evaluating services in launching and migrating a VM. We

validate attributes to detect violations periodically and the
effect of these violations on the state of trust. We utilize a
state transition approach to model different trust states, and
demonstrate how violations dictate the transition across them.

IV. PROPOSED METHODOLOGY

In this section, we describe our research methodology to
validate an SLA by comparing service provisions of a CSP
with the customer requirements over the lifetime of the service.
The stages involved in the methodology are shown in Figure
2. In Stage A, the customer specifies his/her requirements
and the CSPs specify their service provisions. The customer
then selects a CSP that "best" matches his/her requirements.
In Stage B, we monitor the selected CSP to acquire the
attribute values of the desired services. Stage C validates these
attributes with the customer’s requirements and assesses the
current state of trust. As mentioned in Section I, we refer to
trust as the degree of reliance on the offered services with
respect to the customer’s requirements. Therefore, if a CSP is
provisioning the services according to the requirements, the
CSP is consequently fulfilling the SLA to be deemed to be
in a trusted state. However, if the requirements are violated,
consequently, the state of trust is changed to reflect the degree
of violation. We apply our methodology periodically2 to assess
the current state of trust which is modeled in Stage D using
a state diagram.

Fig. 2: Stages of the proposed methodology

Stage A. Requirements Specification

In this stage, the customer specifies his/her requirements
and the CSPs specify their provisions. The customer evaluates
and ranks each CSP according to the requirements and selects
a CSP that best matches these requirements. The ranking
algorithm was proposed in our previous paper [4]. The target
of this paper is to periodically validate the selected CSP
provisions. For clarity, we describe the customer’s require-
ments specification that is used to validate the CSP provisions.

2A periodic interval can be chosen or an event based schema using a
violation threshold as a trigger can be used.

We use the same SLA hierarchical structure (cf., Figure 1)
to model requirements. The customer can specify his/her
requirements at different levels of granularity and can specify
priorities of the requirements by assigning weights to them.
Furthermore the customer can specify weights by using lin-
guistic terms (Highly-Critical (HC), Critical (C), Less-Critical
(LC) and Not-Critical (NC)) for the attributes and/or services.
The highly-critical attributes have high importance for the
customer, while not-critical attributes have least importance.
Thus, violating higly-critical attributes have severe implica-
tions on trust than the rest of the attributes. Critical and less-
critical specifies the customer’s different degrees of importance
regarding these requirements, where he/she can accept varied
values depending on the considered scale.

Stage B. Monitoring the Selected CSP

This stage involves monitoring of the selected CSP to cap-
ture the values of the attributes. Monitoring plays a significant
role in identifying violations as it provides the attribute values
from the CSP for comparison. There are various monitoring
schemes proposed by industry and academia, e.g., Cloud
Watch [16] which is used to monitor Amazon EC2, Cloud
Stack [17] as an open source framework for monitoring the
Cloud, and Ayad and Dipel [18] proposed an agent based
monitoring for virtual machines in an IaaS environment. For
this paper, we are primarily interested in the values of the
attributes from the CSP to compare with the requirements
of the customer. The details of these monitoring schemes are
beyond the scope of this paper. We refer the interested reader
to [19], a survey on monitoring schemes for the Cloud.

Stage C. Service Validation

The goal of this stage is to validate the service provisions
of the CSP in comparison to the requirements of the customer.
As mentioned in Section II, each service consists of a set of
attributes that are necessary to provide the desired functional-
ity. Therefore, services are validated using the attribute values
provided by the CSP and required by the customer.

Service validation forms the basis to detect a requirement
violation. If a CSP is fulfilling all the customer’s requirements,
consequently the CSP is in the trusted state. However, in pres-
ence of a requirement violation, we assess the Impact Factor
(IF) of the violation, which determines the severity of the
violation by measuring the distance between the provided and
the required values. In Table I, we define different levels of IF
and relate severity of the violation respectively. The levels are
normalized between 0 and 1 based on the degree of deviation
from the required value i.e., greater the deviation, more severe
is the violation. Ideally, IF should be 0, which indicates no
violation from the CSP. The second level (0.1 < IF ≤ 0.25)
indicates violations that have minimum severity as IF deviated
minimally. The third level (0.25< IF ≤ 0.5) indicates medium
severity of the violations while the last level (0.5 < IF ≤ 1)
specifies that the distance between the service provision of
the CSP and the customer’s requirement is farthest and hence,
indicates the maximum severity of the violation.

TABLE I: The relation of Impact Factor to Severity of violation(s).

Impact Factor Severity of violation(s)
IF = 0 No Violation

0.1 < IF ≤ 0.25 Minimum Severity
0.25 < IF ≤ 0.5 Medium Severity

0.5 < IF ≤ 1 Maximum Severity

The subsequent Phases I and II evaluate each discrete
service to detect requirement violations and to assess the
impact of these violations according to the levels described
in Table I.

Phase I. Service Evaluation: The services can have multiple
attributes that can be either quantitative or qualitative in
nature. The attributes such as CPU, RAM and disk space are
quantitative attributes while scheduling policy and authenti-
cation methods are examples of qualitative attributes. This
complicates the process of modeling and comparing values
to evaluate a quantitative metric. To address this complexity,
we first classify different types of attributes and provide a val-
idation method for each type. The attributes can be classified
as either numerical or unordered sets. This classification sets
the basis for validating attributes, as the validation method for
numerical values differs from the validation of the unordered
set.

Numerical: The attributes such as are CPU, network latency
and bandwidth are classified as numerical since their values
can monotonically increase or decrease. We validate numerical
attributes by comparing values provided by the CSP with
the values required by the Cloud Service Customer (CSC).
The relationship between the CSP and the CSC with respect
to attribute k and value V is represented using a pairwise
comparison such that:

CSPk/CSCk =
V1

V2
(1)

i.e., assume a CSP and a CSC, with values V1 and V2 for
network latency attribute respectively, such that: the CSC’s
required value for network latency is 100ms (i.e., V2 = 100ms)
and assume 100ms is provided by the CSP (i.e., V1 = 100ms).
The pairwise comparison relation between V1,V2 is defined as:
V1

V2
= 1. Therefore, CSP is fulfilling the requirement.

If the result of the pairwise comparison is not equal to
1, this indicates a violation. This violation could be due to
over-provisioning when the result is greater than 1, or under-
provisioning when the result is less than 1. We consider over-
provisioning as a violation, since a malicious administrator or
an inside attacker could over-provision the attribute and the
customer would have to pay for this additional provisioning.

In case of a violation, we calculate the impact factor of the
violation as:

IFk = |1−
CSPk

CSCk
| (2)

Equation 2 calculates the impact factor of the violation as
an absolute value. We use the levels as mentioned in Table I

to indicate the severity level of the violation. An impact factor
IFk of 1 indicates that the CSP has violated the attribute with
maximum severity while IFk of 0 indicates no violation.

Unordered Set: We define an unordered set for the at-
tributes that are qualitative in nature. These attributes include
access policy and authentication methods and validating these
attributes comparatively is not possible. For qualitative at-
tributes set theory is utilized to detect violations and estimate
the impact factor of violations. The advantages of set theory
are twofold, firstly, its ability to generalize logic behavior, i.e.,
the same operations work for access policy and scheduling
techniques although they belong to different services and have
a different set of values. Secondly, using sets in our case
empowers us to evaluate the impact factor of the violations
by calculating dissimilarity between sets. This dissimilarity
could be a result of adding or removing a value in the set.
Assuming that for a CSC the required set for access policy
is {read,write}. A violation is detected whenever a CSP
adds/deletes any value to/from the access policy and as a result
its impact factor should be assessed.

The violations are identified by calculating symmetric set
difference between the CSP provided set and the CSC re-
quested set. If the symmetric difference results in a null set,
this implies that the CSP provisions and the CSC requests are
the same and hence no violation. However if the result is not
a null set, then a violation has occurred. Lets suppose the
following sets list an attribute k values of a CSP and a CSC.

CSPk = {v1,v3,v5}
CSCk = {v1,v3}

To find out the violation(s), we calculate the symmetric
difference between the values provided by the CSP and those
requested by the CSC, such that:

CSPk−CSCk 6=CSCk−CSPk 6= { /0} (3)

If the result of the symmetric difference is not a null set,
then the CSP is violating the customer’s requirement(s). We
use CSPk −CSCk = {v5} 6= { /0} to detect a violation due to
the addition of a value and CSCk−CSPk 6= { /0} to detect the
removal of the attribute value.

After identifying the violations, we calculate the impact fac-
tor of these violations similar to the numerical type. For sets,
we use the Jaccard Index [20] which calculates dissimilarity
between the sets by estimating the distance between the pro-
vided and the required values. This distance measurement is
equivalent to our definition of the impact factor and calculated
as:

IFk = 1− |CSPk ∩CSCk|
|CSPk ∪CSCk|

(4)

Equation 4 evaluates the impact factor of the violation. We
use the same levels as mentioned in Table I, i.e., IF = 0
indicates no violation while IF = 1 indicates the maximum
severity of the violation.

Using the above comparison metrics for each attribute,
we obtain the impact factor(s) of the violating attribute(s).

This results in a matrix of size N if there are N attributes
in a service. In order to evaluate the service assurance, we
aggregate the impact factors of all attributes belonging to a
service.

Phase II. Service Aggregation

After validating the lowest (attribute) level of the SLA,
we move up in the hierarchy (cf., Figure 1) and assess the
aggregated assurance of the service provided by the CSP. In
Phase I, we evaluate the impact factors of each attribute and
these are further used as input in this phase for an aggregation
method. Equation 5 is used to aggregate the impact factors of
attributes IFi along with their weights to evaluate the service
impact factor.

IFservice =
n

∑
i=1

(
IFi ∗weighti

n

)
(5)

By using this equation, IFservice results in a value between 0
and 1 and uses the same levels as described in Table I. Thus,
IFservice of value 0 indicates that the service is provisioned as
required by the customer while value 1 indicates that every
requirement was violated with maximum severity level.

Stage D. Trust State

After assessing services individually, the next step is to
aggregate impact factors of the services (IFservice) to calculate
the impact factor at root level IFroot . Services are aggregated
according to Equation 5 and IFroot uses the same levels as
described in Table I. We use IFroot to assess the state of trust
and implications of the violations using a state diagram which
is shown in Figure 3. Each state represents the severity level
of the violations, i.e., state 1 represents no violation while
states 2, 3 and 4 represents minimum, medium and maximum
severity of the violations respectively.

Fig. 3: Effect of impact factor on states of trust

• State 1: We evaluate IF at the root level and if IF = 0,
this implies that the CSP has not violated any requirement
and consequently, it is in the trusted state. This is shown
as transition 1 in the state diagram. However, if violations
are detected, then the state of the CSP is changed to either

state 2, state 3 or state 4 (as indicated by the respective
transitions 2, 2’ and 2”) corresponding to the severity of
the violations.

• State 2: The transition 2 in the state diagram illustrates
that the state of the CSP is changed to state 2 as the
violations result in an IF value of between 0.1 and
0.25. We evaluate IF again in state 2 to deduce the
next state of the CSP. If the CSP has not violated any
requirement (IF = 0) then the state is changed back
to state 1. However if there are again violations with
minimum severity (0.1 < IF ≤ 0.25) then the state is
changed to state 3 to indicate the aggregated impact of
violations.

• State 3: The CSP state is changed to this state from state 1
if the detected violations in state 1, resulted in the medium
severity. Thus, the CSP is moved to state 3 to indicate this
behavior. We use a counter in states 3 and 4 to ascertain
how many times these states have been transited. The
threshold is a value specified by the customer to signify
how many times the customer can endure violations. This
counter plays an integral role in deciding the next state
of the CSP. From state 3, the CSP can recover to state
1 if no further violations are detected, and the count is
below a specified threshold.

• State 4: This state indicates the maximum impact of
violations and the state of the CSP is changed to this state
if the (aggregated) impact factor of violations results in a
value of between 0.5 and 1. From this state CSP cannot
recover to state 1.

• State 5: This is the untrusted state and the state of the CSP
is permanently changed to this state if the CSP violates
requirements more than the threshold specified by the
customer.

The state diagram is useful in determining the current state
of trust of the CSP based on the customer’s requirement
violations. In the next section we apply our methodology to
detect violations and assess trust of the CSP during launching
and migrating a VM.

V. CASE STUDY: TRUST ASSESSMENT OF CSP DURING
LAUNCHING AND MIGRATING A VIRTUAL MACHINE

This initial validation scenario demonstrates how a Cloud
customer can apply the methodology presented in this paper
to assess the state of trust of the CSP during the course of
operations. We evaluate trust of the CSP by considering two
scenarios: (1) launching a VM and (2) migrating a VM. To
start a VM, the customer requests the CSP to boot an instance
of a VM according to his/her requirements. We evaluate IFroot
to determine the state of trust during the course of launching
a VM. The migration scenario considers moving a VM from
one physical host to another in compliance to the customer’s
requirements. We evaluate IFroot again to ascertain violation(s)
during the migration phase and the impact of these violations
on the state of trust.

The services involved in launching and migrating a VM
are shown in the respective sections of the case studies while

Table II presents a sample dataset used for the scenarios,
where the values associated for 9 attribute are presented. In
order to perform a comprehensive validation, the selected
attributes include both qualitative and quantitative attributes.
Furthermore, weights assigned by the customer to indicate
his/her priorities are specified as numerical value such that
Highly-Critical (HC) indicates a relative value of 1. Critical
(C) and Not-Critical (NC) can be considered any intermediate
values between 1 and 0. In this analysis they indicate a relative
values of 0.7 and 0.3 respectively.

In the rest of the section, we outline the computation process
to assess the state of trust of the CSP with respect to the
requirements defined in Table II.

A. Case I: Launching a VM

We now detail our methodology to detect user requirement
violation in the services involved in launching a VM. For
brevity, the process of launching a VM and interactions
among the services is shown in Figure 4. This is requisite to
understand CSP operations and, hence, the services validation
process.

Fig. 4: Services and their communication in launching a VM

• Transitions 1, 2, and 3: A customer is authenticated and,
based on the role granted by access control service, gets
access to his/her list of VMs in the database.

• Transition 4: The customer requests launching a VM
through the provisioning service.

• Transition 5: The provisioning service communicates with
the storage service for allocating storage for the VM.

• Transitions 6 and 7: The storage service finds the host
server to instantiate a virtual storage, and reports back
to the provisioning service with the storage volume.
Transitions 6-7 are optional in case the customer does not
select the storage facility for the VM. At this point, the
image repository service provides the operating system

image for the VM, and the network service provides the
networking facilities (e.g., virtual NIC, IP addresses).

• Transition 8: The provisioning service requests the hyper-
visor to instantiate the VM. The hypervisor reports back
to the provisioning service after instantiating the VM, and
is added to the database by the provisioning service.

With respect to these services, we use the data shown in Table
II for assessing state of the trust of the CSP. We start our
evaluation from the attribute level. We assess IM1.1 to check
if there is any violation in authentication during the course
of launching a VM at the CSP. Equation 3 is used to detect
violation by calculating the symmetric difference between the
sets provided by the CSP and requested by the CSC, such that:

CSPIM1.1−CSCIM1.1 =CSCIM1.1−CSPIM1.1 = { /0}

The result of the symmetric difference is the empty set
which indicates that the CSP is fulfilling the customer’s
requirement and hence the impact factor is 0. As IM1 service
consists of only one attribute and, therefore, the service impact
factor is the same as the attribute, i.e., IFIM1 = IFIM1.1 = 0.
Next we evaluate authorization by validating IM2.1 and IM2.2
using symmetric difference calculation.

CSPIM2.1−CSCIM2.1 6=CSCIM2.1−CSPIM2.1 6= { /0}
CSPIM2.1−CSCIM2.1 = {delete}

Since the symmetric difference is not the empty set, this
indicates a violation and, therefore, we assess its impact factor
using the Jaccard Index (cf., Equation 4) such that:

IFIM2.1 = 1− J(CSPIM2.1,CSCIM2.1)

Where,

J(CSPIM2.1,CSCIM2.1) =
|CSPIM2.1∩CSCIM2.1 |
|CSPIM2.1∪CSCIM2.1 |

=
2
3

Thus IFIM2.1 = 1− 2
3
=

1
3

In a similar way, IM2.2 impact
factor is calculated. Using Equation 3, we premeditate the
symmetric difference for IM2.2 which detects no violation.

CSPIM2.2−CSCIM2.2 =CSCIM2.2−CSPIM2.2 = { /0}

The impact factor of IM2.1 and IM2.2 is 0.66 and 0 respec-
tively. We aggregate these impact factors to assess service
provision using Equation 5.

IFIM2 =
IFIM2.1 ∗weightIM2.1 + IFIM2.2 ∗weightIM2.1

2

IFIM2 =
0.66∗0.7+0∗0.7

2
= 0.23

After each service calculation, we move up in the hierarchy to
calculate the impact factor of the domain that contains these

TABLE II: Excerpt of SLA’s from CSPs and customer’s requirements.

Cloud secSLA Customer (CSC) CSP
Services Attributes Values req weight Case I Case II

Root

Identity
Management

IM

Authentication
IM1

Auth IM1.1 Unordered set User’s creden-
tials HC

User’s creden-
tials

User’s creden-
tials

Authorization
IM2

Policy IM2.1
Unordered set

launch, restart
C

launch, restart,
delete

launch, restart

Roles IM2.2 user user user

IaaS IS Provisioning IS1

CPU IS1.1
Numeric

6.4 GHZ
LC

2.4 GHZ 6.4 GHZ
RAM IS1.2 8 GB 8 GB 8 GB
DISK IS1.3 1 TB 1 TB 1 TB
Scheduling
technique IS1.4 Unordered set Location based HC Location based Random

Storage SO Storage SO1
Type SO1.1

Numeric
Persistent

C
Persistent Persistent

Location SO1.2 Locally
attached

Locally
attached

Locally
attached

Network
NW Network NW1

BW NW1.1
Numeric

100 Mbps
NC

10 Mbps 100 Mbps
Latency NW1.2 100 ms 10 ms 100 ms

services. We aggregate IFIM1 and IFIM2 to get the IFIM such
that:

IFIM =
IFIM1 + IFIM2

2
= 0.11

As expected IFIM is above 0, which implies that the CSP
violated requirements for the identity management domain IM.

Similarly, the remaining services are evaluated using their
attributes. Since IS1.1 metric value is represented by numeric
as shown in Table II, we use Equation 2 to calculate IS1.1
impact factor such that:

IFIS1.1 =

√(
1− CSPIS1.1

CSCIS1.1

)2

=

√(
1− 2.4

6.4

)2

= 0.625

This means that the CSP is under provisioning the customer’s
requirement for IS1.1 and thus violating the requirement. We
calculate the impact factors for IS1.2, IS1.3 and IS1.4 in a
similar way and aggregate to calculate impact factor of the
service IFIS.

IFIS = IFIS1 =
IFIS1.1 + IFIS1.2 + IFIS1.3 + IFIS1.4

4
= 0.07

Similarly, we calculate impact factors of storage SO and
network NO. After evaluating each domain of services we
aggregate impact factors to calculate IFroot as:

IFRoot =
IIM + IIS + ISO + INW

4

=
0.11+0.07+0+0.45

4
= 0.15

The IFroot indicates that CSP has violated requirements and the
overall impact of these violations is minimum. Consequently,
the state of trust is changed from trusted (IFroot = 0) to
(IFroot = 0.25). Figure 6 shows the aggregated impact factors
of attributes belonging to a single service. In the figure, the
root impact factor depicts the current "Trust State" for the CSP
during launching and migrating a VM.

B. Case II: VM Migration

In Case I, we assessed the state of trust of the CSP by
evaluating the IFroot . The IF value of 0.15 indicated that the

CSP violated requirement(s) and the aggregated impact of
these violations was minimal and hence the state is changed
to IFroot = 0.25. From this state, we again evaluate the IFroot
to assess the CSP trust level by considering the migration
process. The services involved in the VM migration are
shown in Figure 5. After the user has been authenticated,
the provisioning service starts a new instance of the VM and
provides details of the instance to the migration service. The
role of the migration service is to migrate data from the old
VM to the new VM. Therefore, the migration service accesses
old VM and transfers data over the network to new instance
of the VM as shown in transitions 4-6 of the figure.

Fig. 5: Services and their communication in migrating a VM

We assess services IM1.1 to check if requirements are
violated by the CSP during the VM migration process. We
use Equation 3 to calculate the symmetric difference between
IM1.1 values provided by the CSP and requested by the CSC
so that:

CSPIM1.1−CSCIM1.1 =CSCIM1.1−CSPIM1.1 = { /0}

The null set indicates that there are no violations. Using
Equation 5, we calculate the impact factor of the service:

IFIM1.1 = 1− J(CSPIM1.1,CSCIM1.1)

= 1− |CSPIM1.1∩CSCIM1.1 |
|CSPIM1.1∪CSCIM1.1 |

= 1−1 = 0

Similarly, both IM2.1 and IM2.2 impact factors are cal-
culated. Using Equation 3, we premeditate the symmetric
difference for both IM2.1 and IM2.2 such that:

IFIM2.1 = 1−1 = 0
IFIM2.2 = 1−1 = 0

This means that the CSP is offering IM2.2 and IM2.1 as
agreed with the customer. Thus the IM2 impact factor is
then premeditated by aggregating IFIM2.1 and IFIM2.2 using
Equation 5 such that:

IFIM2 =
IFIM2.1 + IFIM2.2

2
= 0

Subsequently, we aggregate IFIM1 and IFIM2 to get IFIM such
that:

IFIM =
IFIM1 + IFIM2

2
= 0

Similar to Case I, the values of IS, SO and NW are calculated.
Finally, the IFroot impact factor is calculated such that:

IFRoot =
IFIM + IFIS + IFSO + IFNW

4
=

0+0.25+0+0
4

= 0.06

As the current trust value is evaluated to be 0.06, this
indicates that the state of the trust should be changed to
the trusted state (IF = 0) state (cf., Figure 3). Thus our
methodology enables the customers to (a) assess the state of
trust of the CSP during the course of operations, and (b) also
provide traceable justification for trusting the CSP.

IM IS SO NW Root

0

0.2

0.4

Im
pa

ct
fa

ct
or

CaseI CaseII

Fig. 6: Service and root Impact factors of Cloud IaaS

VI. CONCLUSION

Cloud service providers expect their customers to simply
"trust" the CSP services offered to them but not every customer
is willing to grant this trust without justification. It should
be possible for a customer to establish that his/her SLA
requirements are actually fulfilled by the CSP’s provisioning
of the specified services. With this aim, we have proposed
a methodology to enable the customer to identify the CSP
violation of requirements over the life of the service. For
violation detection, we compare and validate each SLA at-
tribute with respect to the customer requirements. In case of a
requirement violation, we calculate the severity of the violation

by calculating an impact factor. The impact factor determines
the degree of deviation of the provided value from the required
value, and consequently dictates the change in the level/state
of trust in the CSP. The customer can periodically apply the
proposed methodology to assess the behavior of the CSP over
the life of the service. The application of the proposed trust
assessment methodology was established via two actual use
cases of CSPs offering IaaS.

ACKNOWLEDGMENT

Research supported by grants H2020-MSCA-ITN NECS
GA # 675320 and H2020 ESCUDO-CLOUD GA # 644579

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
Tech. Rep. 800-145, 2011.

[2] M. Lund, B. Solhaug, and K. Stolen, “Evolution in relation to risk and
trust management,” In IEEE Computer, vol. 43, no. 5, pp. 49–55, 2010.

[3] J. Luna, R. Langenberg, and N. Suri, “Benchmarking Cloud Security
Level Agreements Using Quantitative Policy Trees,” Proc. of Cloud
Computing Security Workshop, pp. 103–112, 2012.

[4] A. Taha, R. Trapero, J. Luna, and N. Suri, “AHP-Based Quantitative
Approach for Assessing and Comparing Cloud Security,” Proc. of Trust,
Security and Privacy in Computing and Communications, pp. 284–291,
2014.

[5] K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of cloud
computing services,” In Future Generation Computer Systems, vol. 29,
no. 4, pp. 1012–1023, 2013.

[6] Z. Rehman, F. Hussain, and O. Hussain, “Towards multi-criteria cloud
service selection,” Proc. of Innovative Mobile and Internet Services in
Ubiquitous Computing, pp. 44–48, 2011.

[7] J. Luna, A. Taha, R. Trapero, and N. Suri, “Quantitative reasoning
about cloud security using service level agreements,” In Trans. on Cloud
Computing, no. 99, 2015.

[8] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: comparing
public cloud providers,” Proc. of Internet Measurement, pp. 1–14, 2010.

[9] J. Siegel and J. Perdue, “Cloud services measures for global use: the
service measurement index (smi),” Proc. of Global Conference, pp. 411–
415, 2012.

[10] S. Chaves, C. Westphall, and F. Lamin, “SLA perspective in security
management for cloud computing,” Proc. of Networking and Services,
pp. 212–217, 2010.

[11] G. Frankova and A. Yautsiukhin, “Service and protection level agree-
ments for business processes,” Proc. of European Young Researchers
Workshop on Service Oriented Computing, pp. 38–43, 2007.

[12] L. Krautsevich, F. Martinelli, and A. Yautsiukhin, “A general method
for assessment of security in complex services,” Proc. of Towards a
Service-Based Internet, pp. 153–164, 2011.

[13] S. Habib, S. Ries, and M. Mühlhäuser, “Towards a trust management
system for cloud computing,” Proc. of Trust, Security and Privacy in
Computing and Communications, pp. 933–939, 2011.

[14] S. Wang, L. Zhang, S. Wang, and X. Qiu, “A cloud-based trust model
for evaluating quality of web services,” In Computer Science and
Technology, vol. 25, no. 6, pp. 1130–1142, 2010.

[15] I. Haq, R. Alnemr, A. Paschke, E. Schikuta, H. Boley, and C. Meinel,
“Distributed trust management for validating sla choreographies,” In
Grids and service-oriented architectures for service level agreements,
pp. 45–55, 2010.

[16] “Amazon CloudWatch,” http://awsdocs.s3.amazonaws.com/
AmazonCloudWatch/latest/acw-dg.pdf.

[17] CloudStack, “Open source cloud computing,” 2013.
[18] A. Ayad and U. Dippel, “Agent-based monitoring of virtual machines,”

In Information Technology, vol. 1, pp. 1–6, 2010.
[19] G. Aceto, A. Botta, W. Donato, and A. Pescapè, “Cloud monitoring: A

survey,” Computer Networks, vol. 57, no. 9, pp. 2093 – 2115, 2013.
[20] L. Hamers, Y. Hemeryck, G. Herweyers, M. Janssen, H. Keters,

R. Rousseau, and A. Vanhoutte, “Similarity measures in scientometric
research: the jaccard index versus salton’s cosine formula,” In Informa-
tion Processing & Management, vol. 25, no. 3, pp. 315–318, 1989.

