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ABSTRACT
The Border Gateway Protocol (BGP) is a policy-based protocol,
which enables Autonomous Systems (ASes) to independently define
their routing policies with little or no global coordination. AS-level
topology and AS-level paths inference have been long-standing
problems for the past two decades, yet, an important question
remains open: "which elements of Internet routing affect the AS-
path inference accuracy and how much do they contribute to the
error?". In this work, we: (1) identify the confounding factors behind
Internet routing modeling, and (2) quantify their contribution on
the inference error. Our results indicate that by solving the first-hop
inference problem, we can increase the exact-path score from 33.6%
to 84.1%, and, by taking geolocation into consideration, we can
refine the accuracy up to 94.6%.
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1 RELATEDWORK
The pioneering and most classic approach to infer AS-paths was
proposed by Gao and Rexford in 2001 [4]. In 2007, Muhlbauer et al.
introduced a new abstraction: next-hop atoms [9] which correspond
to per-neighbor path choices. In 2012, Gill et al. [6] developed
a novel routing tree algorithm that computes paths between all
source-destination pairs in an AS graph. Recently, We et al. [14]
developed a learning-based technique, taking into consideration the
node, link, and path features related to route decisions in practice.

2 EXPERIMENTAL SETUP AND RESULTS
In this project, we infer AS-level paths using the simulator proposed
by Sermpezis and Kotronis [13], which offers a Python implemen-
tation of the Gao-Rexford model [4]. Additionally, we collect the
AS-paths followed in practice through the BGPStream API [10]. BG-
PStream utilizes vantage points (VPs) from RouteViews and RIPE
RIS projects, which provide a partial view of the Internet topology
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Figure 1: Average inference accuracy (vanilla model).

graph. Nonetheless, not all ASes share their routing tables, thus,
researchers rely on inferences to study paths from non-VP ASes.
Finally, we leverage the following well-known metrics to capture
the inference accuracy of the model:
Exact AS-Path Match: The ratio of inferred AS-paths that are
exactly the same as the observed AS-paths.
Path Length Match: The ratio of inferred AS-paths that have the
same length as the observed AS-paths.
First-hop Match: The ratio of inferred AS-paths that have the
same first-hop as the observed AS-paths.
First and Last-hop Match: The ratio of inferred AS-paths that
have the same first and last hop as the observed AS-paths.
AS-to-ORG Path Match: The ratio of inferred AS-to-ORG paths1
that are the same as the observed AS-to-ORG paths.
AS-to-Rel Path Match: The ratio of inferred AS-to-Rel paths2 that
are the same as the observed AS-to-Rel paths.
AS-to-Rel First-hop Match: The ratio of inferred AS-to-Rel paths
that have the same first-hop as the observed AS-to-Rel paths.
Jaccard Similarity: The intersection of the inferred and observed
AS-paths over the union of the inferred and observed AS-paths.

We conduct three rounds of Monte-Carlo simulations using the
Gao-Rexford model and the current state-of-the-art AS-level topolo-
gies, CAIDA and ProbLink [2, 8]. In the first round, we study the
performance of the vanilla Gao-Rexford model. In the second round,
we explore the performance of the Gao-Rexford model given that
we have knowledge over the first-hop. In the last round of simula-
tions, we identify and quantify the confounding factors that affect
the inference accuracy.

1A path of organization IDs.
2A path of AS-relationships.
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Figure 2: Average accuracy when first-hop known.

In Fig. 1, we plot the Gao-Rexford model inference accuracy.
Overall, using the CAIDA topology we achieve at least 10% better
accuracy across all metrics, compared against ProbLink. Regarding
the main metric of our analysis, Exact Path Match, the model scores
33,8% and 21,4% using CAIDA and ProbLink respectively. This is
evidence that the limitations addressed in recent work [1] still
hold: the Gao-Rexford model can predict AS-paths exactly as they are
observed on the real Internet, only 1/3 of the times.

To evaluate a first-hop aware model, we only consider inferences
for which we can correctly predict the first-hop in the AS-path. In
Fig. 2, we plot the inference accuracy of the first-hop aware model
and observe that it yields 2,5 times higher accuracy than the vanilla
model (84,1% and 82,1% for CAIDA and ProbLink respectively).
This is a strong indicator that (1) the ability to determine the
first-hop can significantly affect the overall inference.

Finally, we study the reasons behind the exact path misses, by
identifying the first AS-link in the inferred path that differs from the
actual path (see Table 1). The confounding factors are as follows:
Missing AS-relationship: The topology dataset does not include
a link for the respective ASes in the observed path.
Valley-free violation: The actual path has a valley [7], hence, the
model, by default, cannot predict this route.
Local preference violation: The model selects a route through a
less preferable neighbor than the observed path.
Shortest path violation: The model selects a longer path than the
observed path.
Location-agnostic path selection: Due to the Internet flattening
[5], it is reasonable to consider the geographical distance between
ASes in the BGP route selection process [12]. Yet, neither the actual
BGP best path process [11] nor the Gao-Rexfordmodel consider geo-
location. We leverage country-level location information from the
AS-rank API [3] and study whether the inferred paths go through
longer distances than the observed paths.

From Table 1, we observe that (2) having resolved the first-
hop problem, the most important factor that affects the in-
ference process is the location-agnostic path selection. We
neither plan to fix the missing links (0.95%), nor replace the valley-
free model (4.36%), hence, the maximum achievable accuracy is
94.69%. Preliminary results show that we can improve the accuracy

CAIDA ProbLink
Exact Path Match 84.1 % 82.1 %

Missing AS relationships 0.95 % 0.53 %
Valley-free violations 4.36 % 1.32 %
Local-pref violations 7.86 % 11.42 %
Shortest path violations 2.93 % 3.62 %
Loc-agnostic selection 8.54 % 10.31 %

Table 1: Confounding factors

of existing inference techniques to 91.63%, given that we include a
location-aware methodology in the inference process.

Currently, we are working on identifying the specific what-if
questions that can be addressed with existing models, and explore
the benefits of location-aware prediction modeling.
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