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Abstract

Mapping of software onto hardware elements under plat-
form resource constraints is a crucial step in the design
of embedded systems. As embedded systems are increas-
ingly integrating both safety-critical and non-safety criti-
cal software functionalities onto a shared hardware plat-
form, a dependability driven integration is desirable. Such
an integration approach faces new challenges of mapping
software components onto shared hardware resources while
considering extra-functional (dependability, timing, power
consumption, etc.) requirements of the system. Considering
dependability and real-time as primary drivers, we present
a systematic resource allocation approach for the consoli-
dated mapping of safety critical and non-safety critical ap-
plications onto a distributed platform such that their op-
erational delineation is maintained over integration. The
objective of our allocation technique is to come up with a
feasible solution satisfying multiple concurrent constraints.
Ensuring criticality partitioning, avoiding error propaga-
tion and reducing interactions across components are ad-
dressed in our approach. In order to demonstrate the use-
fulness and effectiveness of the mapping, the developed app-
roach is applied to an actual automotive system.

1 Introduction

Distributed embedded systems are increasingly defined

by software (SW) components1, determining the functional

and extra-functional requirements of both safety critical

(SC) and non-safety critical (non-SC) operations. Exam-

ples of such systems include automotive, avionics and con-

trol systems among many others. Implementing these sys-

tems using dedicated and partitioned-by-design hardware

and separate networks for each component, though desir-

able for dependability, is prohibitively expensive from the

1A component is a self-contained subsystem that can be used as a build-

ing block in the design of a larger system [1].

resource, power and space/weight consumption. Conse-

quently, more integrated approaches are often advocated.

Integrating SW components of mixed criticality requires

careful attention, such that fault-tolerance and real-time re-

quirements are not compromised. Also, new constraints ap-

pear as a result of the integration, e.g., limitations in the

computing capabilities of a node’s processors, restricted

memory capacity and bandwidth. Separation between SC

and non-SC components is essential and we provide the

means to use partitioned hardware nodes to ensure this. Par-
titioning between components consequently prevents error

propagation from non-SC to SC components.

A framework for component integration in a distributed

embedded systems environment, considering both func-

tional and extra-functional requirements is being developed

in DECOS2 [2]. An important part of component integra-

tion is the mapping of components of mixed criticality onto

nodes of a shared hardware platform. Extending beyond

classical progressive constraint models, we propose a map-

ping process, that specifically considers both functional and

extra-functional constraints of dependability and real-time.

The SW mapping is performed to reduce error propagation

across hardware (HW) nodes, thus ensuring fault-tolerance

over the integration. Rather than focusing on the perfor-

mance of the algorithm itself, we ensure separation of repli-

cas to maintain dependability over integration, while sat-

isfying timing constraints, minimizing interactions and re-

ducing the communication load on the network.

We consider integration right from the stage where a

platform-independent SW specification is available as a ba-

sis for the mapping. As shown in [3], the mapping prob-

lem is NP hard, which in general requires development of

heuristic techniques yielding near-optimal solutions. The

mapping problem can be divided into two sub problems: (i)
assigning different SW components to suitable HW nodes

such that platform resource constraints and dependability

requirements are met (resource allocation) and (ii) ordering

SW executions in time (scheduling).

Our mapping algorithm is a multi phase approach that

2EC Integrated Project IST DECOS www.decos.at
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explores various combinations of mappings subject to spec-

ified constraints. A central part of the algorithm is the use

of heuristics for ordering jobs as well as nodes.

The remainder of the paper is organized as follows: An

overview of the related work is presented in Section 2. Sec-

tion 3 introduces the system architecture and models used

in the mapping process. The strategies used in the mapping

process are described in Section 4. Section 5 provides the

details of the process including the allocation algorithm. An

example automotive application, with both SC and non-SC

components, is used in Section 6 to illustrate the developed

approach.

2 Related Work
Many research efforts have addressed the allocation

problem in distributed and real-time systems [3, 4, 5, 6, 7].

The generalized resource allocation problem can be mod-

eled as a constraints satisfaction problem (CSP), which is

characterized by a set of variables V defined by a corre-

sponding domain D of possible values and a set of con-

straints C. A solution to the problem is an assignment

of a value in D to each variable in V such that all con-

straints C are satisfied. A number of different techniques

have been developed for solving the CSP [8], e.g., con-

straint propagation [7], inform branch-and-bound and for-

ward checking [5] and backtracking [9]. Techniques used

for solving resource allocation problems include mixed in-

teger programming [10] and branch and bound [6]. The

major requirements for an embedded real-time system are

to meet deadlines and to provide dependability (fault toler-

ance, avoiding error propagation), but commonly used al-

location approaches do not often address these (for exam-

ple [5, 10]) or address either one or the other. Commonly,

when scheduling for real-time systems is performed, a pre-

determined allocation or a simple allocation scheme is used

(for example [11]). If the allocation and scheduling are con-

sidered completely separately, important information (e.g.,

considering constraints) used from one of these activities

is missed while performing the other. Existing approaches

typically do not address all the constraints or use a limited

fault model where dependability is essential. [12] specifi-

cally addresses the dependability driven mapping (focuses

on minimizing interaction) and presents some heuristics for

doing the mapping. However, the focus is on design stage

SW objects to aid integration. Unlike other approaches for

task/job allocation, the focus of our work is on finding an

initial schedulable allocation, a so called off-line allocation

of the mixed critical applications (SC and non-SC) onto a

distributed platform.

3 System Architecture and Models
Our work considers a time-triggered based distributed ar-

chitecture [13] that meets the safety requirements of ultra-

dependable applications from different domains (e.g., auto-

motive, avionics and control applications). The importance

and benefits of SW integration is evident from design con-

cepts in the avionics industry such as the Integrated Modu-

lar Avionics [11, 14].

When system functionality from several application do-

mains are considered, it increases design complexity and

entails component-oriented system design. The complexity

of large systems can only be managed if the overall sys-

tem can be decomposed into (nearly independent) compo-

nents with linking interfaces that are precisely specified in

both the value and time domain [1]. A nearly independent

component of a large distributed real-time system typically

performs a specified service (e.g., x-by wire systems).

In the following sections, we discuss the HW and com-

munication model and SW model followed by the fault and

constraints model. Partitioning and separation of SC and

non-SC components are described in Section 3.2. The in-

teractions between components and between jobs are ad-

dressed in Section 3.5.

3.1 The HW and Communication Model

We assume a network topology allowing every HW node

to communicate with each other node. A HW node is a self-

contained computational element (single- or multiproces-

sor) connected with a communication controller. A node

can also contain additional resources, e.g., sensors, actua-

tors, etc. For achieving strong partitioning between SC and

non-SC components, a node can have two physical parti-

tions, each containing a processor, one hosting SC compo-

nents and the other hosting non-SC components (Option 1).

Another possibility is to have a shared processor running

Figure 1. High-level model of the target platform

mixed criticality components (Option 2), as long as strong

partitioning is ensured (typically implemented by the OS).

Both implementation options for nodes are illustrated in

Figure 1 and such platforms are being investigated in the

DECOS project. Our approach requires that nodes utilize a
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similar configuration, either Option 1 or Option 2. In Fig-

ure 1, the OS service provider (kernel) layer is used to vir-

tualize the CPU, dividing it into protected partitions (shown

as A, B, etc.), inside which a job executes. The service

interface encapsulates the OS services to the specific job

running in that partition. The OS kernel layer supports the

intra-node’s processor communication.

The HW nodes share the same communication channel

for inter-node communication to send and receive messages

(e.g., by message passing). As our focus is on designing

dependable real-time systems, the communication between

nodes is based on a fault-tolerant time-triggered network

which uses the time division multiple access (TDMA) pro-

tocol as its media access scheme. Each node can send mes-

sages only during a predetermined time interval, called slot,

over a TDMA round. An example of this type of communi-

cation is TTP [15], which integrates a set of services (e.g.,

predictable message transmission, clock synchronization,

node membership and redundancy management) necessary

for the implementation of dependable real-time systems.

3.2 System Partitioning

Strong partitioning conceptually means that the bound-

aries among applications (jobs) are well defined and pro-

tected so that operations of a job will neither be disrupted

nor corrupted by erroneous behavior of another job [16].

Partitioning is needed to ensure that SC components are

not affected by the erroneous behavior of non-SC compo-

nents. Each job is allocated to a single partition as shown

in Figure 1, providing a certain amount of computation and

memory resources and means to access devices. We allow

two ways for ensuring partitioning between SC and non-

SC components. Either, (a) each node has different proces-

sors/cores for the execution of jobs from SC and non-SC

components, or (b) jobs from SC and non-SC components

are combined on the same processor/core in the nodes. Ap-

proach (a) has the advantage of providing strong partition-

ing between SC and non-SC components and is less reliant

on the use of OS and other partitioning mechanisms. It ob-

viously restricts interactions across SC and non-SC com-

ponents. This approach can also be beneficial for certifica-

tion reasons, since partitioning is more obvious. The disad-

vantage of this approach is that it becomes costly when the

number of non-SC applications are high (e.g, continuously

increasing comfort/entertainment functionalities in a car),

requiring increasing numbers of non-SC components to be

considered for the mapping. In this scenario, approach (b)
works better. Independent of the selected approach, there

is a need for partitioning mechanisms [16] in each proces-

sor/core which restrict spatial interactions (e.g., sharing er-

ror prone resources) and temporal interactions (e.g., one job

stealing processor time from another job, or causing a delay

of execution of the later) across jobs.

3.3 The SW Model

We use a SW model consisting of components of var-

ied criticality. Components are subsequently decomposed

into smaller units, called jobs (Figure 2). A job represents

the smallest executable SW fragment with basic commu-

nication capabilities for exchanging information with other

jobs. No knowledge of the internal structure of a job is as-

sumed, allowing for the integration of jobs for which no

source code is available.

Figure 2. A distributed component

As seen in Figure 2, jobs communicate via input and out-

put ports through a virtual network. A virtual network is an

overlay network on top of the time-triggered network which

possesses a dedicated slot in the underlying TDMA scheme.

This way, a dedicated and protected virtual communication

channel with known temporal properties is provided to the

jobs of a component [17]. We consider a job to have the fol-

lowing properties, which are required as input to the map-

ping process:. Job name (each job has a unique name).. Input and output ports (a job employs input ports for

using the services of other jobs, while output ports en-

able a job to provide services).. Timing requirements (earliest start time-EST , compu-

tation time-CT , deadline-D).. Inter-node bandwidth requirements.. Dependability requirements, i.e., degree of replication

needed to provide the required level of fault tolerance.

3.4 The Fault Model

We consider both SW and HW faults. For SW faults,

each job is considered as a unit for SW error containment.

A SW Error Containment Module (ECM) [12], should ide-

ally by design, also ensure that errors do not propagate but

are contained and tolerated. In case of SW faults, jobs are

assumed to fail independently. However, replicas of the

same job are not assumed to fail independently since they

are based on the same program and use the same input data.

Thus, replicated jobs disseminated onto different HW nodes

are considered as a single SW ECM. Fault occurrence is

considered within an ECM and over communication across

them. The consequence of a fault is an error which can

propagate from the source to a target, by an erroneous mes-

sage of a faulty job. SW faults occurring in one job prop-
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agate to another job if and only if there is communication

between them. The failure of a job is defined as the violation

of the specification in either the time or the value domain.

For HW faults, a node is referred to as a HW ECM.

A HW node contains resources shared across jobs, e.g.,

processor, memory and power supply. A single fault im-

pacting any of these shared resources is likely to affect sev-

eral or all of the jobs running on the node. So the shared re-

sources introduce new paths for error propagation. Hence,

replicated jobs should be allocated onto different HW nodes

in order to ensure the fault-tolerance of application services

in case of HW node failures (e.g., transient fault, crash fault

[18]). We assume that only a single HW node becomes

faulty within a bounded interval of time.

3.5 Interactions Across Jobs

We distinguish two classes of interactions, depending on

the level of detail (component and job) at which the system

is observed. The interactions at different levels can lead to

harmful error propagation from one module (component or

job) to another. The sharing of resources by different jobs

may lead to error propagation. Thus, to ensure fault contain-

ment, we strive to reduce the interactions while performing

the mapping (for details see section 4.2). The issue of er-

ror containment plays a crucial role since consequences of

a particular error must not have an adverse effect on a SC

function. If this cannot be ensured, the error needs to be

classified as catastrophic [19].

3.6 Functional and Extra-functional Con-
straints Model

Constraints define the conditions that limit the possi-

ble mappings from the dependability, timing, precedence

relation or resource perspectives. We define hard con-

straints that need to be satisfied else the solution is not valid.

Soft constraints are those whose violation makes the solu-

tion inefficient but not completely invalid. Unlike single-

constraint driven integration, as mentioned in the related

work section, our approach is characterized by a concurrent

set of constraints, namely:. Binding constraints: Some jobs can only be mapped

on a subset of available nodes due to the need of certain

resources (e.g., sensors or actuators).. Dependability constraints
– SC and non-SC partitioning: In order to main-

tain strong partitioning between components of

different criticality.

– Separation of replicas: Replicated jobs must be

in partitions of different HW nodes.. Computing constraints
– Computational capability: The sum of computa-

tion times of all jobs running on the same proces-

sor must be less than the computation capability

provided by that processor.

– Memory: The memory usage of jobs cannot ex-

ceed the available memory capacity.. Communication constraints: Sufficient bandwidth

for communicating jobs on different nodes must be

provided by the network.. Timing constraints
– Precedence relations: When a job depends on the

result of another job.

– Deadlines: Jobs should finish execution before

their deadlines.

4 Mapping Strategies

On the basis of the models and constraints presented in

Section 3, we now outline the issues and policies that will

drive our mapping process. The strategies presented in this

section are employed in the allocation algorithm given in

section 5.2. We start by discussing the strategies for ensur-

ing fault tolerance, followed by discussions on the desire

to reduce interactions and inter job communication. This

assists in providing a more dependable system. Discus-

sions on schedulability to ensure the real-time properties

and node restrictions follow, and these are vital to ensure

a valid mapping.

4.1 Fault Tolerance (Ft)

The fault tolerance strategy ensures the dependability

through replication of jobs from SC components. Fault-

tolerance can be enhanced by allocating replicas of jobs

onto different nodes and either having recovery replicas to

take over when a failure is detected, or use voting to mask

the failure of a job. As all jobs from a single component

may not be equally critical, we do not replicate whole com-

ponents. Replication of critical jobs makes the system more

dependable. However, brute replication may in turn come at

the expense of increased cost, power (more resources may

be needed to allocate the additional jobs), and schedulabil-

ity. The degree of replication of jobs is specified based on

the level of desired criticality.

4.2 Communication and Interactions (Ci)

The idea is to minimize the interactions between jobs and

therefore the communication load on the physical network

by allocating jobs with the highest mutual communication

to the same node. This also aids reduction of propagation

of errors across jobs. In doing this, it is important not to vi-

olate fault tolerance, timing and resource constraints. Com-

munication clustering heuristics, which attempts to allocate

highly communicating jobs to the same node, thus reducing

the overall communication load on physical network, have

been addressed in [4]. Between two communicating jobs,

there is an interaction that may lead to propagation of errors

from one job to the other. When communication between
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two jobs is high, the interaction between them is considered

high as well. If a job is affected by an error of the node it

is running on, it might propagate errors by interacting with

jobs on other nodes. These interactions risk the failure of

multiple nodes and are undesirable. Three benefits of as-

signing communicating jobs to the same node are: (i) the er-

ror propagation probability between HW nodes is reduced,

(ii) the communication load on the network is reduced (may

allow for the use of a slower but cheaper network [7]) and

(iii) the total execution time (computation time + time to

send/receive messages) of a job is reduced since network

delays are avoided. Also, when communicating jobs are

placed on different nodes, bandwidth constraints will need

to be checked.

4.3 Schedulability (St)

The timing constraints defined in section 3.6 ensure the

real-time properties of the system. During assignment of

jobs the timing constraints are checked to ensure that the

mapping is schedulable. We assume that jobs may start ex-

ecuting from their earliest start time and must finish before

their deadline. If there are any precedence relations between

jobs these must be preserved. When assigning jobs to a

processor which already hosts one or more jobs, timing con-

straints are checked to ensure schedulability. The condition

for schedulability presented below is necessary, and if pre-

emptions are allowed, the condition is also sufficient. Since

the proposed mapping takes place during the early stages of

design, we do not enforce any particular scheduling strat-

egy. Furthermore, there is no restriction on choosing either

periodic or aperiodic jobs. As the underlying TDMA based

time triggered communication base naturally supports pe-

riodic jobs, these are utilized in the example. In general,

most control applications such as the example automotive

area, often use periodic job sets.

For checking timing constraints, we let J be the set con-

taining all jobs already assigned to that node, as well as the

job we are about to assign. If the difference between maxi-

mum end time (highest deadline) and minimum earliest start

time for any possible combination of jobs in J is less than

the sum of their computation time, then we cannot assign

the job to this processor. If the resulting mapping is to be

schedulable, the condition shown below must hold for all

subsets of jobs to be allocated on the same processor.

max∀j∈J (Dj) − min∀j∈J (ESTj) ≥
j∈J

CTj ,

where J is the set of jobs that are being checked.

Considering an example, two jobs j3 ≡
{EST, CT,D} ≡ {2, 4, 10} and j4 ≡ {7, 6, 14} are

already assigned to a given node. If we try to map another

job j5 ≡ {5, 5, 10} to this node, timing constraints are

violated due to this job. Scheduling of these jobs will not be

possible (see Figure 3) since ((14− 2) < (4+ 6 + 5)), thus

j5 must be assigned to a different node. Of course, the total

computing time required by the jobs running on a single

processor must not exceed the computational capability

provided by that processor.

Figure 3. Schedulability analysis

For communicating jobs located on different processors

the message transmission time through the network has to

be considered to make the jobs schedulable. We assume

a maximum network delay TN , for transmitting a message

across the bus. This time must be bounded by using an ap-

propriate protocol, e.g., a statically scheduled TDMA pro-

tocol. Of course the network delay depends on whether a

node gets access to a TDMA slot for sending messages in

this TDMA round or will have to wait for the next round.

The deadline of a job sending a message to another job lo-

cated on a different node must be reduced by the time TN

to accommodate for possible network delays.

4.4 Memory Resources (Mr)

Each job has its own memory requirements. The total

amount of memory required by all jobs which are allocated

to the same processor, has to be supported by the memory

capacity available for jobs on that processor. The utilization

of memory available for jobs on a processor should be less

than or equal to 100%.

5 The SW-HW Mapping Process

On the background of the constraints (Section 3) and

mapping strategies (Section 4), we now present the over-

all mapping process. The goal of the mapping process is

to assign jobs onto available HW resources. In this section

we present an approach for the mapping problem based on

heuristics. The idea behind the process is to order the jobs

and the nodes to facilitate the recursive assignment. Jobs are

ordered so that the most conflicting and most constrained

jobs are handled first. Similarly, the nodes which allow the

most assignments are ordered first. To facilitate strong par-

titioning between SC and non-SC components, we allow

jobs of SC components and jobs of non-SC components to

be mapped onto separate processors on the same node.
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5.1 Prerequisites of the Mapping Process

The mapping process assumes that a specification of the

platform independent SW components and a HW model is

available. Properties that need to be satisfied in the map-

ping are modeled as constraints. All constraints imposed on

the jobs of a component are needed before the mapping can

take place. Measurements on existing code or estimations

can be used to obtain timing information. For SC jobs, the

designer has to specify the required degree of replication, to

ensure fault-tolerance. Other constraints, such as the com-

putational capability and memory capacity of the comput-

ing processors as well as available network bandwidth have

to be extracted from the HW model.

5.2 Allocation Algorithm

The allocation is accomplished by using an iterative

process. The construction of the algorithm is inspired by the

established constructive heuristics in space allocation [20],

in course timetabling [21] and by the variable and value or-

dering heuristics for the job shop scheduling constraint sat-

isfaction problem [22]. The algorithm works in three phases

and handles SC components and non-SC components sep-

arately to reduce interactions. As a result of component

based design, SC and non-SC components communicate

minimally, thus they can be treated separately. However,

for systems that are not designed using a component based

design approach (e.g., when components are reused from a

legacy design), this assumption may not be valid. In Phase 1

of the algorithm, we assign replicated jobs of SC compo-

nents. Next, Phase 2 assigns the non-replicated jobs of SC

components. Finally, jobs from non-SC components are as-

signed in Phase 3.

The described allocation algorithm is executed once in

each phase of the mapping process. We start by consider-

ing the most conflicting jobs that cannot be mapped on the

same node (i.e, replicas) in the first phase. Throughout the

assignment process the most constrained jobs (with respect

to binding constraints) are assigned first. Using this order-

ing of jobs we reduce the necessary backtracking steps. In

the second phase, we continue with non-replicated jobs of

SC components, they will be integrated with the replicated

jobs of SC components, which reduces job interactions. Fi-

nally, jobs from non-SC components are allocated in the

third phase. A high level description of the work in each

allocation phase is outlined in Algorithm 1.

5.3 Heuristics

The above developed algorithm needs two important

heuristics to perform well, namely how to decide which

job to assign next (see section 5.3.2, ordering of jobs), and

which node to assign to this job (see section 5.3.3). This is

similar to so called variable (job) and value (node) ordering

Algorithm 1 Allocation Algorithm - executed once for each

phase

I: Let J be the set of all jobs to be
assigned in this phase.

II: Replicate jobs according to their
degree of criticality, so that J now
contains a set of replicas. Replicas
are represented as jia...z (e.g., if job
j1 is replicated two times then it is
represented as j1a, j1b).
/*Replication only occurs in Phase 1.*/

III: Order the jobs according to a job
ordering heuristics, and let J represent
the list of ordered jobs.
/*See section 5.3 for a discussion of the heuristics used. */

IV: Order the nodes according to a node
ordering heuristics, and let N represent
the list of ordered nodes.
/*See section 5.3 for a discussion of the heuristics used. */

V: Select the first job ji ∈ J.

VI: Select the first node nk ∈ N that has
not been evaluated already as a possible
assignment for ji.

VII: Evaluate if the selected job ji

can be assigned to node nk ∈ N. If the
assignment is possible, then assign ji to
node nk, else go back to step VI.
/*See Section 5.3.3 for a detailed discussion*/

VIII: If the assignment was successful
proceed to step IX, else a dead-end has
been reached(i.e., a valid assignment
cannot be found for ji). When a dead-end
is reached then backtrack, i.e., undo
one or more previous assignments and
try alternative ones (going back to step
V). If no feasible solution is found by
backtracking, then stop.
/*The backtracking goes back to the next most recently instan-

tiated job, i.e, chronological backtracking.*/

IX: Remove the allocated job ji from the

list J and then repeat (from V) the same

procedure until the list J is empty.
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heuristics which are concerned with the order in which vari-

ables are instantiated and values assigned to each variable.

A good variable ordering is one that starts with the variables

that are the most difficult to instantiate (i.e., a so-called most

constraining variable ordering heuristic) and a good value

ordering heuristic is one that leaves open as many options as

possible to the remaining uninstantiated variables (i.e., least

constraining value ordering heuristic). These heuristics can

have a great impact on search efficiency [22]. No backtrack-

ing would be necessary if an optimal variable/value order-

ing is achieved, thus in such a case a linear time solution for

the mapping problem is possible. Also, in [8], it is shown

that a proper and good selection of variable ordering can re-

duce the number of steps to find a solution. The following

sections describe the data structures used by the heuristics

as well as the heuristics used in our mapping process.

5.3.1 Supporting Data Structures
We introduce two matrices for the purpose of ordering jobs

and nodes. The assignment matrix A is used to check the

usable nodes for each job and accordingly jobs and nodes

are ordered. The communication matrix C represents the

communication between jobs and can be used to determine

the most communicating jobs.

Assignment Matrix A: A rectangular matrix Am×n is

used to describe possible assignments of jobs onto nodes, in

such a way that rows represent nodes and columns represent

jobs, where m is the total number of nodes and n is the

total number of jobs. Note that all replicas of the same job

are represented using only one column. Each element of

the matrix is filled with either 0 or 1, 1 if a job ji can be

assigned to a node nk and 0 if it can not. Restrictions on

which nodes a job can be assigned to is the result of binding

constraints.

Communication Matrix C: A communication matrix

of size n×n is used in order to determine the most commu-

nicating jobs. Each element of the matrix corresponds to the

communication of a pair of jobs, and n being the number of

jobs (counting replicas of the same job only once). If there

is communication between the two jobs i and j, we use the

value Ci,j to represent the total amount of data (bytes) being

transferred. If there is no communication, 0 is used. This

means that the communication matrix by construction will

be symmetric. Note that Ci,j denotes the maximum amount

of communication possible between jobs i and j (i.e., the

available size of sent and received messages as defined by

the user).

5.3.2 Job Ordering Heuristics
These heuristics are used to order the jobs, i.e., decide

which jobs to assign first. The assignment matrix A and the

communication matrix C is used in the ordering as follows:

1a. Create a sub-matrix ˜A of the assignment matrix A,

containing only those jobs (columns) to be assigned

in this phase of the allocation.

b. Sum each column (representing a job) in the matrix ˜A.

Order the jobs in ascending order, i.e., the jobs with

the least possible assignments will come first. Ties are

broken according to the second heuristic given below.

2a. For allocation Phases 1 and 3, create a sub-matrix ˜C
of the communication matrix C, containing only those

rows and columns belonging to jobs that are to be as-

signed in this specific phase. For Phase 2, we create a

sub-matrix ˜C of the communication matrix C, contain-

ing both the rows and columns belonging to jobs that

are to be assigned in this phase, as well as those rows

and columns belonging to jobs assigned in Phase 1.

The reason for including already assigned jobs in the

matrix ˜C in Phase 2, is that jobs to be assigned in

this phase belong to SC components and thus are more

likely have communication with the jobs previously as-

signed in Phase 1.

b. Search the matrix ˜C and find the pair of jobs with the

highest mutual communication between them. Arbi-

trarily, select one of the jobs in the pair and order that

job first, followed by the second job in the pair. If any

(or both) of the jobs in the pair have already been or-

dered, just ignore it. Continue with selecting the next

most communicating pair and order those jobs as de-

scribed, until there are no jobs left. Ties are broken

arbitrarily. This heuristic can be applied stand-alone

when jobs are not restricted by binding constraints.

Note that for implementing these heuristics, it is not

necessary to create the full assignment matrix A nor the

full communication matrix C, the sub-matrices will suffice.

Further the sub-matrix of the communication matrix, which

is used in Phase 1 is itself a part of the sub-matrix used in

Phase 2. Hence, the sub-matrix of Phase 2 could be created

and used in Phase 1, reducing the number of matrices that

need to be created. Also, the symmetry of the communica-

tion matrix (and its sub-matrices) can possibly be exploited

in the implementation.

5.3.3 Node Ordering Heuristics and Assignment Eval-
uation

Just as in the job ordering heuristics, we use the same sub-

matrix ˜A of the assignment matrix A for ordering nodes.

Nodes are ordered by taking the sum of each row (repre-

senting nodes) in the sub-matrix ˜A, and ordering the nodes

in descending order. By using this ordering the nodes which

allow the most assignments are ordered first. Ties are bro-

ken arbitrarily.

Before a job can be assigned to a node, an evaluation

has to be performed. If the node is empty, i.e., there are

no previously assigned jobs to that node, then only bind-

ing constraints and computing node constraints need to be

checked. If all nodes provide the resources to handle any
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job then checking computing node constraints can be omit-

ted. If there are already assigned jobs on a node then de-

pendability constraints (Ft) such as separation of replicas as

well as scheduling requirements (St) have to be considered.

If a feasible assignment is found then it is used, otherwise

exploration continues with the next node. This evaluation

ensures that constraints are met.

In the case when non-SC components share the same

processor as SC components, some optional strategies are

possible. After the jobs belonging to SC components have

been assigned, nodes can be re-ordered in a way that eases

the assigning of non-SC jobs. As an example, by ordering

the jobs according to the amount of remaining computation

capacity of each node, we can achieve more load balanc-

ing between nodes. Another possibility is to re-order the

nodes according to least memory utilization. Both of these

re-orderings might also be beneficial from a dependability

viewpoint. Since non-SC jobs will be assigned primarily to

nodes with few/no jobs from SC components, the separa-

tion of SC and non-SC jobs is likely to increase. This will

reduce the likelihood of errors occurring in non-SC compo-

nents propagating to SC components.

6 Mapping Illustration

To illustrate the mapping process of Section 5, we

present an example automotive application, consisting of

one SC component and one non-SC component. To the best

of our knowledge, no mapping processes consider architec-

tures making use of separate processors for SC and non-SC

components. However, this type of architecture might be

required for implementing highly dependable systems. To

show the uniqueness of our approach, in this illustration, we

consider such an architecture. We start by describing the

HW platform, onto which the jobs are mapped. Next, we

describe the components forming our example and the jobs

they consist of. We continue by showing how the jobs of the

components are mapped onto nodes in the platform during

the different phases of the mapping algorithm. Finally, we

summarize the results of the mapping.

6.1 HW Platform

The available hardware platform consists of four nodes

each containing two processor cores, one for SC compo-

nents and one for non-SC components. The nodes are con-

nected to a physical network. All nodes have identical

processors and the same amount of memory and bandwidth.

The memory capacity of each processor of a node is 15kb
and nodes are connected to a communication channel with

a bandwidth of 10kb/s. Node n3 has a temperature sensor

attached to it.

6.2 SW Components

A brake-by-wire [23] system is used to represent a typi-

cal SC component. The non-SC component is a door con-

trol system extracted from an actual FIAT vehicle specifica-

tion. Values for the different properties of the SW compo-

nents have been chosen to illustrate the mapping algorithm.

6.2.1 Safety Critical Component
The brake-by-wire system in a car is a SC component that

must provide service, without endangering human life, in

case a fault occurs. The considered brake-by-wire manager

system consists of six jobs, namely the brake pedal sensor

(BPS) which produces the pedal signal. The brake force

control (BFC) uses the pedal signal to calculate the brake

forces for the four actuators (BAFR-brake actuator front

right, BAFL-brake actuator front left, BARR-brake actua-

tor rear right, BARL-brake actuator rear left). BPS and BFC

are safety critical jobs and are replicated three times to run

in a TMR setting. A structural model of the brake-by-wire

component is shown in Figure 4(a). For simplicity, only one

brake actuator (BA) is shown in the figure. The values of

(a) (b)

Figure 4. Structural description of the brake-by-wire

component (a) and doors component (b).

job properties are shown in Table 1. In the communication

column the entry 50 → j2 indicates that the corresponding

row’s job j1 sends 50 bytes of data to job j2.

6.2.2 Non-Safety Critical Component
The doors control component (assuming a two door car)

controls the closing of the doors and windows as well as the

heating of the mirrors. We decompose this component into

the following 8 jobs. A switch panel (SP) detects the press-

ing or release of the switches and sends the corresponding

commands to the window lifter and mirror. The mirror han-

dler consists of two jobs - one for the left mirror and one for

the right mirror (LM and RM) which are designed for mov-

ing, heating and comfort closing of mirrors. The window
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Job list Description / name EST CT D Memory Communication

(unit time) (unit time) (unit time) (kb) (bytes)

j1a BPS 3 5 14 5 50 → j2
j1b BPS 3 5 14 5 50 → j2
j1c BPS 3 5 14 5 50 → j2
j2a BFC 2 4 12 3 60 → j3, 60 → j4, 80 → j5, 80 → j6
j2b BFC 2 4 12 3 60 → j3, 60 → j4, 80 → j5, 80 → j6
j2c BFC 2 4 12 3 60 → j3, 60 → j4, 80 → j5, 80 → j6
j3 BAFR 2 7 17 4

j4 BAFL 4 6 14 4

j5 BARR 7 6 20 6

j6 BARL 5 7 18 6

Table 1. Chosen values of job properties (brake-by-wire manager)

Job list Description / name Binding EST CT D Memory Communication

functionality (unit time) (unit time) (unit time) (kb) (bytes)

j7 NBC 3 7 15 7 40 → j8, 30 → j13, j14,
30 → j9, j10, j11, j12

j8 SP 3 6 16 8 40 → j9, j10, j11, j12
j9 LM Temp Sensor 4 4 13 3

j10 RM Temp Sensor 4 4 12 3

j11 LWL 3 8 17 6

j12 RWL 3 8 17 6

j13 RL 5 5 20 4 30 → j7
j14 LL 5 5 20 4 30 → j7

Table 2. Chosen values of job properties (doors component)

lifter consists of two jobs for lowering and raising the win-

dows, left front window lifter (LWL) and right front window

lifter (RWL). The lock-unlock function is responsible for

locking, unlocking and dead-lock functionality of the door.

It comprises two jobs: left lock-unlock (LL) and right lock-

unlock (RL). The body computer node (NBC) coordinates

the operation of the other jobs (mirror, window lifter and

lock-unlock) and sends the status information to the switch

panel. A structural model of the doors component is shown

in Figure 4(b). The values of job properties are outlined in

Table 2.

6.3 Mapping Phases

We proceed by describing the allocation of jobs that

takes place during the three phases of our allocation algo-

rithm depicted in Section 5.2.

6.3.1 Phase 1: Assignment of Replicated Jobs of SC
Components

In Phase 1 we consider the high-criticality jobs of SC com-

ponents. In this example the high-criticality jobs are j1 and

j2, which both have a degree of criticality equal to three.

We replicate the jobs to get the set of jobs to be assigned

in this phase. This gives us the following jobs to con-

sider: j1a, j1b, j1c, j2a, j2b, j2c. We then proceed by cre-

ating the allocation matrix A and the communication ma-

trix C, which will assist in the ordering of jobs and nodes.

As none of the jobs require any special features, they can

both be assigned to any node. Hence, the sub-matrix ˜A rel-

evant for Phase 1 will contain only ones. Using the first

job ordering heuristic results in a tie. Thus, the jobs are

ordered using the second heuristic. Since, we are only

assigning two jobs (not considering replicas). Using the

communication heuristics also results in a tie. Thus the

jobs are ordered arbitrarily, lets assume they are ordered as

j1a, j1b, j1c, j2a, j2b, j2c.

Now, we try to order the nodes using the sub-matrix ˜A.

The result is a tie, since all jobs can be assigned to all nodes.

This means that the nodes can be ordered arbitrarily, lets say

that they are ordered as n1, n2, n3, n4. We then select job

j1a and successfully try to assign it to node n1. Then we

select job j1b and try to assign this to node n1 as well. How-

ever, the node assignment evaluation (step VII) shows that

this is impossible since it violates the requirement that repli-

cas should be separated (Ft). Consequently, job j1b will be

assigned to the next node n2 and job j1c will be assigned to

node n3. Similarly, the three replicated jobs of j2 will be as-

signed to the first three nodes. The node assignment evalua-

tions show that these assignments can be performed without

any violation of constraints. This concludes Phase 1.
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6.3.2 Phase 2: Assignment of non Replicated Jobs of
SC Components

In Phase 2, we try to assign the non-replicated jobs of SC

components. In the example, this means jobs j3, j4, j5, j6.

Again, the assignment matrix A cannot be used for deciding

the job ordering. Thus we use a sub-matrix ˜C of the com-

munication matrix C, to decide the job ordering. This re-

duces interactions and communication load on the network.

The matrix used is shown in Table 3. As discussed in the

job ordering heuristics section, this sub-matrix also contains

the already assigned jobs j1 and j2. Applying the commu-

nication heuristics we come up with the following job or-

dering: j5, j6, j3, j4 (with ties broken according to lowest

index first).

Trying to order the nodes results in a tie and lets (again)

assume the ordering n1, n2, n3, n4. Job j5 can be assigned

to node n1 without violating any constraints. Job j6 can-

not be assigned to n1 due to a timing constraint violation.

The highest/maximum deadline among those jobs assigned

(j1a, j2a, j5) and the job about to be assigned (j6) to n1

is 20 and the lowest earliest start time is 2. Thus, the

difference is 18, while the sum of computation times is

(5 + 4 + 6 + 7) = 22, which is greater than 18. Conse-

quently, job j6 is assigned to the next explored node, i.e.,

to n2. Since there is not enough memory capacity, job j3
cannot be assigned to either of nodes n1 or n2. Also, as-

signing j3 to any of the nodes containing replicas of j1 and

j2 would violate timing constraints. Therefore, job j3 will

be assigned to node n4. The same reasoning holds for j4,

which is also assigned to the node n4. The allocation result-

ing from the execution of Phase 1 and Phase 2 for the SC

component is shown in Table 4.

Job list j1 j2 j3 j4 j5 j6
j1 0 50 0 0 0 0

j2 50 0 60 60 80 80

j3 0 60 0 0 0 0

j4 0 60 0 0 0 0

j5 0 80 0 0 0 0

j6 0 80 0 0 0 0

Table 3. The sub-matrix ˜C used in Phase 2

6.3.3 Phase 3: Assignment of Jobs of non-SC Compo-
nents

In this phase we consider the jobs of the non-SC doors com-

ponent. Jobs are ordered according to the sub-matrix ˜A of

the assignment matrix A. As jobs j9 and j10 need tem-

perature sensors, the only node usable for them is node

n3. Since these jobs have the least number of usable

nodes, they are ordered first. All other jobs have the same

number of usable nodes. The communication heuristics is

used to order all tied jobs. Jobs j9 and j10 are still tied

for first place and the job ordering becomes as follows:

j9, j10, j7, j13, j14, j8, j11, j12 (with remaining ties broken

by lowest index first).

Nodes are then ordered using the sub-matrix ˜A. Node

n3 is ordered first, since it is the least constrained node,

allowing all jobs to be mapped onto it. The rest of the nodes

are tied and we consider the following order in the example:

n3, n1, n2, n4 (with ties broken according to lower index

first).

Jobs j9 and j10 are mapped onto node n3. This is the

only feasible mapping, since this node has the required tem-

perature sensor. During the assignment evaluation, both

schedulability (St) and resource constraints are checked.

Job j7 is selected to be assigned next. It cannot be as-

signed to node n3 since this would violate schedulability

(St). Consequently it is mapped onto the next node n1. Jobs

j13 and j14 will also be mapped onto node n1 for the same

reason. Due to violation of constraints (timing and mem-

ory), jobs j8 and j11 are assigned to node n2. Finally, job

j12 is assigned to node n4 since no other assignment is pos-

sible. The resulting allocation is shown in Table 4.

6.4 Comments

The resulting allocation is shown in Table 4. As can be

seen, the first node runs three jobs from the SC component

and three jobs from the non-SC component. The second

node runs three jobs from the SC and two jobs from the

non-SC. The third node runs two from the SC and two from

the non-SC and the fourth node runs two jobs from SC and

one job from the non-SC component.

n1 n2 n3 n4

SC core j1a, j2a, j5 j1b, j2b, j6 j1c, j2c j3, j4
non-SC core j7, j13, j14 j8, j11 j9, j10 j12

Table 4. Resulting allocation of jobs from the brake-

by-wire and doors components

7 Conclusion and Future Work

We have presented a dependability driven mapping ap-

proach for integration of different criticality components

onto a shared distributed platform. The mapping strategies

and algorithm presented in this paper has features such as

effectiveness (quality of the solution), efficiency (reducing
the search space and finding a feasible solution) and robust-

ness (consistent to perform the same mapping over many
runs). The algorithm uses comprehensive strategies, with

the formulation of the constraints, when integrating SC and

non-SC components onto the same node unlike existing ap-

proaches. The job and node ordering heuristics allowed us

to apply look-ahead analysis that is to decide which job to
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allocate next (job ordering) and which nodes to assign to

each job (node ordering). Allocating jobs according to our

communication heuristics reduces interactions and the com-

munication load on the network. Our developed approach

considered dependability issues in three aspects: providing

fault tolerance, minimizing interactions and allowing parti-

tions for the desired system design. The schedulability test

during job assignment ensures that the output of the alloca-

tion can be scheduled.

Our future work includes implementation of the algo-

rithm by using an optimization scheduling tool and imple-

mentation in a real HW platform by utilizing the examples

presented in this paper. The developed approach is being

integrated into a tool suite where the intention is to convert

initial platform independent SW components into a plat-

form specific model post integration. We are also looking

for a near-optimal solution by applying multi variable op-

timization techniques, such that multiple objectives are ad-

dressed and the optimality of a solution is evaluated.

Also, we plan to extend the scheduling analysis part and

consider including communication scheduling in the ap-

proach. Further, it would be interesting to compare the ef-

fect of using different heuristics and the impact they have

both on the final solution, but also the time it takes for the

algorithm to execute.
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