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Abstract—The value of Intrusion Detection System (IDS) 

traces is based on being able to meaningfully parse the complex 

data patterns appearing therein as based on the pre-defined 

intrusion ‘detection’ rule sets. As IDS traces monitor large 

groups of servers, large amounts of network data and also 

spanning a variety of patterns, efficient analytical approaches are 

needed to address this big heterogeneous data analysis problem. 

We believe that using unsupervised learning methods can help to 

classify data that allows analysts to find out meaningful insights 

and extract the value of the collected data more precisely and 

efficiently. This study demonstrates how the technique of 

growing hierarchical self-organizing maps (GHSOM) can be 

utilized to facilitate efficient event data analysis. For the collected 

IDS traces, GHSOM is used to cluster data and reveal the 

geometric distances between each cluster in a topological space 

such that the attack signatures for each cluster can be easily 

identified. The experimental results from a real-world IDS traces 

show that our proposed approach can efficiently discover several 

critical attack patterns and significantly reduce the size of IDS 

trace log which needs to be further analyzed. The proposed 

approach can help internet security administrators/analysts to 

conduct network forensics analysis, discover suspicious attack 

sources, and set up recovery processes to prevent previously 

unknown security threats such as zero-day attacks. 

Keywords—forensic analysis, cloud services, intrusion detection 

system, internet security, growing hierarchical self-organizing map 

I. INTRODUCTION 

As networks and computing nodes are constantly being 

probed and attacked, network security products such as 

intrusion detection systems (IDS) are used to identify 

malicious activities and block the suspicious packets. Often, 

the IDS traces are stored on a backup resource and are not 

utilized unless a serious attack actually happens. This can keep 

the existing backdoors open where attackers can target a 

specific victim, and also allow the attackers to deploy 

advanced network attacks such as distributed denial of service 

(DDoS) attacks and advanced persistent threats (APT). 

The Problem: 

Intrusion detection system faces problems such as massive 

network traffic volumes, highly imbalanced data distribution, 

the difficulty to realize decision boundaries between normal 

and abnormal behavior, and a requirement for continuous 

adaptation to a constantly changing environment [21]. Current 

IDSs techniques have several limitations such as (1) IDSs 

provide unmanageable amount of real or false alarms 

overwhelming the security administrators, (2) it is very 

difficult to determine how well an IDS is set up, and (3) the 

degree of work and time required [6][20][22]. Therefore, the 

need is for IDSs to provide automated detection of malicious 

traffic behavior via techniques such as pattern recognition and 

anomaly detection. 

There are several difficulties from the nature of the IDS 

trace data which makes it hard to be analyzed: (1) IDS traces 

are a series of log data which is often unstructured, and 

typically there is no relation information in it unless further 

analysis is done, (2) companies tend to ignore the information 

hidden in the IDS traces and overly depend on signature-based 

IDS, and (3) it is hard for the current IDSs to detect potential 

threats or formalize new attack patterns. Therefore, the key 

problem is the typical inability to be able to correlate the 

events recorded in the IDS traces because the attack behaviors 

have been concatenated into a set of events. A single event 

with a fragmentary signature cannot reveal too much 

information at first glance. Network traffic data tends to be 

data-rich but information-poor. Hence, developing techniques 

to handle the avalanche of IDS traces data into meaningful 

information and revealing previously unknown patterns in IDS 

traces forms the motivation for our research. 

Practically, the network security products rely heavily on 

known signatures to detect malicious traffic, but still lack 

intelligence to digest what they have identified. Thus, an 

effective and efficient network forensic analysis mechanism is 

a key need to identify the leakage paths along with identifying 

the intruders.  Furthermore, for identifying unseen attacks, the 

analysis of periodical network traffic data is essential to 

develop both a knowledge-based IDS and a behavior-based 

IDS. 

The state of the art IDS has several limitations: (1) it is hard 

to identify novel attacks or minor variations of known attack 

patterns, (2) the tool generates alerts, which must be reviewed 

by a security analyst to  ascertain the triggers behind the alerts , 

(3) it is having not possible to send error pages to clients as it 

does not work on HTTP(s), and (4) it is not possible just to 



write rules on outbound traffic because rules can be written 

either for both (inbound/outbound) or for inbound traffic. 

Our Contributions: 

To the best of our knowledge, little research has been 

focused on investigating the static event records because 

usually they are left as backup logs with little attention paid to 

this unstructured data to conduct network forensics.  For the 

purpose of analyzing network traffic events with 

heterogeneous patterns and noises, unsupervised learning 

methods can help to explore groups of attack activities by 

correlating their input features horizontally (by time) and 

hierarchically (by features). This composite handling of time 

and feature characteristics in IDS traces is conspicuously 

missing in current approaches and defines our uniqueness. 

Studies have shown that the Growing hierarchical self-

organizing map (GHSOM) is useful for understanding 

network traffic data by visualizing the anomalous groups [12] 

[21], but there is no study that focuses specifically on event 

analysis and anomalous pattern discovery. Therefore, this 

paper proposes an approach based on GHSOM specifically for 

event pattern discovery that makes use of IDS traces in order 

to explore malicious activities which are either undergoing or 

have potential to become serous attack events in the future. 

The paper’s contribution is its focus on the event pattern 

discovery by using GHSOM to visualize the clustered groups 

of IDS traces in order to better identify and correlate various 

attack patterns. We use a set of real-world IDS traces to 

demonstrate how to analyze such data and we also apply data 

mining tools to discover group features, especially the missing 

event correlations. 

Paper Outline: 

On this background, we first present related work and a 

basic background on GHSOM in Section II and III before 

detailing our trace analysis approach in Section IV. Our 

approach is applied to actual system IDS traces and we detail 

both the experimental/validation setup along with the obtained 

results in Section V. Our summary discussions appear in 

Section VI and VII. 

II. RELATED WORD 

Multiple methodologies exist for facilitating network 

intrusion detection. However, they only address segments of 

the problem issues. We provide a brief discourse on them for 

the purpose of building and extending upon this body of 

knowledge. 

Techniques of wavelets analysis provide a description for 

concurrent time and frequency, it can separate the time-

localized anomalous signals from the noise signals by 

analyzing each spectral window’s energy, the anomalies can 

be determined. Studies such as Kim et al. [8] proposed a 

detection technique based on creating a stable baseline profile 

to monitor the deviations in the traffic. An analysis was 

conducted to check the stability of the traffic with regards to 

different parameters. Significant differences in traffic patterns 

were found between different sites. A baseline profile that was 

based on different attributes was proposed for detection. 

Thapngam et al. [18] proposed a comparable detection 

methods based on the Pearson’s correlation coefficient. Their 

methods can extract repeatable features from the packet 

arrivals in the DDoS traffics but not in flash crowd traffics. 

Choras et al. [3] proposed a novel framework for network 

security based on the correlation approach as well as new 

signal-based algorithm for intrusion detection on the basis of 

the matching pursuit (MP) algorithm, which is a known signal 

processing technique used for instance in audio compression, 

image and video compression [11]. 

Supervised learning methods are usually used in intrusion 

detection which is often regarded as a classification problem. 

For example, Tajbakhsh et al. [17] proposed a classification 

algorithm using fuzzy association rules for building classifiers. 

Particularly, the fuzzy association rule sets were exploited as 

descriptive models of different classes. The compatibility of 

any new sample (which is to be classified) with different class 

rule sets was assessed by the use of some matching measures 

and the class corresponding to the best matched rule set was 

declared as the label of the sample. Salama et al. [13] 

introduced a hybrid scheme that combined the advantages of 

deep belief network (DBN) and support vector machine 

(SVM). An application of intrusion detection imaging was 

been chosen and a hybridization scheme was applied, where 

DBN was used as a feature reduction method and SVM as a 

classifier. Sheikhan et al. [14] proposed a 3-layer recurrent 

neural network (RNN) architecture with categorized features 

as inputs and attack types as outputs of RNN. Experimental 

results showed that the reduced-size neural classifier improved 

classification rates. 

The technique most useful for our needs (of diverse patterns, 

automation and accuracy) is likely unsupervised learning that 

groups data based upon their similarities without knowing the 

class-labeled information in the training phase. Therefore, it 

can be applied to anomaly detection and pattern discovery [21]. 

For example, Tjhai et al. [19] developed a two stage 

classification system using a self-organizing map (SOM) [9] 

neural network and K-means algorithm [10] to correlate the 

related alerts and to further classify the alerts into classes of 

true and false alarms. Stevanovic et al. [16] examined the use 

of two unsupervised neural network learning algorithms for 

web-log analysis, the SOM and Modified Adaptive Resonance 

Theory 2 (Modified ART2), to obtain a better insight into the 

types and distribution of visitors to a public web-site based on 

their browsing behaviors. Palomo et al. [12] used growing 

hierarchical self-organizing map (GHSOM) [5] to cluster 

network traffic data and the results confirmed that the 

GHSOM is very useful for a better understanding of network 

traffic data, making it easier to search for evidences of attacks 

or anomalous behaviors in a network environment. While the 

GHSOM approach offers a core basis, its ability to handle IDS 

traces is lacking. Addressing this gap forms the basis of our 

proposed approach. 



 

III. BACKGROUND & USAGE 

PERSPECTIVES ON GROWING 

HIERARCHICAL SELF-ORGANIZING MAPS 

To efficiently deal with massive IDS traces in constantly 

changing environments, we consider the use of GHSOM as it 

is a scalable unsupervised learning method where the 

clustering process can help to divide these traces into smaller 

groups with preferred group size, horizontal and hierarchical 

structure; besides, it can provide topological location of the 

subgroups from the GHSOM so that their similarity can be 

explained and correlated. These properties are what we require 

for the purpose of event discovery of IDS traces. We first 

provide a brief synopsis on GHSOM operations before 

developing our techniques on it. 

The classical GHSOM training process contains the 

following four phases [5]: 

1. Initialize layer 0: Layer 0 includes a single node, the weight 

vector of which is initialized as the expected value of all 

input data. The mean quantization error of layer 0 (MQE0) 

is calculated next. The MQE of a node denotes the mean 

quantization error that sums the deviation between the 

weight vector of the node and all input data mapped to the 

node. 

2. Train each individual map: Under the competitive learning 

principle, only the winner and its neighboring nodes qualify 

for an adjustment of their weight vectors. The competition 

and training processes are repeated until the learning rate 

decreases to a certain value. 

3. Grow each individual map horizontally: Each individual 

map grows until the mean value of the MQE for all nodes 

on the map, i.e., avg(MQE), is smaller than the MQE of the 

parent node MQEp multiplied by τ1, as in (1). If the stop 

criterion is not satisfied, we find the error node that owns 

the largest MQE and insert one row or column of new 

nodes between the error node and its dissimilar neighbor, as 

shown in Fig. 1. The notation x indicates the error node and 

y indicates the dissimilar neighbor. 

avg(MQE) < τ1 × MQEp                (1) 

 
(a) insert a row                          (b) insert a column 

Fig. 1. Horizontal growth of GHSOM. 

4. Expand or terminate the hierarchical structure: The node 

with an MQEi greater than τ2 × MQE0 will be used to 

develop the next layer, as in (2). 

MQEi < τ2 × MQE0       (2) 

The GHSOM structure is shown in Fig. 2, each layer 

contains a number of maps (SOMs). Each map is grown 

individually when doing the hierarchical growth. 

 

Fig. 2. The GHSOM structure. 

The unsupervised methods such as SOM and its extension 

are suitable for ID tasks in that normal behavior is densely 

populated around one or two centers, while abnormal behavior 

and intrusions appear in sparse regions of the pattern space 

outside of normal clusters. Other classification algorithms, 

such as feed forward neural networks, were then trained on the 

clustering output [21]. 

Practically, GHSOM can be integrated into the higher level 

IDS because IDS can be layered in a hierarchy where the alert 

output of the lower stage is processed by a second IDS. The 

higher IDS is often used for correlation. It can also generate 

statistics, group alerts and detect outliers to provide a more 

succinct overview of the situation. This is especially useful 

when a large number of alerts are produced [4]. 

Comparing GHSOM with other trajectory-based 

clustering/outlier detection methods in spatial mining 

domains, Wu and Banzhaf [21] reviewed the use of 

computational intelligence in intrusion detection systems and 

observed that the SOM algorithms are suitable for intrusion 

detection as normal behavior is densely populated around one 

or two centers, while abnormal behavior and intrusions appear 

in sparse regions of the pattern space outside of the normal 

clusters. 

In other words, GHSOM functions as a data pre-processor 

to cluster input data. For those IDS traces in the same 

clustered subgroups, we can apply other data mining 

techniques to help to analyze the correlation between the IDS 

traces. We believe that analyzing smaller groups of data with a 

certain similarity can come up with more meaningful mining 

results compared with directly analyzing a bunch of raw data. 

Data mining methods such as association mining for link 

analysis, and frequent episodes for sequence analysis can be 

used to derive header features for detecting some attacks. 

Feature selection can then be applied to the candidate set of 

features. 

IV. PROPOSED APPROACH 

On this basic background on GHSOM, we now present our 

anomaly detection approach where the individual steps are 



illustrated in Fig. 3. In the subsequent sections we 

progressively detail these to develop the validation.  Our 

proposed approach primarily starts from the data clustering 

stage in Fig. 3. We apply GHSOM over the data clustering 

stage. Then, a series of visualization, feature observation and 

event pattern discovery are done based on the clusters of IDS 

traces. Also, the association analysis on event correlation and 

web graph analysis for IP correlation are applied to discover 

any intrigued event pattern. 

 

 
Fig. 3. Architecture of the anomaly detection approach. 

When any network traffic triggers the IDS rule sets, it will 

be blocked and the flow information as well as the triggered 

event will be stored in the cloud. The IDS traces are mixed 

with all sorts of monitored IPs, so as the sources IPs. To help 

building up a focus for the internet security experts, we use 

GHSOM to cluster the data according to their inherent nature. 

Based on the visualized clusters, features such as priority, 

source IP, source port, destination IP, destination port, and the 

triggered event will be analyzed. Specifically, we will look at 

the map (means the clusters belong to same branch and locate 

in the same layer) with most frequent priority one samples or 

the map located in deeper layer to observe their features of IP 

and port. The frequent events are listed in descending order 

based on the amount of samples in which various event 

patterns are discovered and are left open for explanation. 

Besides, the information of IP and port can tell a basic profile 

of the attack path, for example, source IP x use port number m 

to connect to the destination IP y through port n. In order to 

find out the correlation of source IP and destination IP, for 

each investigated cluster, we apply the web graph analysis 

technique to obtain the strong links. Furthermore, we apply 

association analysis for each investigated cluster where a set 

of correlated events will be marked as an important attack 

feature. 

A. GHSOM setting 

The GHSOM development is primarily dominated by the 

breadth (τ1) and depth (τ2) parameters [5]. To achieve the goal 

of obtaining the multi-layer hierarchy features and preventing 

over-clustering, we predefine the following selection criteria: 

1)  There is more than one SOM layer in the GHSOM. 

2)  Samples of each node should not be overly clustered. 

3)  Each leaf node should contain at least one sample. 

The one satisfied with the selection criteria and has the 

lowest MQE and fewer numbers of clusters are chosen. 

Following the GHSOM algorithm stated in Section II, the 

samples with similar patterns are expected to be grouped 

together and clusters are plotted in topological space. 

B. Feature observation 

We tend to target on the map with the most frequent priority 

equal to 1, or the map located in deeper hierarchical layer. The 

map with the most frequent priority equal to 1 means that lots 

of critical events have happened and these events are similar 

in a certain level, such concentration of events are worth of 

further exploration in terms of statistics signatures and 

behavior signatures. For the map with the most frequent 

priority 1, the other traces which are not priority 1 but belong 

to the same map can still represent a certain degree of 

similarity, so that any sign for future attacks can be inferred. 

The map located in deeper hierarchical layer is also worth of 

analysis because clusters in such map are more diverse than 

other clusters located in other branches. We believe that 

complex events often hide more valuable information about 

attack patterns. 

C. IP correlation 

We use web graph analysis to do the IP correlation. Web 

graph, plot nodes and histograms give users a visual 

representation of the strength of connection between the 

variables in the data. Graph is used to spot characteristics and 

patterns at a glance [15]. In a web graph, web nodes are used 

to show the strength of relationships between values of two or 

more symbolic fields. Connections are displayed in a graph 

with various types of lines to indicate connections of 

increasing strength. Directed web graphs show connections 

only from one or more From fields to a single To field. The 

connections are unidirectional in the sense that they are one-

way connections. Here we choose two fields: From source IP 

To destination IP to explore the relationship between them and 

find out the strong connections. 

The size of links in the output graph are varies continuously, 

which display a range of link sizes reflecting the variation in 

connection strengths based on actual data values. The strong 

connections are shown with a heavier line, which indicates 

that the two IPs are strongly related and should be further 

explored. 

D. Event correlation 

This study applies the Continuous Association Rule Mining 

Algorithm (CARMA) [7] to do the IP correlation. CARMA 

generates the itemsets in the first scan and finishes counting all 

the itemsets in the second scan. Specifically, CARMA 

generates candidate itemsets on the fly from every transaction. 

While reading a transaction, it increments the supports of all 

candidate itemsets contained in the transaction. A new 

candidate itemset contained of a transaction are generated if all 

of its subsets are relatively frequent with respect to the number 

of those processed transactions. 

Note that the second scan of all the transactions is not 

needed, whenever the shrinking, deterministic intervals on the 

produced rules support and confidence suffice. Thus, CARMA 

can be used to continuously produce association rules from a 

list read from a network. Besides, CARMA can extract a set of 

rules without requiring user to specify the In (predictor) or Out 



(target) fields. This means that the generated rules can be used 

for a wider variety of applications. Compared to Apriori [1], 

CARMA offers build settings for rule support (support for 

both antecedent and consequent) rather than antecedent 

support, and rules with multiple consequents is allowed [15]. 

While not being faster in general, CARMA outperforms 

Apriori and Dynamic Itemset Counting (DIC) [2] on low 

support thresholds and is up to 60 times more memory 

efficient [7]. 

V. EXPERIMENTS 

We now detail and demonstrate our proposed approach for 

IDS event analysis.  

A. Dataset Description 

The IDS dataset is collected from the Security Operation 

Center (G-SOC) of the Taiwanese government, for the entire 

year of 2012. This dataset includes the IDS triggered alerts 

from 61 government cloud services which contain 284412 

types of events. The G-SOC uses Hadoop as the MapReduce 

implementation to filter data from different resources and 

organize the data. The pre-processed data with unified features 

will be used as our analyzed data sources. These types of 

events can be categorized into 39 classes, of which 33 classes 

of attack is defined by Snort IDS, the other 6 classes are 

custom by G-SOC (including: blacklist, high threat malware 

behavior and so on). The input features of an IDS trace in our 

research include the timestamp, source IP address, destination 

IP address, priority, protocol, source port, destination port, 

event id, and sensor id. The priority ranges from 1 to 3. Table 

I shows the categories of event. 

TABLE I.  SUMMARY COMPARISON OF THE ATTACK BEHAVIOR 

No Event No Event 
1 attempted-dos 21 attempted-user 
2 anti-botnet 22 policyviolation 
3 malware-ip 23 unsuccessful-user 
4 notsuspicious 24 default-login-attempt 
5 string-detect 25 spamhaus-drop 
6 trojan-activity 26 successfuluser 
7 network-scan 27 attempted-recon 
8 shellcode-detect 28 unknown 
9 suspiciousbackdoor 29 web-application-attack 

10 misc-activity 30 successful-reconlimited 
11 protocol-command-decode 31 suspicious-filename-detect 
12 web-application-activity 32 bot-c&c 
13 highthreat-malware 33 attempted-admin 
14 suspicious-host-name 34 le 
15 successful-admin 35 malicious-ip 
16 botnet-malware 36 rpcportmap-decode 
17 suspiciousip 37 denial-of-service 
18 misc-attack 38 suspicious-login 
19 bad-unknown 39 system-call-detect 
20 monitor-botnet   

B. Data Clustering 

The GHSOM parameter τ1 is adjusted from 0.5 to 0.9 per 

0.1 scales, and the parameter τ2 is adjusted from 0.01 to 0.05 

per 0.01 scales. The results show that the parameterτ1 = 0.7 

and τ2 = 0.03 meet the selection criteria stated in section III, so 

we pick this setting and visualize a series of clustering results.  

1) Priority observation 

The result of GHSOM contains 16 clusters. As shown in 

Fig. 4, the number in cycle means cluster number, the number 

in diamond means map number, the number in the left of the 

parenthesis means priority, the number within the parenthesis 

means the amount of samples for a specific priority, and the 

number within the square bracket means the sample size of a 

specific cluster. 
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Fig. 4. Priority observation 

According to Fig. 4, the cluster 6, 7, 8, 10, 14 and 16 whose 

most frequent priority is one, while other clusters’ most 

frequent priority is three. In other words, map 3 and its sub 

map 5 have more clusters with priority one feature, so the 

clusters belong to map 3 and map 5 can be further analyzed. 

2) Event observation 

Because the map 3 contains the most number of priority one 

events and the branch of map 3 has more complex clustering 

structure, we take map 3 including its sub map – map 5 as an 

example to further analyze their attack patterns. Fig. 5 shows 

the event map of the map 3 and 5 of GHSOM, where the event 

IDs are sorted by sample size. 
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Fig. 5. The event map of the map 3 and map 5 

The discussions about the event patterns in map 3 and map 

5 are described as follows: First, take a look at cluster 6, 7 and 

8, the first three events are event 8 (A Windows cmd.exe 

banner is detected in a TCP session), event 12 (Certain non-

RFC chars are used in a request URI) and event 5 (Violate a 

corporate security policy). So, the common activities would be: 



use of the Windows cmd.exe banner, use of suspicious URI 

format, and violate a corporate security policy. Note that 

cluster 14 in map 5 also has the same top three most frequent 

event categories. Cluster 13 also has the same top three most 

frequent event categories but the order is slightly different 

(event 5, 8, 12). Somehow the GHSOM can catch such event 

similarities and divide them appropriately in different levels, 

which is able to preserve their relationships by comparing 

their relative geographic distances. 

Take a look at cluster 13 and 15. As shown in Fig. 6, 

although their source IP and destination IP are the same, but 

their event reports are much difference. Cluster 13 tends to use 

Windows cmd.exe banner in a TCP session (event 8). Cluster 

15 tends to use VOIP-SIP register flood to attack the target 

server (event 1). The attacker from source IP 209.190.31.58 

adopted two approaches to attack the same victim.  

3) IP and port observation 

Fig. 6 shows the information of most frequent source IP, 

destination IP, source port and destination port of map 3 

including its sub set map 5 for IP and port observation. 
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Fig. 6. IP and port observation 

As shown in Fig. 6, the clusters 6, 7 and 8 have very similar 

features while the clusters 13, 14, 15 and 16 have clear 

differences and are more diverse compared with the clusters 6, 

7 and 8. The clustering structure is reasonable which confirms 

that the GHSOM is good at clustering samples with high 

dimensionality and creating a hierarchical clustering 

adaptively. 

Take a close look at cluster 6, 7 and 8, we found both three 

of them have very similar source IP and use the same source 

port. Moreover, these three clusters are mostly attacked by the 

same destination IP under different destination port. 

Therefore, it is worth noting that the attackers may come from 

one organization because they have slightly different source 

IPs (219.84.190.82, 219.84.190.87), but they all target on the 

same destination IP (219.84.191.137). The major differences 

of these three clusters would be the destination port. We 

suspect that the victims in these three clusters were intruded 

through different probing activities in order to search for any 

vulnerability.  

The cluster 13 and 15 are almost the same except they use 

different source port (139 and 5243); in addition, the source 

IP comes from USA and the destination IP is a Taiwan 

government agency. Therefore, cluster 13 and 15 have high 

correlation. The source IP 209.190.31.58 is highly dangerous 

and is an obvious clue for further network forensic analysis. 

C. Event correlation 

In the stage of event correlation, we apply CARMA to 

generate association rules of events, and to mark out the 

correlation between events as an important feature for each 

cluster. The minimum rule size is set to be three, and we pick 

up the rules with confidence more than 90%. 

In Table II, there are four rules in map 2 with support value 

larger than 10%, which are (12�5, 8�5, 0�5, [8 and 

12]�5). Given by the results of event observation, the most 

frequent events of map 2 are event 5, 8, 0, 14, 12, the observed 

correlations can help to explain the causes and effects of alerts 

based on time factors. For example, before the attackers who 

violate a corporate security policy (event 5), they tend to use 

illegal URI (event 12), use a Windows cmd.exe banner in a 

TCP session (event 8), or use illegal FTP command (event 0). 

TABLE II.  ASSOCIATION RULES IN MAP 2 

Consequent Antecedent Support % Confidence % 

5 12 43.48 100.00 
5 8 15.94 100.00 
5 0 10.14 100.00 
5 8, 12 10.14 100.00 

 

D. IP correlation 

Take the map 5 as an example to further investigate its 

network pattern in order to do IP traceback as a part of 

network forensic process. Fig. 7 shows the result of IP 

correlation after doing the web graph analysis. The connection 

is set from source IP to destination IP. The square node means 

source IP, and the circle node means destination IP. 
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117.56.126.1
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117.56.127.1

117.56.125.1

117.56.129.1
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source

1.161.77.188

 

Fig. 7. The strong links in map 5 

The strong connections are shown with a heavier line, 

which indicates that a group of source IPs and destination IPs 

are strongly related. Fig. 7 shows several connecting patterns. 

For example, there is a one-to-many pattern which is started 

from 209.190.31.58 and is connected to multiple destinations. 

Another one-to-many connection which is started from 

59.125.175.123 to two destination IPs. There are two 

connections with many-to-one pattern. Destination IP 

60.251.89.7 has two mainly sources, which are 203.69.66.11 

and 209.190.31.58. Destination IP 60.251.89.4 has two mainly 

sources, which are 209.190.31.58 and 123.192.56.173. 



E. Summary 

To summarize the obtained results and let the investigators 

understand where to focus and what the interesting finding is, 

we list the key features of each focused cluster in a bullet-

point form. The clusters located in deeper layers of GHSOM 

are often worth of investigation because of their variety, we 

expect such variety has a positive impact on risk, such as a 

new form of attacks or other potential malicious activities 

undergoing. Table III shows the summarized results of map 5. 

TABLE III.  SUMMARIZED ATTACK PATTERN 

Cluster 13 Profiling: Involved hacking activities through port 139 
� Most frequent event: 5, 8, 12. ●Most frequent priority: 3 
� Event correlation: 8�5 
� Most frequent source IP (port): 209.190.31.58 (139), a risky IP 
� Most frequent destination IP (port): 117.56.125.1 (5900) 
� Web graph: 

 

 
 

Cluster 14 Profiling: Involved corporate privacy violations though 

inbound Teredo traffic 
� Most frequent event: 8, 12, 5. ●Most frequent priority: 1 
� Event correlation: 8�5, 20�5 
� Most frequent source IP (port): 59.125.175.123 (139) 
� Most frequent destination IP (port): 219.84.115.63 (3389) 
� Web graph: 

 
 

Cluster 15 Profiling: Involved hacking activities through port 5243 

� Most frequent event: 5, 1, 7. ●Most frequent priority: 3 
� Event correlation: 0�5�8 
� Most frequent source IP (port): 209.190.31.58 (5243), a risky IP 
� Most frequent destination IP (port): 117.56.125.1 (5900) 
� Web graph: 

 
 

Cluster 16 Profiling: Involved internal corporate privacy violations 

� Most frequent event: 5, 8, 14. ●Most frequent priority: 1 
� Event correlation: 20�5 
� Most frequent source IP (port): 117.56.125.1 (8967) 
� Most frequent destination IP (port): 111.100.144.12 (5900) 
� Web graph: 

 

 

 

 
 

F. Comparison 

We compare the GHSOM clustering results with SOM 

because both of these methods can preserve the topology of 

nodes (i.e., subgroups). The mapsize is set to [8×8] in order to 

make it similar to the mapsize of second layer of GHSOM (see 

Fig. 4). Table IV shows the clustering results of SOM with 

priority information. The first column is node number. The 

second column is the features of each node including priority, 

event, and amount of samples. 

TABLE IV.  SOM WITH PRIORITY INFORMATION 

No feature no feature no feature no feature no feature no feature no feature no feature 

1 (3, 29) 

5264 

9 (3, 17) 

2906 

17 (3 ,12) 

3297 

25 (3, 12) 

1145 

33 (3, 8) 

18019 

41 (3, 15) 

22223 

49 (3, 15) 

13623 

57 (3, 15) 

15916 

2 (3, 12) 

855 

10 (1, 15) 

173 

18 (1 ,8) 

24 

26 (3, 8) 

766 

34 (3, 8) 

4969 

42 (3, 8) 

86 

50 (3, 20) 

1640 

58 (3, 15) 

14507 

3 (1, 8) 

34 

11 (0, 0) 

0 

19 (0 ,0) 

0 

27 (3, 5) 

735 

35 (3, 7) 

2213 

43 (3, 14) 

1956 

51 (3, 14) 

1525 

59 (3, 14) 

1878 

4 (0, 0) 

0 

12 (2, 12) 

1 

20 (3 ,12), 

8649 

28 (3, 8) 

7454 

36 (3, 14) 

2159 

44 (3, 14) 

1226 

52 (3, 14) 

316 

60 (3, 14) 

436 

5 (2, 12) 

8 

13 (3, 12) 

7914 

21 (3 ,12) 

8035 

29 (3, 8) 

5610 

37 (3, 5) 

6038 

45 (3, 7) 

5410 

53 (3, 8) 

35 

61 (3, 17) 

3383 

6 (3, 12) 

 4898 

14 (3, 8) 

2906 

22 (3 ,5) 

5115 

30 (3, 5) 

1753 

38 (3, 5) 

1889 

46 (3, 7) 

19 

54 (3, 17) 

1812 

62 (3, 17) 

3214 

7 (3, 5) 

4502 

15 (3, 5) 

1583 

23 (3 ,12), 

3390 

31 (3, 12) 

6829 

39 (3, 12) 

6452 

47 (3, 7) 

1439 

55 (3, 7) 

9 

63 (3, 17) 

2128 

8 (3, 7) 

4795 

16 (3, 12) 

4094 

24 (3 ,12) 

6774 

32 (3, 12) 

9362 

40 (3, 12) 

32249 

48 (3, 17) 

2308 

56 (3, 14) 

3716 

64 (3, 29) 

2746 

*Parenthesis: (priority, event); second raw: amount of samples. 
 

According to Table IV, the node (i.e., cluster) 3, 10 and 18 

have most frequent priority is one. We find that all samples 

are priority one and their event number are eight. The sample 

sizes are relatively small and pure which makes the following 

event correlation meaningless. As we look back to Fig. 4, the 

GHSOM can generate groups of nodes with hierarchical 

relationship with a certain heterogeneity (e.g., map 3 and map 

5), which can help to explore meaningful features between 

neighboring nodes by data mining techniques. 

VI. DISCUSSION 

Based on the experimental results from the IDS traces as 

alerts triggered from the SNORT IDS rules, GHSOM can 

generate groups of nodes with hierarchical relationship with a 

certain heterogeneity which can help to extract meaningful 

features between the neighboring clusters. This visualization 

process is essential for analysis as GHSOM can help identify 

risky groups  and reduce the size of IDS traces necessitating 

deeper analysis by up to 90.83% (see map 3 in Fig. 4). 

The IDS alerts should be investigated but current IDSs are 



mostly rule-based systems and cannot provide such functions 

for alerts correlation and visualization. Our proposed approach 

leverages the advantage of unsupervised learning method 

GHSOM to organize these alerts into different subgroups, 

reveal their distinctive features and show where the 

vulnerability is. To further visualize the ID correlations, we 

first integrate GHSOM with the association rule method 

(CARMA) and Web graph tools to deeply analyze the 

embedded attack patterns within the investigated clusters. 

VII. Conclusion 

This paper proposes an approach for event pattern discovery 

by using GHSOM and other data mining tools to explore the 

IDS traces and turn numerous data into meaningful patterns. 

The results of event pattern discovery can help to do network 

forensics analysis through tracing back to the source of an 

attack and finding out the relationships among events as a set 

of attack patterns, which then can be used to create a 

prevention mechanism with dynamic filtering rules for IDS. 

Finally, the proposed approach is designed to be integrated 

with the current internet security deployments which all have 

the same purpose— to minimize the damage of the undergoing 

attack and prevent future attacks based on the knowledge 

learned from the analysis of the historical data. 

The main contribution of this paper is that our proposed 

method is capable of facilitating event pattern discovery based 

on a very big set of IDS traces (collected from 61 Taiwan 

government cloud services in 2012) which is helpful in 

discovering the attack patterns within different subgroups, and 

significantly reducing the effort of security analysts to analyze 

such massive IDS traces. The relationships between each 

cluster are visualized in the typological space through lenses 

of dimension, where similar events are grouped together based 

on their nature so that more information can be achieved 

compared to empirical approaches.  For example, (1) merely 

look at the events with priority one feature is not enough to 

find out the scenario of attack, (2) behavior-based events are 

important because the time factor can be considered in the 

behavior-based events, (3) relating the patterns among 

neighboring clusters is a key element to add more information 

to the knowledge pool. 

Future works are described as follows: (1) to study the 
correlations among the features such as port, protocol, and 
event in the application level; (2) to include more input 
features such as frequency and duration, and refer to multiple 
data resources; (3) to study links in web graph for monitoring  
potential attacks; (4) to apply the proposed approach to other 
security issues, such as APT, botnet, malware, and social 
network; (5) to develop an incremental learning mechanism 
that helps to detect zero-day malware. 
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