
C’MON: Monitoring the Compliance of Cloud Services to
Contracted Properties

Soha Alboghdady, Stefan Winter, Ahmed Taha, Heng Zhang, Neeraj Suri
DEEDS Group, TU Darmstadt, Germany

{soha|sw|ataha|zhang|suri}@deeds.informatik.tu-darmstadt.de

ABSTRACT

�e usage of computing resources “as a service” makes cloud com-
puting an a�ractive solution for enterprises with �uctuating needs
for information processing. As security aspects play an important
role when cloud computing is applied for business-critical tasks,
security service level agreements (secSLAs) have been proposed to
specify the security properties of a provided cloud service.

While a number of approaches for service providers exist to
assess the compliance of their services to the corresponding sec-
SLAs, there is virtually no support for customers to detect if the
services they use comply to the speci�ed security levels. To close
this gap, we propose C’mon, an approach to continuously monitor
the compliance of cloud services to secSLAs. Our evaluation of
C’mon shows its ability to identify violations of contracted security
properties in an IaaS se�ing with very low performance overheads.

CCS CONCEPTS

•Security and privacy →Distributed systems security;

•Computer systems organization →Cloud computing;

KEYWORDS

Cloud Computing, Security, Compliance, Monitoring
ACM Reference format:

Soha Alboghdady, Stefan Winter, Ahmed Taha, Heng Zhang, Neeraj Suri.
2017. C’mon: Monitoring the Compliance of Cloud Services.. In Proceedings
of ARES ’17, Reggio Calabria, Italy, August 29-September 01, 2017, 6 pages.
DOI: 10.1145/3098954.3098967

1 INTRODUCTION

Cloud computing grants customers on-demand, elastic provision-
ing of computing resources, that are managed and maintained by
Cloud Service Providers (CSPs). Despite the bene�ts provided by
the cloud model, including the reduction of expenses and manage-
ment overhead, the resultant loss of control over the security of
the provisioned resources limits the adoption of the cloud model.
�e lack of security speci�cations and guarantees in most cloud

Research supported in part by EC H2020 ESCUDO-CLOUD GA #644579, CIPSEC GA
#700378 and BMBF TUD-CRISP

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ARES ’17, Reggio Calabria, Italy
© 2017 ACM. 978-1-4503-5257-4/17/08. . . $15.00
DOI: 10.1145/3098954.3098967

service o�erings leaves customers uncertain about whether or not
the provided service satis�es their security requirements.

In order to address service security between the CSPs and cus-
tomers, Security Service Level Agreements (secSLAs) are proposed
as an extension to existing cloud SLAs that typically only cover
performance properties of services [12]. In contrast to SLAs, Sec-
SLAs are used to specify the security properties of the provided
service. �e speci�cation of a security property de�nes the security
mechanisms needed to achieve this property and also their imple-
mentations. Moreover, a secSLA includes Service Level Objectives
(SLOs), which are target values for di�erent service levels of the
speci�ed security properties. Consequently, secSLAs can serve two
purposes. First, according to the security level determined by the
speci�ed values of the SLOs, customers can decide if the required
security level for the provided service is satis�ed. Second, binding
the security properties in a contract between the CSP and the cus-
tomer, obligates the CSP to provide the service with the contracted
SLO values. However, to date there is no mechanism to enable
customers to verify the CSPs’ compliance to such contracts. �us,
the inability to validate if a contract is honoured by both parties
renders the utility of such contracts questionable.

In this paper, we propose a framework for secSLA compliance
validation which enables cloud customers to validate the compli-
ance of the provided cloud service to the contracted security level
in a secSLA. �e approach is realized by �rst de�ning means to
evaluate the SLOs associated with security properties de�ned in a
secSLA. By using these means to monitor the values of the SLOs,
the compliance of the service to secSLA is validated against the sec-
SLA throughout the service life cycle and any detected violations
are reported. �e paper provides the following contributions:

(1) De�nition of measurement procedures for SLOs proposed by
di�erent security controls frameworks and standards to be
included in the secSLA. Additionally, measurements procedures
are de�ned for SLOs that are measurable from the customer
side.

(2) Design and implementation of a tool which monitors the values
of the SLOs throughout the service life cycle, to ensure their
compliance to the secSLA.

(3) Evaluation of the functionality and performance of the ap-
proach on two examples of Infrastructure-as-a-Service (IaaS)
services using a OpenStack and Amazon Elastic Compute Cloud
(Amazon EC2) instances.

�e remainder of the paper is organized as follows. Section 2
outlines the state-of-the-art approaches proposed to validate the
compliance of CSPs to SLAs. Section 3 introduces the basic con-
cepts and the terminology used in the paper. Section 4 presents

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Soha Alboghdady, Stefan Winter, Ahmed Taha, Heng Zhang, Neeraj Suri

the proposed cloud monitoring tool. Section 5 presents the exper-
iments used to validate the proposed approach, and evaluates its
performance. Finally, Section 6 concludes the paper.

2 RELATEDWORK

Based on the service properties described in SLAs, multiple ap-
proaches have been proposed to validate the compliance of the
service to the SLA, by verifying the enforcement of the contracted
properties. Haq et al. [5] propose a framework to manage SLA
validation by de�ning rules to map high-level SLOs to low-level
metrics that the CSP can monitor throughout the service life cycle.
Furthermore, Rak et al. [15] and Liu et al. [10] propose cloud appli-
cation monitoring tools that detect SLA violations. Although these
approaches provide e�ective techniques to detect SLA violations,
they are only focused on monitoring performance properties rather
than security properties.

Very few approaches exist for monitoring security properties of
cloud services. Ullah and Ahmed [16] proposed a secSLA manage-
ment solution that installs monitoring agents on the cloud service to
measure service security properties. Ullah et al. [17] and Majumdar
et al. [13] proposed tools to be used by the CSP to audit the compli-
ance of their services to some security properties by depending on
log analysis. Nevertheless, all of these approaches address only CSP
side validation by proposing solutions managed/deployed by/at the
CSP or require cooperation from the CSP. Hence, the customers
are unable to verify the e�ectiveness of these approaches or ensure
the validity of the reported results.

3 BACKGROUND & TERMINOLOGY

In this section we introduce the terminology and concepts used in
the paper.

A secSLA is a contractual agreement between the CSP and the
customer, which describes the security properties of the service to
be delivered [12]. Security control frameworks are used to describe
the security properties in the secSLA as a hierarchy of security
controls re�ned into SLOs. SLOs are the targets for service levels
that the CSP speci�es in the secSLA and commits to achieve. An
example of an SLO is the mean time between incidents, which refers
to the average time between the discovery of two consecutive inci-
dents [2]. �e speci�ed value for this SLO can be a lower bound
which would imply that the reported average time between inci-
dents should not fall below the de�ned lower bound at any time
of the service life cycle. Measuring the value of an SLO requires
de�ning a measurement mechanism. A measurement may be a
formula, a process, a test or any schema usable to assign a value to
the SLO.

Hence, the secSLA of a service enables the customers to under-
stand which security properties are implemented in the service
and obliges the CSP to deliver the properties with the contracted
values of the SLOs. However, a secSLA by itself does not guarantee
that the contracted security level is actually met. �e CSP might
fail to satisfy the contracted security level at any time during the
service life cycle. �e aim of the proposed approach is to provide
customers with means to detect these violations of secSLAs. �is
is achieved by measuring the SLOs contained in the secSLA and

ensuring the compliance of the measured values to the contracted
ones.

4 C’MON MONITORING APPROACH

In the following we introduce C’mon, a cloud monitoring approach
that enables customers to validate the compliance of a running cloud
service to its secSLA. To enable customer-side SLO measurements,
we performed an extensive literature survey to identify SLOs that
are commonly contained in secSLAs and investigated each SLO to
decide whether or not it can be measured by the customer. A total
of 142 SLOs were examined for this work1. �e SLOs considered
are de�ned for IaaS services which also form the basis for ensuring
the security of the other models (So�ware-as-a-Sevice or Platform-
as-a-Service).

Based on the SLOs identi�cation survey, we develop measure-
ment mechanisms that allow the assessment of SLOs from the
customer side, as detailed in Section 4.1. Using these mechanisms,
a framework that enables the continual monitoring of SLOs is pre-
sented in Section 4.2.

4.1 SLO Measurement Mechanisms

Our targets are the SLOs whose measurement is achievable by the
customers. Hence, in the following, we describe the measurement
mechanisms corresponding to the requisite SLOs.

4.1.1 Percentage of Uptime. �is SLO speci�es a lower bound
for the percentage of time, over a prede�ned measurement period,
in which the service should be available. Based on the description
of the SLO, the availability of a service is determined by the status
of a request sent to the service at the time of measurement. If the
CSP fails to deliver the service within a prede�ned time frame,
the service is considered unavailable. �e measurement period is
divided into timeslots of �xed length slotSize. A slot is considered
available if the percentage of failed requests within a timeslot is
less than a de�ned percentage timeslotFail�reshold. Accordingly,
the percentage of uptime is calculated as the percentage of time
slots in which the service was considered available.

Measurement. To monitor the availability of the service through-
out the full life cycle, requests are sent periodically to the service
and the response of the CSP is veri�ed. �e status of the requests
is used to calculate the percentage of uptime using Equation 1.∑

Available slots∑
Slots

(1)

4.1.2 Percentage of Timely Recoveries. �is SLO speci�es a lower
bound for the percentage of unavailability events which last less
than a prede�ned delay maxTime [2]. �e SLO follows the same
de�nition of the service availability, as the previous SLO, de�ned
over time slots of size slotSize to determine unavailability events
and their duration.

Measurement. �e service requests are sent at a prede�ned
frequency to detect service unavailability events throughout the full
measurement period. �e percentage of the unavailability events
with duration less than maxTime is then calculated as follows.
1Multiple security SLOs from NIST and CIS were surveyed.

C’mon: Monitoring the Compliance of Cloud Services. ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

∑
Unavailability events (T < maxTime)∑

Unavailability events
(2)

4.1.3 Percentage of Processed Requests. A lower bound for the
percentage of successfully processed requests by the CSP over a
given measurement period is speci�ed by this SLO. A request is
considered successful, if the service was delivered without an error
and within a prede�ned time frame.

Measurement. To measure this SLO, service requests are gen-
erated at a prede�ned frequency and the percentage of successful
requests is calculated over the measurement period.∑

Success f ul requests∑
Requests

(3)

4.1.4 Mean time between failure (MTBF). �is SLO is used to
specify a lower bound for the mean time between two consecutive
failures of processing a request [2]. It is important to note that the
failure here is de�ned as the failure of a single request.

Measurement. Test requests are continuously sent with a pre-
de�ned frequency to the service. �e time between every two
consecutive failures is calculated. At the end of the measurement
period, the mean time of all the reported times between consecutive
failures is calculated using Equation 4.∑

|Start o f downtime − Start o f next uptime |∑
Failed requests

(4)

4.1.5 HSTS. �is SLO refers to the usage HTTP Strict Transport
Security (HSTS) [11].

Measurement. An HTTP host is declared as an HSTS host by
issuing an HSTS policy, which is represented by and conveyed via
the Strict-Transport-Security HTTP response header �eld [7]. To
validate the continuous usage of HSTS during the service life cycle,
HTTP GET requests are repeatedly sent to the service, checking
the header �eld on every request.

4.1.6 Secure Cookies Forced. �e secure cookies SLO [11] re-
ports whether the service enforces the usage of secure cookies.

Measurement. By sending an HTTP GET request to the service
and examining the Set-Cookie header in the responses, one can
check if the secure a�ribute is set to true to validate the usage of
secure cookies.

4.1.7 Forward Secrecy. �e SLO reports whether the cloud ser-
vice supports forward secrecy in its cryptographic channels.

Measurement. Connecting to a server which supports forward
secrecy implies that the session key used during Secure Sockets
Layer/Transport Layer Security (SSL/TLS) session establishment is
independent from the server’s private key [6]. Accordingly, achiev-
ing forward secrecy is reliant on the cipher suite chosen when
initiating the SSL/TLS session since the cipher suite determines
the key exchange algorithm used. �e use of Di�e-Hellman key
exchange supports this property. Hence, to check for the usage of
forward secrecy, an SSL session is initiated with the server, includ-
ing only the cipher suites which uses Di�e-Hellman key exchange
in the client cipher suites. If the handshake was successful then

the server supports the forward secrecy. Otherwise, if a handshake
failure alert is raised and the session is terminated, then forward
secrecy is not supported.

4.1.8 Client Certificates. �is SLO refers to whether the service
enables the use of client certi�cate in SSL/TLS-based authentication.

Measurement. An SSL session is initiated with the server to
check whether the server uses the client certi�cate. To test this SLO,
�rst a session is initiated without a client certi�cate. If a handshake
failure alert is raised [3], then the server needs to verify the client
certi�cate for authentication (i.e., a certi�cate is “required”). Else,
if the handshake did not fail then the client certi�cate may be
“optional” or “not required”.

4.1.9 OCSP Stapling. Online Certi�cate Status Protocol (OCSP)
stapling [4] reports if the use of OCSP for requesting the status
of a digital certi�cate is enabled or not. A server that uses OCSP
stapling sends the OCSP request on the behalf of the client staples
the OCSP response to the handshake.

Measurement. To check whether OCSP is supported or not, an
SSL session is initiated with the server while including the Certi�-
cate Status Request extension in the “client hello” SSL handshake
message. If the Certi�cate Status response extension is a�ached
with the SSL handshake, then the server supports OCSP stapling.

4.2 C’mon Monitoring Framework

C’mon is developed as a solution for the customers to monitor
the compliance of the service to the secSLA throughout its life
cycle. �is is achieved by tracking the values of the SLOs using the
measurements de�ned in the previous subsection. By comparing
the measured values to the contracted ones, the framework enables
the detection of violations to the secSLA. �e architecture of the
framework is shown in Figure 1. �e components of the framework
and their interactions are discussed in the following.

Virtualization layer

Tester

secSLA

4-Start
monitoring

5-Measured
SLOs

 values

SLO
tests

repository

Monitoring
Manager

2-Load SLOs

3-Load tests

CSP

7-Validation
status

SecSLA
validator

Monitor service

(SLO tests)

U
se

r In
te

rfa
c

e

Customer

1-Validation
request

Validation
status

6-Validate SLO values

Monitoring
repository

Service

Figure 1: Monitoring Framework Architecture

Monitoring manager: �e monitoring manager regulates the
validation process. It takes the validation request from the customer
as input, starts the monitoring and outputs the validation status.

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Soha Alboghdady, Stefan Winter, Ahmed Taha, Heng Zhang, Neeraj Suri

SLOs tests repository: �e measurements de�ned in Section
4.1 are formulated as tests to be executed during the monitoring to
determine the real-time values of the SLOs. �e tests are stored in
this repository.

Tester: �e tester performs the tests loaded from the repository
to measure the values of the SLOs of the delivered service. �e
testing of the service is performed remotely using the provided
information about the service with the validation request.

Monitoring repository: �e monitoring repository maintains
the monitoring results collected by the tester throughout the mea-
surement period.

SecSLA validator: �e secSLA validator is responsible for re-
porting the compliance status of the service. �e validator compares
the measured value of each SLO to its corresponding contracted
value to detect violations. �e service is said to be compliant to the
secSLA if no violations are detected.

5 EVALUATION

A set of experiments were conducted to evaluate the approach. �e
�rst two experiments evaluated the functionality of the approach
on two examples of IaaS services: OpenStack and Amazon EC2. �e
third experiment evaluated the overhead imposed by the proposed
framework on both the monitoring server and the monitored cloud
service.

5.1 Experiment 1: OpenStack Instance

In the �rst experiment, the e�ectiveness of C’mon for managing
the compliance validation process has been evaluated by assessing
C’mon’s ability to measure the SLOs and detect violations of prede-
�ned values. �e experiment was performed in a controlled envi-
ronment using an IaaS service provided by a self-hosted OpenStack
cloud platform. �e platformwas used to create a compute instance,
which is used as a target for monitoring the SLOs percentage of
uptime, percentage of timely recoveries, meantime between failures
and percentage of processed requests by monitoring the availability
of the instance using ping messages. In addition, OpenStack’s dash-
board was used as a web based interface to manage the instance.
�e SLOs Secure cookie forced, HSTS, client certi�cate, forward se-
crecy and OCSP are monitored for the dashboard to evaluate the
session security properties of the management interface. C’mon
was run on a server outside the cloud platform. �e IP address
of the instance and the host name of the dashboard were used to
access the corresponding resources.

�e experiment was performed by se�ing up a running instance
with the management interface and enabling all the session se-
curity properties by editing the con�gurations of the dashboard.
Violations of SLO values were deliberately caused at di�erent times
during the experiment to test C’mon’s ability to detect them. Two
types of violations were used: an instance availability outage, in
which the instance was forced into an unavailable state, and a ses-
sion security violation, in which support for the session security
properties was detained (i.e., the usage of secure cookies is disabled
a�er it was originally enabled). Over the entire one month experi-
ment duration, C’mon accurately detected the arti�cially injected
security property violations without any false negatives or false
positives.

5.2 Experiment 2: Amazon EC2 Instances

In the second experiment, we evaluated our approach on a com-
mercial cloud service setup using AWS EC2 instances. �ree EC2
instances, each in a di�erent geographical region, along with their
web based management interfaces (Amazon management console)
were monitored. �e con�gurations for the instances are shown
in Table 1. C’mon was deployed on a server outside the cloud net-
work. �e SLOs monitored for the instances and the management
interfaces were the same as in the previous experiment.

Table 1: Instances Con�gurations

US EC2 FRA EC2 TYK EC2

Region US East
(N. Virginia)

EU
(Frankfurt)

Asia Paci�c
(Tokyo)

Instance type t2.nano
Amazon M/C Image Amazon Linux AMI 2016.09.0 (HVM) [1]
Network Default
Availability zone us-east-1d eu-central-1b ap-northeast-1a
Tenancy Shared

C’mon Con�gurations. With the aim to detect the shortest
possible change and thereby achieve maximal coverage of changes
in the monitored SLO values, a �ne-grained monitoring was used.
For availability, the shortest possible change was assumed to be the
reboot time of an instance during which the instance is unavailable.
�e reboot time of an instance was experimentally assessed to be 5
seconds 2. Hence, the monitoring frequency is set to one test every
5 seconds. For the session security properties of the management
subsystem, a lower monitoring frequency was used, since changes
in the con�guration of the web server hosting the console are
expected to occur less frequently. Moreover, automated access to
the console at high rates might be considered malicious and thus the
requests might get blocked by the CSP. Accordingly, the monitoring
frequency for the consoles was con�gured as 6 times per hour.

We used the following values to calculate the SLO values in this
experiment. �e slotSize was set to 15 minutes with a timeslot-
Fail�reshold equal to 10% 3. �e maxTime used to calculate the
percentage of timely recoveries was one slot, i.e., 15 minutes. �e
experiment was also run for a month. Table 2 shows the measured
values of the SLOs for all three instances. According to the results,
the instance deployed in the US East (New Virginia) o�ered the
least percentage of uptime with a percentage still greater than 99%.
�e lowest percentage of processed requests is reported for the in-
stance located in Asia Paci�c (Tokyo). �e instance deployed in the
EU (Frankfurt) had the highest mean time to failure with a value
equal to 17 hours. All instances achieved 100% timely recoveries
from outages for a maxTime of one slot duration, i.e., no outage
lasted for more than 15 minutes for any instance. We analysed the
collected data to investigate the frequencies and duration of the
outages during the measurement period. �e shortest observed
outage is the failure of a single request, i.e., an outage duration of
less than 10 seconds. �e longest outage duration extracted from
the results of all instances is 255 seconds experienced in the US EC2
instance.

25 seconds was assessed as a lower bound for rebooting a machine. �is duration
needs to be calibrated for each monitored system given its impact on both overhead
and completeness.
3�ese values are arbitrarily chosen since they do not in�uence the actual values
achieved by the service or the values measured by the framework.

C’mon: Monitoring the Compliance of Cloud Services. ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

�e reported results for the management interfaces are almost
identical for all three consoles. All session security SLOs were en-
abled and the client certi�cate was “Not required” for all consoles.
�e FRA Console apparently did not support OCSP stapling. �e
assessment of these SLOs did not change over the measurement pe-
riod. �erefore, no conclusions can be drawn from our experiment
regarding the change frequency or duration for session security
SLOs in real world se�ings.

Table 2: Amazon EC2 Instances Results

US EC2 FRA EC2 TKY EC2

% of Uptime 99.0915% 100% 99.9303%
% of Processed

Requests

99.8088% 99.9930% 99.7571%

% of Timely

Recoveries

100% 100% 100%

MTBF 36.41 min 1023.63 min 35.91 min

5.3 Experiment 3: Monitoring overhead

In the third experiment, the performance of the proposed approach
was evaluated with the goal to estimate the communication and
computational overhead C’mon imposes. �is experiment was con-
ducted on the same setup of the �rst experiment, as it provides
higher controllability of the factors that potentially in�uence our
performance measurements. �e imposed overhead was evalu-
ated for the monitoring server, the OpenStack instance, and the
server hosting the dashboard. To estimate the highest overhead
imposed by the monitoring framework, the highest monitoring
frequency from our prior experiments was used, i.e., one test ev-
ery 5 seconds. �e monitoring overhead was assessed by mea-
suring communication and computation performance metrics on
the speci�ed machines with and without C’mon being active. �e
comparison between performance with and without C’mon is con-
ducted using a two sample Kolmogorov-Smirnov (K-S) test [14].
If the null hypothesis (that the two sample sets of performance
measurements belong to the same population) cannot be rejected,
then there was no signi�cant performance overhead imposed by
C’mon. Otherwise, an overhead was observed and we report the
average di�erence between the values as the imposed overhead.
�e conducted performance tests are detailed below.

5.3.1 Communication Overhead. �e metric for measuring the
communication overhead is network throughput. Network through-
put was measured using the netperf [8] benchmark. �e server
under measurement executed a netperf client and the TCP STREAM
benchmark pro�le was used to transfer data and report the through-
put of the uplink during the transmission. �ree tests were per-
formed, one for the monitoring server and one for each target
instance. Each test was performed once while monitoring was ac-
tive and once while it was inactive. For every test for both cases
(monitoring in/active) the test has been performed 30 times yielding
30 throughput samples per test. �e K-S tests are performed on
the collected samples from each test using a statistical signi�cance
level of α = 0.05. �e results are shown in Table 3. For all three
cases the p-value is greater than α . �us, the null hypothesis cannot
be rejected, which shows that there is no evidence of statistically
signi�cant communication overhead using C’mon.

Table 3: Network�roughput K-S Tests Results

Monitoring Server Instance Dashboard

p-value 0.236 0.954 0.132
D 0.267 0.333 0.300

5.3.2 Computational Overhead. To measure the performance
of computational workloads, two metrics were chosen: CPU total
time and �le Input/Output (I/O) throughput. We used Sysbench [9]
to measure the chosen metrics. �e CPU total time was measured
for the monitoring server, the instance, and the machine running
the dashboard, whereas �le I/O throughput was only measured
for the monitoring server and the dashboard, as the ping-based
SLO measurements do not impose �le I/O overheads on the IaaS
instances. Each test has been performed 30 times for each machine
and monitoring being active or inactive. K-S tests are used to
compare the samples collected for each case using α = 0.05 as for
the communication overhead assessment before.

�e results of the K-S tests are listed in Table 4. According to
the p-values of the CPU total time, tests for both the monitoring
server and the server hosting the dashboard, the null hypothesis is
rejected. �is implies an imposed overhead on the server caused by
monitoring. Figures 2(a) and 2(b) show the cumulative frequency
distributions of the CPU time samples collected for the monitor-
ing server and the dashboard server respectively. We estimate the
imposed overhead as the average di�erence between the measure-
ments with and without monitoring, which is 1.28 seconds, i.e.,
a 0.0076% increase for the monitoring server. For the dashboard
server, the monitoring overhead is 0.072 seconds, i.e., a 0.0003%
increase. For the CPU time test performed on the instance, the null
hypothesis of the K-S tests could not be rejected. Hence, there is
no evidence of any statistically signi�cant overhead.

Table 4: Computational Performance K-S Tests Results

CPU Total Time I/O�roughput

Moni-

toring

Server

Instance Dash-

board

Moni-

toring

Server

Dash-

board

p-value < 0.0001 0.007 0.393 0.219 < 0.0001
D 0.633 0.433 0.233 0.267 0.567

�e results of the �le I/O throughput test performed for the
monitoring server also yields no evidence of signi�cant overhead.
However, an overhead is observed on the dashboard for the same
test. Figure 2(c) shows the cumulative frequency distributions of
the throughput for both cases (monitoring active/inactive). �e
average di�erence between the distributions is 0.045 Mb/sec, i.e., a
0.03% decrease resulting from monitoring.

5.4 �reats to Validity

�e �rst threat to validity is the assumption made about the mini-
mum outage duration. �e way an instance is managed (launched,
scheduled or booted) di�ers from one CSP to another, hence, the
expected outage durations of the services di�er. �e absence of
false negatives observed in our experiments depends on whether
the violation duration is longer than the time interval between two
consecutive monitoring events. Hence, the coverage of violations

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Soha Alboghdady, Stefan Winter, Ahmed Taha, Heng Zhang, Neeraj Suri

0

0.2

0.4

0.6

0.8

1

1.2

160 165 170 175 180 185

C
u

m
u

la
ti

v
e
 r

e
la

ti
v
e
 f

re
q

u
e
n

c
y

CPU time (s)

Without monitoring With monitoring

(a) Monitoring Server CPU Total Time

0

0.2

0.4

0.6

0.8

1

1.2

120.55 120.6 120.65 120.7 120.75 120.8 120.85

C
u

m
u

la
ti

v
e
 r

e
la

ti
v

e
 f

re
q

u
e
n

c
y

CPU time (s)

Without monitoring With monitoring

(b) Dashboard CPU Total Time

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

C
u

m
u

la
ti

v
e
 r

e
la

ti
v

e
 f

re
q

u
e
n

c
y

File I/O throughput (Mb/s)

Without monitoring With monitoring

(c) Dashboard File I/O�roughput

Figure 2: Monitoring Overhead

is dependent on the monitoring frequency. High monitoring fre-
quencies yield high coverage, but also entail high overheads. In our
evaluation we conservatively chose high monitoring frequencies
and still obtainedmodest performance overheads for C’mon. We are
therefore con�dent that C’mon provides reasonable performance
in any realistic use case.

�e second threat is caused by assuming that any request failure
is caused by an availability of the service at the CSP side. Although,
the availability of the service de�ned in [2] based on the status of
requests sent to it, there is a chance that the failure of the request is
caused due to the failure of the path taken to reach the service, not
the failure of service itself. On the one hand, this means that CSPs
are not necessarily responsible for secSLA violations observed by
C’mon, as these may also be caused by perturbations in the network
infrastructure. On the other hand, this still accurately re�ects the
service level as perceived by the user. �erefore, the threat to
validity only a�ects conclusions regarding CSPs’ provided service
levels. �e service level observed by the user is accurately re�ected
by C’mon’s monitoring results.

A third threat concerns the measurement de�ned to check for
the enforcement of forward secrecy. �e measurement considers
variants of Di�e-Hellman key exchange as the only algorithms
which support forward secrecy and the enforcement is decided
according. �e existence of other algorithms might threaten the
validity of the “not enforced” result.

Finally, a fourth threat is the choice of CSPs. �e approach was
only evaluated on OpenStack and Amazon EC2. �e validation of
services, which are di�erently set up and managed, might yield
di�erent results.

6 CONCLUSION

SecSLAs have been proposed for managing security assurance in
the cloud model by matching the security speci�cations of the
service to the customers’ security requirements. However, mecha-
nisms to validate enforcement of these speci�cations throughout
the life cycle of the service are still needed. Although many ap-
proaches help CSPs monitor their compliance to the secSLA to
take corrective actions in case of violation, existing approaches
do not allow customers to manage the compliance validation pro-
cess themselves, thereby limiting their ability to assess whether
contracted security levels are actually provided. In this paper, we

proposed C’mon, a customer side monitoring framework for moni-
toring the compliance of cloud services to the contracted properties
in secSLAs.

�e proposed approach has been evaluated on both a self-hosted
OpenStack platform and a commercial IaaS cloud service. �e
results have proven our approach suitable for measuring the values
of the SLOs and identifying violations of contracted SLO values.
Moreover, the results of the overhead evaluation showed that C’mon
imposes very low CPU, �le I/O, and network bandwidth overheads
on both the monitored and the monitoring machines, which makes
it a practical solution for IaaS secSLA compliance validation.

REFERENCES

[1] Amazon. 2017. Amazon web services. h�p://aws.amazon.com/ec2/. (2017).
[2] CUMULUS Consortium. 2013. D2.1 Security-Aware SLA Speci�cation Language

and Cloud Security Dependency model. Technical Report. Certi�cation infras-
trUcture for MUlti- Layer cloUd Services. h�p://www.cumulus-project.eu/index.
php/public-deliverables

[3] Tim Dierks and Eric Rescorla. 2008. �e transport layer security (TLS) protocol
version 1.2. h�ps://www.ietf.org/rfc/rfc5246.txt. (2008).

[4] Slava Galperin, Stefan Santesson, Michael Myers, AmbarishMalpani, and Carlisle
Adams. 1999. X.509 Internet Public Key Infrastructure Online Certi�cate Status
Protocol - OCSP . h�ps://www.ietf.org/rfc/rfc2560.txt. (1999).

[5] Irfan Haq, Ivona Brandic, and Erich Schikuta. 2010. Sla validation in layered
cloud infrastructures. In Proc. of GECON. 153–164.

[6] Dan Harkins and Dave Carrel. 1998. �e Internet Key Exchange (IKE).
h�ps://tools.ietf.org/html/rfc2409#section-3.3. (1998).

[7] Je� Hodges, Collin Jackson, and Adam Barth. 2012. HTTP Strict Transport
Security (HSTS). h�ps://tools.ietf.org/html/rfc6797. (2012).

[8] Rick Jones. 2017. Netperf Homepage. h�p://www.netperf.org/netperf/. (2017).
[9] Alexey Kopytov. 2017. Sysbench. h�ps://github.com/akopytov/sysbench. (2017).
[10] Duo Liu, Utkarsh Kanabar, and Chung-Horng Lung. 2013. A light weight SLA

management infrastructure for cloud computing. In Proc. of CCECE. 1–4.
[11] Jesus Luna and Marina Bregu. 2014. Report on requirements for Cloud SLA

negotiation. Technical Report Deliverable 2.1.2. SPECS Project. h�p://www.
specs-project.eu/publications/public-deliverables/d2-1-2/

[12] Jesus Luna, Ahmed Taha, Ruben Trapero, and Neeraj Suri. 2015. �antitative
Reasoning about Cloud Security Using Service Level Agreements. IEEE Trans on
Cloud Computing 99 (2015).

[13] Suryadipta Majumdar, Taous Madi, and others. 2015. Security Compliance Audit-
ing of Identity and Access Management in the Cloud: Application to OpenStack.
In Proc. of CloudCom. 58–65.

[14] Frank Massey. 1951. �e Kolmogorov-Smirnov test for goodness of �t. J. Amer.
Statist. Assoc. 46, 253 (1951), 68–78.

[15] Massimiliano Rak, Salvatore Venticinque, Gorka Echevarria, Gorka Esnal, and
others. 2011. Cloud application monitoring: �e mosaic approach. In Proc. of
CloudCom. 758–763.

[16] Kazi Ullah and Abu Ahmed. 2014. Demo paper: Automatic provisioning, deploy
and monitoring of virtual machines based on security service level agreement in
the cloud. In Proc. of CCGrid. 536–537.

[17] Kazi Ullah, Abu Ahmed, and Jukka Ylitalo. 2013. Towards building an automated
security compliance tool for the cloud. In Proc. of TrustCom. 1587–1593.

http://aws.amazon.com/ec2/
http://www.cumulus-project.eu/index.php/public-deliverables
http://www.cumulus-project.eu/index.php/public-deliverables
https://github.com/akopytov/sysbench
http://www.specs-project.eu/publications/public-deliverables/d2-1-2/
http://www.specs-project.eu/publications/public-deliverables/d2-1-2/

	Abstract
	1 Introduction
	2 Related Work
	3 Background & Terminology
	4 C'mon Monitoring Approach
	4.1 SLO Measurement Mechanisms
	4.2 C'mon Monitoring Framework

	5 Evaluation
	5.1 Experiment 1: OpenStack Instance
	5.2 Experiment 2: Amazon EC2 Instances
	5.3 Experiment 3: Monitoring overhead
	5.4 Threats to Validity

	6 Conclusion
	References

