
GRINDER: On Reusability of Fault Injection Tools
Stefan Winter∗, Thorsten Piper∗, Oliver Schwahn∗, Roberto Natella†, Neeraj Suri∗, Domenico Cotroneo†

∗DEEDS Group, TU Darmstadt, Darmstadt, Germany
†DIETI, Federico II University of Naples, Naples, Italy

{sw | piper | os | suri}@cs.tu-darmstadt.de, {roberto.natella | cotroneo}@unina.it

Abstract—Fault Injection (FI) is an established testing tech-
nique to assess the fault-tolerance of computer systems. FI tests
are usually highly automated for efficiency and to prevent human
error from affecting result reliability. Most existing FI automation
tools have been built for a specific application domain, i.e., a
certain system under test (SUT) and fault types to test the SUT
against, which significantly restricts their reusability.

To improve reusability, generalist fault injection tools have
been developed to decouple SUT-independent functionality from
SUT-specific code. Unfortunately, existing generalist tools often
embed subtle and implicit assumptions about the target system
that affect their reusability. Furthermore, no assessments have
been conducted how much effort the SUT-specific adaptation
of generalist tools entails in comparison to re-implementation
from scratch. In this paper, we present GRINDER, an open-
source, highly-reusable FI tool, and report on its applicability
in two very different systems (the Android OS in an emulated
environment, and a real-time AUTOSAR system) under four
different FI scenarios.

Index Terms—Fault Injection, Robustness Testing, Test Au-
tomation, Test Tools, Software Reuse

I. INTRODUCTION & RELATED WORK

Fault injection (FI) is a commonly applied testing technique
for assessing the robustness of system components (software
and hardware alike) by exposing them to external defects.
In order to maximize the test throughput and prevent human
errors from affecting the results, FI experiments are usually
highly automated by software tools and frameworks.

Although a variety of FI tools exist (cf. [1]–[4]), most of
them are tailored for a specific FI technique and the targeted
system under test (SUT). As a result, testers tend to develop
custom tools for new SUTs, either because no FI tool exists
for that SUT or the effort to identify it among the large number
of existing tools (and adjust it) exceeds the effort for re-
implementation.

Schirmeier et al. [5] distinguish between generalist and
specialist tools. Specialists (e.g., Xception [6], FERRARI [7],
Ballista [8], LFI [9], SAFE [10]) support specific SUT classes
and FI techniques and are highly customized for their intended
use case. On the positive side, such specialists can provide very
efficient implementations with a very low runtime overhead,
as they can exploit SUT-specific assumptions. Xception, for
instance, makes use of special CPU debug registers to perform
injections with minimal intrusiveness. On the downside, such
high specialization causes a strong coupling between the FI
tool and the SUT, which limits reuse of the FI tool for
other experiments. In the case of Xception the applicability
of minimally intrusive injections relies on the presence of the

required debug registers and functions in the targeted processor
and cannot be used on hardware platforms that do not feature
these mechanisms.

Generalists (e.g., GOOFI [11], NFTAPE [12], FAIL* [5])
are adaptable to various SUTs and FI techniques. They provide
means to reuse common modules and avoid the overhead
for their re-implementation. Generalists are built around an
extensible architecture with interfaces for extensions and cus-
tomization to tailor them for specific use cases.

Even though a number of generalist tools have been pro-
posed, none of them matured to a point where it could easily be
applied to new classes of SUTs unforeseen by the original au-
thors of the tools. In fact, even if generalist tools are designed
for high portability and reusability, they often embed subtle
and implicit assumptions about the SUT (e.g., assumptions
about the execution environment and the failure modes of the
SUT) that hamper their applicability for other SUTs. As a
result, there is no generalist fault injection tool that is widely
adopted outside the context of the research projects in which
it was developed. Unfortunately, no previous experience report
on the practical issues that arise when applying a generalist
fault injection tool to a new system exists, thus providing little
guidance for prospective users and researchers.

Paper contribution: To fill this gap, we report on our
experience with GRINDER, a generalist FI tool that we imple-
mented and that we publish under an open source license with
the goal of lowering the bar for the adoption of fault injection
by researchers and end-users1. We have made great efforts to
identify and explicitly document GRINDER’s interface to (and
intended interactions with) the SUT. We discuss the result of
these efforts and GRINDER’s application in four different FI
scenarios with two different SUTs: Timing error injections on
the application and OS level on an AUTOSAR automotive
platform (Section IV-A) and interface injections and code
mutations on the Android OS (Section IV-B). Our findings
indicate that a large part of GRINDER is reusable across the
different application scenarios (up to 72%). Moreover, our
study highlighted a case in which we needed to sacrifice reuse
to improve the performance of fault injection experiments.
Nevertheless, even in this case the amount of reused code ac-
counted for more than 54% of the overall code for conducting
the tests.

1https://github.com/DEEDS-TUD/GRINDER

Acknowledgments: Work supported by the DFG GRK 1362, CASED, EC-
SPRIDE, EC H2020 #644579, CECRIS FP7, and SVEVIA MIUR projects

Fault injection tool

Fault Injector Workload
Generator Monitor

Data Collector
Data Analyzer

Controller

Fault
Library

Workload
Library

SUT

Fig. 1. Common modules of a fault injection tool. Adopted from Hsueh, Tsai,
and Iyer [1] with modifications.

II. THE COMMON ARCHITECTURE OF FAULT INJECTION
TOOLS

To illustrate how FI tests are commonly conducted and
which steps in the test process are SUT-independent (and,
hence, bear a potential for code reuse), we show the general
structure of a fault injection tool in Figure 1 (adopted from
Hsueh, Tsai, and Iyer [1] with modifications). The Fault
Injector component performs fault injections into the SUT. It
is configured and triggered by a central controller, which also
triggers SUT initialization and exposes it to a workload via
the Workload Generator. Together with the injected fault (the
so-called fault load) the workload constitutes the test input or
stimulus in FI tests. The test result is evaluated by the Data
Analyzer based on data that the Monitor component collected
during the test. Obviously, all components from Figure 1 that
directly interact with the SUT contain at least some SUT-
dependent code. SUT-independent code, like reusable fault
types or workloads, can be implemented in corresponding
libraries. Components that have no direct SUT-dependency
(i.e., the controller, data collection, and data analysis) can
be reused, unless implicit couplings with the SUT exist, e.g.
data analyses on SUT-specific data. Specifically, the controller
and test data processing components bear a high potential for
code reuse, whereas the fault injector, the workload generator,
and the monitor bear a lesser potential for code reuse, as
their direct interaction with the SUT necessarily implies SUT-
dependence to a certain degree.

III. THE GRINDER TEST TOOL

We typically use FI tests to evaluate the robustness of
components within the SUT, i.e., their ability to cope with
external faults. Such external faults may originate from other
components in the SUT or from the SUT’s operational environ-
ment. The robustness of a component under evaluation (CUE)
is inferred by monitoring its response to these perturbations.

Figure 2 illustrates an example of such a FI-based robustness
assessment. The SUT consists of the CUE and two more
components that interact with the CUE via interfaces A and
B. To assess if the CUE can gracefully handle erroneous
component behavior at interface B, we inject a fault into the
component attached to interface B (e.g., using code mutation)
or we perturb interactions at the interface (e.g., by corrupting
parameter values or function call sequences). If the CUE is

Component

In
te

rfa
ce

A Component
Under

Evaluation
(CUE)In

te
rfa

ce
A

In
te

rfa
ce

B

Faulty
Component

In
te

rfa
ce

B
Fa

ilu
re

E
xt

.F
au

lt

SUT

Fig. 2. Rationale of FI-based robustness tests

able to tolerate the external fault and continues to provide
correct service at interfaces A and B, the component under
evaluation is robust with respect to the injected fault.

Based on our experience building specialist FI tools for
various SUTs [10], [13], [14] and the frequently encountered
need for reimplementing previously developed functionality,
we developed GRINDER (GeneRic fault INjection tool for
DEpendability and Robustness assessments) as a generalist
tool. We were not able to reuse our previous specialist tools
on new SUTs targeted by our studies [15], [16] and existing
generalists were not publically available, except for FAIL* [5].

However, FAIL* has been developed with the primary
intention to emulate hardware failures and assumes the SUT
to execute in an emulator. This underlying assumption on
the SUT interface via an emulator renders FAIL* inapplica-
ble for testing systems that require execution on an actual
hardware platform, such as real-time systems or systems for
which no appropriate emulator is available. Circumventing
this constraint would have required major changes to FAIL*’s
architecture, making the development of a new generalist tool
the more viable option. In fact, some of our tests require
execution on a hardware platform, for which no suitable
emulator is available (cf. Section IV-A for details).

GRINDER is written in Java and follows the general FI tool
architecture we introduced in Figure 1. Like other state-of-
the-art generalists, GRINDER implements the FI experiment
flow independently from a specific SUT and injection method.
GRINDER provides two interfaces for SUT interactions.

• Test stimuli (faultload and workload), SUT configuration
data, test logs, etc. are transmitted via a communication
channel. Different communication channels can be uti-
lized for different SUTs. For all of our experiments with
GRINDER to date we used TCP.

• To control the SUT (start/halt it, initiate and respond to
interactions via the communication channel), GRINDER
requires SUT-specific code. To supply GRINDER with
the required functions, testers implement a TargetAbstrac-
tion interface defined by GRINDER.

Figure 3 illustrates the interfaces between GRINDER and
the SUT. We discuss both interfaces in the following.

A. Communication Between GRINDER and the SUT

The end points of GRINDER’s communication channels
within the SUT are interceptors. These are probes in the SUT
that can be used to inject faults at SUT runtime or monitor
information about the SUT’s state. This separation of mecha-
nism (interception) from functionality (injection, monitoring)

Component 1

In
te

rfa
ce

A

Component 2

In
te

rfa
ce

A

In
te

rfa
ce

B

Component 3

In
te

rfa
ce

B

SUT

TargetAbstraction

GRINDER

Fig. 3. Interactions between GRINDER and an instrumented SUT

makes injectors and monitors reusable at different interceptor
locations in the SUT. If, for instance, debugger probes are used
for interception, each such probe can be utilized to perform
injections (e.g., by altering data) or to monitor the results of
injections (e.g., by logging data). Interceptors are indicated in
Figure 3 by gray circles at the SUT’s internal inter-component
interface A and inside component 3. Their connection to
the FI framework is realized through the aforementioned
communication channel.

Communication channels between interceptors and the FI
framework are highly SUT-dependent, at least on the lower
layers of the protocol stack. If the SUT is running in a virtual
machine, the communication link may be a virtual network
or a hypervisor-specific interface. If the SUT is an embedded
control system, network or debug connectors may be used.
To support diverse implementations of the communication
channel in GRINDER, testers can provide corresponding im-
plementations of interceptors and the TargetAbstraction.

The process of placing interceptors in the SUT, commonly
referred to as instrumentation, is usually performed automat-
ically by a separate tool that is not part of FI tool chain, due
to the high dependency on implementation details of the SUT.
Debugging probes, for instance, can be inserted by compilers.

B. TargetAbstraction

The TargetAbstraction interface specifies a simple set of
functions that must be implemented for a SUT to be con-
trollable by GRINDER. The specification of the TargetAb-
straction was driven by the observation that on an abstract
level the progression of FI experiments across different tools
and SUTs is the same: SUT initialization, workload invoca-
tion, fault injection, and data collection. Consequently, the
TargetAbstraction comprises these basic control functions that
GRINDER requires to automatically run FI tests. The choice
of these functions is based on a survey of FI-related literature
(cf. [1]–[4]) and our own experience with FI experimentation.

Figure 4 shows the TargetAbstraction class that testers
have to implement and GRINDER’s TargetController, which
directly maps the functions the TargetAbstraction provides
to its control functions for conducting automated FI tests:
GRINDER starts the SUT, runs a test, and stores data for
offline analysis. The SUT is then reset to a known stable state
to avoid the impact of undetected residual injection effects on

TargetAbstraction

start()
stop()
reset()
runExperiment()

TargetController

-campaign : Campaign
-experiment : ExperimentRun

start()
stop()
reset()
setCampaign(c : Campaign)

Reusable GRINDER Code
SUT-specific Code

Fig. 4. The TargetController class and the TargetAbstraction interface

subsequent tests. These steps are repeated for each test that has
been added to GRINDER’s test case database for the targeted
SUT. After all tests from the database have been performed,
the SUT is stopped and exchanged or reconfigured, if this is
required for subsequent tests. The framework automatically
stops execution after the last specified test case.

IV. GRINDER CASE STUDIES

In this section, we report our experience of adapting and
applying GRINDER for automated FI tests of two different
SUTs: An adaptive cruise control system based on AUTOSAR
[17], the de facto standard for automotive systems, and the
Android OS [18]. For each of the SUTs, we implemented two
different FI test scenarios to assess GRINDER’s adaptability to
different injection mechanisms and locations. On AUTOSAR
we tested timing protection mechanisms against (Scenario
1) timing errors in applications and (Scenario 2) timing errors
in the AUTOSAR OS kernel. On the Android OS we tested
the OS kernel’s robustness against device driver errors, a
common source of OS outages [19], [20]. We injected faults
into (Scenario 3) the interface between the kernel and the
device drivers and (Scenario 4) the device drivers’ source code.

To substantiate our generality and reusability argument for
GRINDER, we focus the discussion on its adaptation to both
SUTs and omit the provision of actual FI test results, which
are partially documented in our publications [15], [16] and
partially under submission. We assess the effort to adapt
GRINDER to the different SUTs and FI tests in Section IV-C.

A. AUTOSAR SUT Setup

AUTOSAR supports the development of safety-critical sys-
tems by a set of protection mechanisms (e.g., execution time
monitoring and memory partitioning) that are specified in
its Technical Safety Concept [21]. To assess the correctness
and robustness of automotive suppliers’ implementations of
AUTOSAR’s timing protection, we use GRINDER to inject
faults into different locations of AUTOSAR’s software stack:
(Scenario 1) application layer tasks and (Scenario 2) OS
services. The injections aim to provoke timing errors, which
the protection mechanisms should detect and mitigate.

Our SUT is an AUTOSAR-based adaptive cruise control
that consists of six tasks with different degrees of criticality.
Critical tasks are protected from timing interference with other
tasks using AUTOSAR’s timing protection mechanisms. We
have implemented the test system on a Freescale XKT564L

Hardware

AUTOSAR OS

Task 1 Task 6(1)

(2)

libGRINDER

AUTOSAR

Debugger

Multiplexer

AutosarAbstractionTargetController

TC
P

TCPServer
TCP

GRINDER

Fig. 5. Adapting GRINDER to an AUTOSAR SUT

evaluation board using Elektrobit tresos Studio for system
integration. The XKT564L hosts a 32-bit dual core Power Ar-
chitecture microcontroller, and is connected to a host computer
via a JTAG/Nexus hardware debugging interface. On the host
computer, the debugger of Green Hills’s MULTI IDE is used
by GRINDER to interact with the hardware.

The integration of GRINDER in the AUTOSAR evalua-
tion environment is depicted in Figure 5. Components that
contain AUTOSAR-specific code, which had to be developed
or adapted for GRINDER’s use with the new SUT, are
highlighted. The AutosarAbstraction implements GRINDER’s
TargetAbstraction interface (cf. Figure 4) and controls the eval-
uation board using the MULTI debugger, which GRINDER
interacts with through its TCP communication channel.
GRINDER’s TCPServer provides a generic communication
interface for configuration and logging, which can be used
with a variety of SUTs without modification. As the XKT564L
evaluation board is not equipped with an Ethernet interface for
direct connection, we employ a Multiplexer for interactions
of GRINDER’s AutosarAbstraction and TCPServer with the
SUT and vice versa. Within the SUT, the libGRINDER C
library provides pre-configured injector, detector, and logging
logic for the interceptors, which use an AUTOSAR-specific
communication interface to exchange messages between the
SUT and GRINDER through the debugger.

To avoid the time-consuming cycle of re-compilation and
re-flashing between experiments with different interceptor con-
figurations, e.g., for injecting at different fault locations or log-
ging at different monitor locations, libGRINDER provides a
flexible configuration system to selectively enable and disable
interceptors at run-time, and change their configuration via
parameters to account for different fault types. Consequently,
the SUT requires instrumentation with interceptors only once,
which allows for the uninterrupted automated execution of
various test suites with diverse test case configurations.

B. Android SUT Setup

Android [18] is a popular Linux-based operating system
for mobile devices. Linux device drivers have high defect
densities [22] and the goal of our case study is to investigate
the impact of device driver failures on Android’s stability.
Android’s development tools ship with a QEMU-based em-
ulator for convenient development without access to a mobile
hardware platform. GRINDER runs on the same host as the

workload

zImage

goldfish (4)

(3)libGRINDER

(3)

Android

adbQEMUAbstraction

TargetController

advanced adb
control (4)

TCPServer
TCP

GRINDER

Fig. 6. Adapting GRINDER to an Android SUT

emulator, controls the emulator process, and interacts with the
Android system via the Android Debugging Bridge (adb).

Figure 6 gives an overview of the Android SUT. The
Android kernel (zImage) is the component under evaluation.
The goldfish SD card driver’s misbehavior is simulated by
FI. The workload component is an Android app that trig-
gers kernel/driver interactions to activate injections. System
instability is detected by monitoring existing Linux kernel
mechanisms that signal kernel oops/panic errors via adb.
The TargetAbstraction (QEMUAbstraction) is implemented by
using QEMU’s functions to start/stop/reset the SUT.

We have implemented two versions of the Android ex-
periment setup with GRINDER according to Scenario 3 and
Scenario 4 from the introduction of this section. In Scenario
3 we inject faults by corrupting function call parameters in
the interface between the driver and the kernel. The inter-
ceptor is implemented as an interface wrapper between these
components. The injection logic is contained in libGRINDER,
which is built as a Linux kernel module. GRINDER first starts
the emulator, then loads the interceptor after boot-up, which
in turn loads the driver. GRINDER then starts the workload,
which eventually triggers kernel/driver interactions, which are
altered for injections by the interceptor. If an error occurs, a
corresponding message (kernel oops or panic) is parsed from
the adb output and the test ends. If the workload finishes
without error, this is also signaled via adb. If none of these
events occurs, a timeout triggers and signals a test hang.
Upon any of these events, the emulator is shut down and the
corresponding test result stored in GRINDER’s test database.

In Scenario 4 we apply code mutations to emulate represen-
tative residual software defects [10] in the driver. Injections are
performed upfront on the driver source code. The system is
started, the corresponding mutant loaded, and the workload
started to trigger the fault. The detection mechanisms and
emulator start-up/shut-down are identical to Scenario 3.

C. Software Reuse

Table I illustrates the implementation effort for both case
studies. For both test scenarios on the AUTOSAR SUT, the
SUT-specific implementations of the AutosarAbstraction, the
interceptors, and the communication channel accounted for
523 SLOC (source lines of code2), which is less than 18%

2All SLOC counts were generated using David A. Wheeler’s SLOCCount.

TABLE I
IMPLEMENTATION EFFORT IN SLOC FOR THREE DIFFERENT FI

ASSESSMENTS

Case Study
Reusable SUT Scenario

TotalSLOC specific specific
(GRINDER) SLOC SLOC

AUTOSAR (Scenario 1) 2429 523 – 2952& (Scenario 2)
Android (Scenario 3) 2429 – 1121 3550
Android (specialist) – – 2464 2464
Android (Scenario 4) 2429 – 2028 4457

of the overall framework implementation for this case study.
As the SUT-specific code in libGRINDER was reused for both
scenarios (the main difference was the instrumentation that is
not covered by the FI tool), there is no scenario-specific code.
For the Android OS assessment (Scenario 3), the scenario-
specific code accounted for 1121 SLOC, more than 31% of
the overall code. The main reason for this difference is the di-
versity of the intercepted interfaces. While for the AUTOSAR
example the interceptor logic was simple and mostly reusable
across different experiments, the Android interceptor covers
a complex driver/kernel interface with 22 distinct functions.
We compared the implementation overhead for the Android
case study (Scenario 3) with a previously developed FI spe-
cialist for the same SUT and injection scenario, written in
the same language. The scenario-specific implementation for
GRINDER is smaller than 46% of the specialist tool SLOC,
indicating that the generalist implementation indeed saves re-
implementation efforts. None of the considered Android FI
scenarios shared reusable SUT-specific code. While Scenario
3 and the specialist have common injection mechanisms,
these were not mutually reusable because of their different
interactions with other tool components.

In Scenario 4 the scenario-specific implementation effort
accounts for 45.5% of the overall code. The reason for this
increase lies in performance optimizations that we applied to
decrease the run time per test. To avoid the time-consuming
transmission of mutated drivers from the host system to the
emulator during the execution of each test, we chose to
include all mutants in the emulator’s data image. This change,
however, required a number of extensions to the QEMUAb-
straction, e.g., to detect when the system was available for
loading the mutant. With a per-test transmission, this detection
is implicit: if the system is able to receive TCP data, it is also
ready to load modules. Moreover, the failure detection logic
became significantly more complex due to longer run times
of mutation experiments compared to interface injections and
the parallel execution of several tests [16].

V. CONCLUSION

In order to avoid re-implementation efforts for common
functionality across different fault injection (FI) tests and
SUTs, several generalist tools have been proposed. While the
proposed tools have been applied for diverse FI scenarios by
their authors, the corresponding efforts to adapt these gener-

alists for each application scenario have not been assessed. In
particular, testers cannot assess if the reuse of such a generalist
would outweigh the implementation effort for a specialized
tool from scratch. Moreover, as most generalists are not freely
available, testers cannot conduct such assessments themselves.

To address this issue we reported our experience with
GRINDER, a generalist FI tool that we make freely available
under an open source license. We discussed GRINDER’s
generic SUT interface and its usage in four different test
scenarios for two different SUTs. GRINDER’s code reuse
across these scenarios ranges between 54.5% and 72%.

REFERENCES

[1] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques
and tools,” IEEE Computer, vol. 30, no. 4, pp. 75–82, 1997.

[2] N. Song, J. Qin, X. Pan, and V. Deng, “Fault injection methodology
and tools,” in Proc. ICEOE, vol. 1, 2011, pp. V1/47–V1/50.

[3] H. Ziade, R. Ayoubi, and R. Velazco, “A survey on fault injection
techniques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, pp. 171–186,
2004.

[4] R. Natella, “Achieving Representative Faultloads in Software Fault
Injection,” PhD thesis, Università di Napoli Federico II, 2011.

[5] H. Schirmeier, M. Hoffmann, R. Kapitza, and D. Lohmann, “FAIL*:
Towards a Versatile Fault-Injection Experiment Framework,” ARCS
Workshops, pp. 1–5, 2012.

[6] J. a. Carreira, H. Madeira, and J. a. G. Silva, “Xception: a technique
for the experimental evaluation of dependability in modern computers,”
IEEE Trans. Softw. Eng., vol. 24, no. 2, pp. 125–136, 1998.

[7] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “FERRARI: a
flexible software-based fault and error injection system,” IEEE Trans.
Comput., vol. 44, no. 2, pp. 248–260, 1995.

[8] P. Koopman and J. DeVale, “The exception handling effectiveness of
POSIX operating systems,” IEEE Trans. Softw. Eng., vol. 26, no. 9,
pp. 837–848, 2000.

[9] P. Marinescu and G. Candea, “LFI: A practical and general library-
level fault injector,” in Proc. DSN, 2009, pp. 379–388.

[10] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira, “On Fault
Representativeness of Software Fault Injection,” IEEE Trans. Softw.
Eng., vol. 39, no. 1, pp. 80–96, 2013.

[11] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “GOOFI: generic
object-oriented fault injection tool,” in Proc. DSN, 2001, pp. 83–88.

[12] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczyk, and R. K. Iyer,
“NFTAPE: a framework for assessing dependability in distributed sys-
tems with lightweight fault injectors,” in Proc. IPDS, 2000, pp. 91–100.

[13] M. Hiller, A. Jhumka, and N. Suri, “PROPANE: an environment for
examining the propagation of errors in software,” in Proc. ISSTA, 2002,
pp. 81–85.

[14] A. Johansson, N. Suri, and B. Murphy, “On the Impact of Injec-
tion Triggers for OS Robustness Evaluation,” in Proc. ISSRE, 2007,
pp. 127–126.

[15] T. Piper, S. Winter, P. Manns, and N. Suri, “Instrumenting AUTOSAR
for dependability assessment: A guidance framework,” in Proc. DSN,
2012, pp. 1–12.

[16] S. Winter, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo, “No
PAIN, No Gain? The utility of PArallel fault INjections,” in Proc.
ICSE (to appear), 2015.

[17] AUTOSAR development cooperation, Official AUTOSAR Website,
http://www.autosar.org.

[18] Google Inc., Android, http://www.android.com.
[19] D. Simpson, Windows XP Embedded with Service Pack 1 Reliability.

[Online]. Available: http : / / msdn . microsoft . com / en - us / library /
ms838661(WinEmbedded.5).aspx.

[20] A. Ganapathi, V. Ganapathi, and D. Patterson, “Windows XP Kernel
Crash Analysis,” in Proc. LISA, 2006, pp. 12–22.

[21] AUTOSAR, “Technical Safety Concept Status Report,” Tech. Rep.,
2010. [Online]. Available: http : / / www. autosar. org / fileadmin / files /
releases/4-0/software-architecture/general/auxiliary/AUTOSAR_TR_
SafetyConceptStatusReport.pdf.

[22] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in linux: ten years later,” in Proc. ASPLOS, 2011, pp. 305–318.

