
The Hierarchical Microkernel: A Flexible and Robust OS Architecture

Stefan Winter, Martin Tsarev, Dennis Feldmann, Robert Reinecke

DEEDS Group
TU Darmstadt, Germany

moduli-os@deeds.informatik.tu-darmstadt.de

Abstract
The diversity of applications, hardware platforms and

needs for features, e.g. in terms of performance and
security, necessitate the continual development of either
customized operating systems (OSs) or modifications of
existing ones. This is daunting from the efforts for contin-
ual re-design and integrity assurance of each OS.

In order to provide high-integrity, robust by-design and
adaptable OSs to match evolving application-driven com-
puting environments, we propose a highly customizable
and robust OS architecture (the Hierarchical Microkernel
– HM). The proposed HM architecture enables the flexible
design and implementation of highly customizable (at
design time) and highly adaptable (at run-time) robust OSs.

I. Introduction
Mediating across user application requirements and the
rapidly changing hardware capabilities, OSs are required
to adapt if either changes. On the hardware side, a number
of recent developments are not reflected by modern OSs:
“shared-nothing” systems are on the rise [1], GPGPUs and
FPGAs are expected to become standard building blocks
of computer systems [2], and nano-scale processors will
require software-based error recovery due to increased
hardware failure rates [3].

At the same time, OSs need to provide guarantees and
mechanisms to meet application integrity requirements,
especially if physical machines are shared among several
users running applications of differing criticality. Virtual-
ization partially solves such issues but leads to unnecessar-
ily increased memory and CPU overhead, as OSs are fully
replicated within virtual machines.

Classical OS architectures usually match a limited spread
of hardware architectures and application requirements (i.e.
constrain design flexibility) and tolerate limited changes
in their execution environments (i.e. constrain run-time
flexibility). Monolithic OSs, for example, typically lack
run-time flexibility, as large parts of the system are stat-
ically linked into a monolithic binary where individual
parts are difficult to exchange at run-time. While classical
microkernels support reconfiguration, they lack run-time
flexibility if they contain either large monolithic servers

or servers that cannot be exchanged individually during
operation. However, if microkernel systems are constructed
from small insular components to avoid this constraint, the
microkernel as a central coordinating instance becomes a
performance and scalability bottleneck.

The proposed hierarchical microkernel (HM) is a novel
OS architecture with flexibility and robustness as its pri-
mary design goals. Flexibility being “the ease with which
a system or component can be modified to use in ap-
plications or environments other than those for which it
was specifically designed” [4] covers both design and run-
time aspects. Robustness is the ease with which integrity
requirements are maintained. We achieve flexibility and
robustness by the following design choices.

1) Fine-grained system composition from tiny compo-
nents, called modules

2) Inter-module communication solely based on
message-passing for loose coupling and a
local broadcast communication paradigm across
neighboring modules, enabling the safe replacement
of components at run-time: component replicas can
eavesdrop on neighbors they are expected to replace

3) Hierarchical organization: Modules are organized in
a mono-hierarchy, where each module is directly re-
sponsible for managing its subordinate child modules

4) The parent-child relationship fosters an asymmetric
trust relation similar to the supervisor-/user-mode
boundary found in many OSs: We require children
to rely on their parents but not vice versa.

II. Related Work
While individual dedicated robust/trustworthy OSs such as
Singularity [5] exist, general architectures for flexible and
robust OSs are lacking. OSs that are constructed using
modular programming language concepts possess design
flexibility to a certain degree. In K42 [6], for example, re-
sources are represented by objects in the OS to leverage the
modularity of the object-oriented programming paradigm.
However, K42 targets a specific hardware platform and is
not designed for portability to very diverse platforms.

Library OSs [7] do offer this design flexibility if they
provide functionality in sufficiently fine-grained library im-
plementations. However, as they do not inherently support



Microkernel

DriversApps

VGAApp 1

File system

Keyboard

bus

App 2

Library 1 Library 2 Library 3

Level 0

Level 1

Level 2

Level 3

module

Figure 1. Example of a HMOS

loose coupling between applications and the system com-
ponents (libraries) they are linked with, there can be strong
interdependencies that complicate the implementation of
interposition mechanisms, hot-swapping [8] or dynamic
updates [9], thus hampering run-time flexibility.

HM intends to provide both design and run-time flex-
ibility, thereby enabling adaptation to both architectural
changes (by enabling module reuse and selective re-
implementation) and application requirements at run-time
(by facilitating hot-swapping of modules).

In multi-core and multiprocessor OSs message-passing
is applied to reflect shared-nothing architectures and to in-
crease component isolation for both flexibility and robust-
ness [10], [11]. Hence, we expect HM-based OSs (HMOSs)
to perform competitively on multiprocessor systems.

III. HM Architecture
The HM is a composition of two core elements – modules
and buses as depicted in Figure 1. Modules are self-
contained functional entities, resembling both active or pas-
sive elements (e.g. processes and libraries) of commodity
OSs. Modules are isolated from each other similar to pro-
cesses in traditional OS architectures. Interaction between
modules is accomplished solely using message-passing
over communication channels called buses. Modules use
a simple send/receive interface for exchanging messages
over a bus.

A. Inter-module communication

Unlike traditional inter-process communication (IPC)
paradigms where two components create virtual point-to-
point channels, buses can be shared by an arbitrary number
of modules and messages are always locally broadcasted to
all attached modules. The implementation of point-to-point
communication on top of broadcast is still possible if this
is required by the attached modules, just as in Ethernet
network communication. Broadcast message-passing has
the advantage that a sender does not need to know (and
specify) details of the system organization, e.g. the location
of the recipient, to initiate communication. Broadcast com-
munication also enables the safe replacement and recovery
of components at run-time. For example, a monitoring
module can journal all messages on the bus and keep track
of the attached (child) modules’ states. In case of a module
failure, the monitor can aid detection, initiate a restart of the
module, and recover its previous state from the monitored
message sequence.

Message-passing structurally turns OSs into inherently
distributed systems with all their benefits in terms of
scalability [12], [11]. Buses within the system can be cho-
sen or implemented according to the requirements of the
system designer or attached modules. It is possible to apply
industry standards (e.g. MPI, IP, etc) for compatibility with
existing systems and communication networks.

B. HM’s hierarchical organization

To avoid centralized resource management, which could
become a performance bottleneck or a single point of
failure, our architecture follows the divide-and-conquer
principle to distribute the abstraction and management of
system resources.

To achieve this, modules are composed hierarchically,
leading to several distinct levels in the system (cf. Fig-
ure 1). The number of levels in the system depends on the
OS designer’s choice of the hierarchy depth. The micro-
kernel is the root module and provides a basic hardware
abstraction to a set of modules over a bus. As this bus is
attached “on top” of the microkernel, it is referred to as the
microkernel’s child bus. The microkernel and its child bus
are operating on Level 0. The microkernel’s child bus is
referred to as Bus 0. The other modules connected to Bus 0
are called Level 1 modules. They can provide abstractions
to Level 2 modules using separate Level 1 buses.

Except for the microkernel, which does not have a parent
bus, each module has to be attached to exactly one parent
bus and each bus has to be attached to exactly one parent
module. This results in a mono-hierarchical organization
visualized by a tree structure where nodes represent mod-
ules and edges between them represent buses. In Figure 1,
Bus 0 is the parent bus of the modules Apps, File system
and Drivers. The microkernel, as the parent module of
Bus 0, is referred to as the parent module of these child
modules. Parent modules are responsible for managing the
resources of their direct children. Hence, they can apply
management algorithms and policies, e.g. for scheduling
or resource allocations, that suit their requirements best.

Modules that are connected to a parent bus and a child
bus are called gateways, as they can forward or translate
messages between these buses. In Figure 1 the modules
Apps, Drivers, App1 and App2 are gateways. Due to the
tree structure of the system, there exists exactly one path
between any two nodes. Consequently, a message sent in
the system can eventually reach all modules.

In Figure 1, if the keyboard driver wants to read an I/O
port, this is accomplished by sending a respective message
to the microkernel, which provides an abstraction of the I/O
subsystem. The message is sent over the keyboard driver’s
parent bus and reaches both the VGA driver and the Drivers
gateway. The VGA driver does not provide the requested
service and ignores the message. The Drivers gateway can
apply policy checks to ensure that the message will not
harm the system if forwarded to a lower system level,
i.e. a region of higher criticality and, thus, higher trust.
Eventually the message is received and processed by the
microkernel, which then sends a reply message.



C. Flexibility and robustness/trust

HM flexibility aspects: Targeting design flexibility, a
high degree of modularity due to small and isolated mod-
ules enables the reuse of a large fraction of the code base.
Upon change of the hardware architecture, only those mod-
ules that directly implement hardware abstractions need to
be re-implemented. Even in these modules, specific aspects
of hardware abstractions can be properly modularized by
implementing them as libraries, similar to library OSs.

Contrary to library OSs, HMOSs are also intended to
provide high run-time flexibility. A high degree of module
isolation is one prerequisite for hot-swapping system func-
tionality. Furthermore, broadcast communication across
modules on the same bus simplifies the state transfer of
modules by facilitating the monitoring of module interac-
tions and thereby module state inference. Interposition is
easily accomplished, as parent modules control where child
modules are attached in their sub-hierarchy.

HM robustness and trust aspects: The HM design
provides robustness as a direct consequence of the loose
coupling between small and isolated components, since
this limits the possibility of error propagation from faulty
or vulnerable modules to other modules. The hierar-
chical structure furthermore enforces error containment
to system sub-hierarchies, thereby preventing defects in
“less operation-critical” components from affecting “more
operation-critical” components in lower levels. By orga-
nizing system components in a hierarchy rather than a flat
structure, it is possible to place components according to
their level of trust, where trust comprises both reliability
and security aspects. For example, device drivers are usu-
ally provided by hardware manufacturers rather than OS
developers. This leads to varied degrees of trust in different
components of the system. For existing operating systems,
drivers either run at the same privilege level as the OS or
as untrusted user applications, where a positive impact on
trustworthiness is traded for a significant performance over-
head. In many modern systems considerable effort is spent
on additional sandboxing mechanisms for the inclusion
of untrusted third-party components at the same privilege
level as a trusted component, both in the kernel (e.g. [13],
[14]) and in user processes (e.g. [15]). Our architecture
natively supports a hierarchy of trust, that allows fine-
grained trade-offs between the assurance of dependable
operation and the run-time overhead for components.

IV. Summary and Outlook
In this paper we have introduced a novel OS architecture
that provides high degrees of design and run-time flexibil-
ity to reflect the rapidly changing requirements imposed
on future OSs. Flexibility is achieved by a number of
fundamental design choices: fine-grained system composi-
tion, message-passing, bus-local broadcast communication
and hierarchical organization. We argue that these design
choices also benefit robustness and trust. We are currently
implementing an OS according to the proposed structure on
x86 and on customized hardware to assess the performance
implications of our design choices and how these are

affected by properties of specific hardware architectures.

References
[1] D. A. Holland and M. I. Seltzer, “Multicore OSes: looking

forward from 1991, er, 2011,” in Proc. HotOS’11, 2011, pp.
33–33.

[2] S. Che, J. Li, J. Sheaffer, K. Skadron, and J. Lach, “Ac-
celerating Compute-Intensive Applications with GPUs and
FPGAs,” in Proc. SASP’08, 2008, pp. 101 –107.

[3] S. Borkar, “Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation,” Micro, IEEE, vol. 25, no. 6, pp. 10 – 16, 2005.

[4] IEEE, “Standard Glossary of Software Engineering Termi-
nology,” IEEE Std 610.12-1990, p. 1, 1990.

[5] G. C. Hunt and J. R. Larus, “Singularity: rethinking the
software stack,” SIGOPS Oper. Syst. Rev., vol. 41, no. 2,
pp. 37–49, Apr. 2007.

[6] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wis-
niewski, J. Xenidis, D. Da Silva, M. Ostrowski, J. Appavoo,
M. Butrico, M. Mergen, A. Waterland, and V. Uhlig, “K42:
building a complete operating system,” in Proc. EuroSys’06,
2006, pp. 133–145.

[7] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exok-
ernel: an operating system architecture for application-level
resource management,” in Proc. SOSP’95, 1995, pp. 251–
266.

[8] C. A. N. Soules, J. Appavoo, K. Hui, R. W. Wisniewski,
D. D. Silva, G. R. Ganger, O. Krieger, M. Stumm, M. A.
Auslander, M. Ostrowski, B. S. Rosenburg, and J. Xenidis,
“System Support for Online Reconfiguration,” in Proc.
USENIX ATC’03, 2003, pp. 141–154.

[9] M. Segal and O. Frieder, “On-the-fly program modification:
systems for dynamic updating,” Software, IEEE, vol. 10,
no. 2, pp. 53 –65, 1993.

[10] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang, “Corey: an operating system for many cores,”
in Proc. OSDI’08, 2008, pp. 43–57.

[11] D. Wentzlaff, C. Gruenwald, III, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller, and
A. Agarwal, “An operating system for multicore and
clouds: mechanisms and implementation,” in Proc.
SoCC’10, 2010, pp. 3–14.

[12] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania, “The
multikernel: a new OS architecture for scalable multicore
systems,” in Proc. SOSP’09, 2009, pp. 29–44.

[13] M. M. Swift, “Improving the reliability of commodity
operating systems,” Ph.D. dissertation, University of Wash-
ington, 2005.

[14] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akri-
tidis, A. Donnelly, P. Barham, and R. Black, “Fast byte-
granularity software fault isolation,” in Proc. SOSP’09,
2009, pp. 45–58.

[15] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar, “Native
Client: A Sandbox for Portable, Untrusted x86 Native
Code,” in Proc. SSP’09, 2009, pp. 79–93.


