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ABSTRACT
Following the design and in-lab testing of software, the eval-
uation of its resilience to actual operational perturbations in
the field is a key validation need. Software-implemented fault
injection (SWIFI) is a widely used approach for evaluating
the robustness of software components. Recent research [24,
18] indicates that the selection of the applied fault model has
considerable influence on the results of SWIFI-based evalua-
tions, thereby raising the question how to select appropriate
fault models (i.e. that provide justified robustness evidence).

This paper proposes several metrics for comparatively eval-
uating fault models’s abilities to reveal robustness vulnera-
bilities. It demonstrates their application in the context of
OS device drivers by investigating the influence (and rela-
tive utility) of four commonly used fault models, i.e. bit flips
(in function parameters and in binaries), data type dependent
parameter corruptions, and parameter fuzzing. We assess the
efficiency of these models at detecting robustness vulnerabil-
ities during the SWIFI evaluation of a real embedded operat-
ing system kernel and discuss application guidelines for our
metrics alongside.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance

General Terms
Measurement, Performance, Reliability

Keywords
Robustness Testing, Fault Injection, Fault Models

1. INTRODUCTION
Under a constant feature-driven market pressure and due

to their ever increasing complexity, many software appli-
cations are often released without being sufficiently tested.
Even if a software component1 is considered to be sufficiently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Honolulu, Hawaii, USA
Copyright 2011 SWMF 978-1-4503-0445-0/11/05 ...$10.00.

tested for one application scenario or operational environ-
ment, it may be insufficiently tested for reuse in another one.
Especially commercial-off-the-shelf (COTS) commodity soft-
ware components pose a problem in this respect. They are
subject to (re)use in a variety of application scenarios that
may well be unforeseen by their developers. This lack of
knowledge on the intended application scenario makes it dif-
ficult for developers to estimate the sufficiency of their veri-
fication and validation efforts.

In contrast, the users of COTS components are aware of
the application scenarios in which they are planning to use
them. However, their ability to sufficiently test COTS com-
ponents is frequently also limited, as they usually do not have
access to the components’s source code or other information
available to the components’s developers. Furthermore, the
same component may be applied in multiple different oper-
ational environments within the same application: the same
COTS operating system can for instance be applied for both
the client and the server in a distributed client-server ap-
plication. Since the operational conditions for these differ-
ent applications of the same system differ, the user of this
component needs to test the component for both of them
differently. Thus, failures frequently result when the oper-
ational environment of the deployed system differs from the
pre-release lab configurations used in the testing phase of the
software development process.

To cope with this deployment variability aspect, SWIFI
is a popular technique for evaluating the robustness of com-
modity commercial software components with respect to un-
expected operational conditions. In order to assess whether
a software component is “sufficiently” robust for release, it is
exposed to operational perturbations in a controlled manner
while its reactions are closely monitored.

The problem with such approaches is that they are well
suited for demonstrating the presence of vulnerabilities, but
not the absence thereof. In order to show the absence of vul-
nerabilities using SWIFI, it would be necessary to expose the
component under evaluation (CUE) to every possible pertur-
bation. While this is theoretically possible if the component’s
input space is finite, it is generally considered impracticable
as the problem is equivalent to that of exhaustive testing [11].

SWIFI-based robustness evaluations therefore require se-
lecting a processable number of perturbations for injection.
This raises the question how to select the injected perturba-

1We adopt Szyperski’s notion of software components: units
of composition with contractually specified interfaces and ex-
plicit context dependencies only [30].



tions to maximize the robustness evidence derivable from the
experimental evaluation. A common solution to this prob-
lem is provided by application-specific operational profiles,
i.e. probability distributions for stimuli that software is being
exposed to during operation. Their application to the per-
turbation selection problem is based on the argument that
a total absence of vulnerabilities is a too strong condition,
since a vulnerability does not necessarily result in a robust-
ness violation. It does so only if the component is exposed to
a perturbation which exploits this vulnerability. This reduces
the problem to proving the absence of all vulnerabilities that
can be exploited during operation. For this purpose opera-
tional profiles of the component are derived from its intended
operational context, including (but not limited to) typical
classes of perturbations, i.e. classes of perturbations that are
expected to be frequently encountered during operation.

However, this approach has two major drawbacks. First,
the robustness evidence derived from such an evaluation is
only valid for the considered operational context of the eval-
uated component; this implies that a component needs to be
re-evaluated for every intended context, thereby impeding
its reusability. Second, a vulnerability, whose exploitation
is highly unlikely in a given application scenario but whose
exploitation consequences are of disastrous impact, would be
ignored by operational profiles. However, critical system fail-
ures often result from highly unlikely and hence unexpected
conditions that are by definition not covered by operational
profiles [10, 31, 21].

Paper Contributions. Considering these drawbacks, we
investigate an alternate approach based on the idea that the
absence of vulnerabilities can be approximated by maximiz-
ing vulnerability detection and removal. Instead of selecting
typical, application-specific perturbation classes for robust-
ness testing, we give preference to those perturbation classes
that make our evaluations most efficient in terms of detected
vulnerabilities and the required effort for their detection.

Consequently, this paper makes the following contributions
to the current state of the art:

• a method to compare the efficiency of different pertur-
bation classes (termed fault models) for SWIFI robust-
ness evaluations;
• a set of fault model efficiency metrics for this purpose;
• a pragmatic set of guidelines for the application of these

metrics in SWIFI-based robustness evaluations.

As a case study, we perform SWIFI experimentation on an
embedded operating system (OS) kernel (Windows CE 4.2)
and demonstrate the effectiveness of our approach, compar-
ing four commonly applied fault models.

The paper is organized as follows: Section 2 introduces
basic terminology and related work. Section 3 introduces
the metrics developed for cross-model efficiency evaluations,
whose application is demonstrated in an experimental eval-
uation of our approach presented in Section 4 along with a
demonstration and discussion of their utility in Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Robustness Notion and System Model
In this paper we adopt the robustness notion from [12],

according to which robustness is“the degree to which a system
or component can function correctly in the presence of invalid
inputs or stressful environmental conditions.”

Invalid inputs and stressful environmental conditions are
termed perturbations. If a perturbation causes a software
component to enter an erroneous state, the component pos-
sesses a vulnerability which is activated by the perturbation.
Perturbations are equivalent to what is called external faults
in [3], whereas robustness vulnerabilities are termed internal
faults. The application of (external) fault injection is hence
a sound method for robustness evaluations.

A software CUE is expected to interact with other soft-
ware components via explicit interfaces only. Being part of
a composition, components are expected to provide services
that are relevant for the implementation of the composition’s
functionality. Interfaces are sets of services and therefore
constitute the means by which each component’s functional-
ity can be accessed.

Figure 1: Contribution of our work in the context of
SWIFI-based robustness evaluations

Figure 1 displays the considered robustness evaluation meth-
odology. We conduct robustness evaluations of a CUE by
injecting perturbations into its runtime environment dur-
ing controlled executions. Perturbations are introduced into
CUE Servers, i.e. components offering services to the CUE
and on whose reliable provision of service the CUE depends.
In order to trigger interactions of the CUE with the CUE
Servers, CUE Clients use services provided by the CUE, i.e.
create a workload for the CUE.

Since we consider direct interactions across the software
components, any perturbation affecting a component must
be mediated by its interfaces. We therefore consider direct
fault injections into data passed to the CUE via the interface
under evaluation (IUE) as well as injections into the binaries
of CUE Server components interacting with the CUE via the
IUE. We do not consider injections into the CUE itself, since
the robustness of a software component is defined by its fault
tolerance with respect to external faults.

A CUE failure detector monitors the CUE, its clients, and
its servers for symptoms of predefined CUE failure modes2

of interest. The results of injection experiments are reported
to a component external to the CUE’s runtime environment
for offline analysis from which robustness properties of the
CUE are derived according to a set of robustness metrics.

For our discussion of SWIFI-based robustness evaluations,
the following terms are used. An injection run refers to

2Failure modes describe how a component can possibly fail,
e.g. by becoming unresponsive.



Table 1: Fault models for robustness evaluations in the literature

Framework/Authors Fault Location Fault Type Fault Latency Injection Trigger

MAFALDA [2]
CUE Server

SEU
Transient

1st occurrence
IUE

MBU
Permanent

DT

Albinet et al. [1] IUE DT Transient 1st occurrence

Kalakech et al. [19] IUE
SEU

Transient 1st occurrence
DT

Xception [6]

SEU
Transient

1st occurrence
CUE Server MBU

Intermittent
nth occurrence

DT
Permanent

Timer
IUE FZ X-call

G-SWFIT [8] CUE Server
Coding

Permanent 1st occurrence
mistakes

Medonça & Neves [23] CUE Server
Coding

Permanent 1st occurrence
mistakes

Johansson [15] IUE

SEU Transient
1st occurrence
nth occurrence

DT Intermittent Timer

FZ Permanent
X-call

Call Block

component
CUE under

evaluation

interface
IUE under

evaluation

single
SEU event

upset

multiple
MBU bit

upset

data type
DT dependent

corruption

FZ fuzzing

the injection of a specific fault, the execution of the work-
load, and the observation (and logging) of the injection’s
effects. An injection campaign is a collection of injection
runs, pertaining to a specific fault model, workload, targeted
CUE Server component, and IUE. A set of injection cam-
paigns targeting the same CUE is called an evaluation of that
CUE, possibly including multiple fault models, workloads,
and IUEs (thus, also multiple CUE Server components).

The approach presented in this paper uses experimental
data of injection campaigns performed for robustness evalua-
tions to evaluate the applied fault model’s efficiency. This
information can be used to introduce a feedback loop as
highlighted in Figure 1, providing guidance on the selection
of perturbations for subsequent campaigns in an evaluation.
The required information is defined by a set of metrics intro-
duced in Section 3.

2.2 Comparative Fault Model Evaluations
We adopt the fault model notion from [16, 18, 17], where

fault models3 for SWIFI-based robustness evaluations of op-
erating systems (OSs) were defined by three basic attributes:
the fault location (where to inject), the fault type (what to in-
ject), and the fault timing (when to inject), where the latter
was further qualified as injection trigger and fault latency.

Table 1 lists a number of existing SWIFI frameworks that
have been applied for software robustness evaluations similar
to those we consider in this paper, along with their reported
fault model support. Fault models are usually discussed only
implicitly in the literature and some SWIFI frameworks pro-
vide mechanisms for flexibly extending the set of supported
fault models, e.g. by user defined injection triggers or fault
types. Thus, Table 1 is likely incomplete, but already in-
dicates potentially large numbers of applicable fault models
offered to evaluators, e.g. more than 90 possible attribute
combinations for Xception [6].

The spectrum of fault types in the related literature are

3also termed as error models in the referenced papers

single bit flips (single-event upset, SEU), multiple simultane-
ous bit flips (multiple bit upset, MBU), data type dependent
corruptions of data fields or parameters (DT), and substitu-
tion by random bit pattern (fuzzing, FZ). The fault latency
addresses the duration of an injection in terms of repeated
fault activation. Transient faults are activated exactly once,
intermittent faults are activated a finite number of times, and
permanent faults are activated every time. Injection trig-
gers determine when a fault is injected, respectively when
it can be activated for the first time. It can be injected the
first time its injection location is referenced, after N refer-
ences, after a predefined amount of time has passed, after
some predefined exception or function call occurs (X-call), or
after a predefined sequence of function calls (Call Block).

Although a multitude of fault models for software robust-
ness evaluations are discussed in the literature, we are aware
of only two attempts to compare models. Moraes et al. [24]
compared the effects of fault injections at different locations,
i.e. at the IUE and inside of components providing services to
the CUE. They concluded that interface injections, which are
generally less costly in terms of implementation complexity
and execution time, are not a valid substitution for the em-
ulation of programming mistakes within CUE Servers. The
comparison covered only this single aspect, while other dif-
ferences, e.g. in terms of applied fault types, were not taken
into consideration.

Johansson et al. [18] compared the effects of three different
fault models for interface injections on robustness evaluations
of Windows CE .NET. However, the applied metrics were
only suited for this specific evaluation and restricted to a
specific CUE failure mode, i.e. system crashes. It is therefore
not applicable when different failure modes, e.g. incorrect
computation results, are considered most critical for a given
application. Furthermore, as the applied SWIFI framework
did not support injections into CUE Servers, the comparison
of models with differing fault locations as the one provided
in [24] was impossible.



We reuse the SWIFI framework of [15, 18] and extend it
to perform comparisons, as initiated in [24]. In the follow-
ing section we extend the work presented in [18] and develop
generalized and formally accurate definitions the informally
specified metrics so that they can be used for (a) any robust-
ness evaluation that aligns with the generic method described
in Section 2.1 and (b) quantitative comparisons, i.e. we give
quantitative re-definitions providing ratio scale measures for
all considered metrics.

3. FAULT MODEL EFFICIENCY METRICS
We propose four metrics for capturing the efficiency of fault

models by applying them to injection campaigns that uti-
lize the respective models. Two of the metrics are benefit-
oriented, i.e. the measures are preferably maximized, and
the other two are cost-oriented, i.e. the measures are prefer-
ably minimized.

The proposed metrics are intended to lay the foundation of
objective fault model comparisons. They provide campaign-
granularity measures that can either be used for post-eval-
uation comparisons (in order to guide future evaluations of
similar systems) or in-evaluation comparisons (in order to
design campaigns based on evaluations of previous campaigns
within the same evaluation).

We would like to emphasize that the proposed metrics are
defined in a way that they reflect each considered failure
mode of the CUE. Having separate measurements for differ-
ent failure modes enables evaluators to weigh the obtained
results according to the (application-specific) severity associ-
ated with the respective failure mode. Measurements for all
possible failure modes can be performed in one single evalu-
ation. If a different operational context is considered for the
same CUE, only a modification of these weights is required
instead of a re-evaluation.

3.1 Metric 1: IUE Coverage
The IUE Coverage of a fault model is the extent to which

it enables the identification of vulnerable services provided
by the CUE. A model’s coverage cannot directly be used
for comparisons across different CUEs, because no relative
measure can be established due to the unknown total number
of vulnerable services in the given evaluation context. It may,
however, be used for the comparison of different fault models
applied in robustness evaluations of the same CUE. Unique
coverage denotes the number of vulnerable services detected
by only one model among all compared fault models.

For the definition of IUE coverage, a precise notion of ser-
vice vulnerability is required. A service of the CUE is termed
as vulnerable with respect to a certain failure mode if there
is a known injection run targeting this service that results in
a respective CUE failure.

Definition 1. For a given injection campaign c, let Vfm(c)
denote the set of identified vulnerable services with respect to
failure mode fm and let SIUE

t (c) denote the set of all services
in the IUE that are targeted during campaign c with IUE(c)
denoting the IUE targeted in c. The IUE coverage covIUE

fm (c)
of this campaign with respect to fm is then defined by the
cardinalities of Vfm and SIUE

t (c) as

covIUE
fm (c) =

|Vfm(c)|
|SIUE

t (c)|
(1)

For a set of injection campaigns C = {c1, c2, . . . , cn} that
only differ in terms of the applied fault model, the number

of services uniquely covered during some injection campaign
ci ∈ C is given by

covIUE
fm (ci) =

|Vfm(ci) \
⋃

cj∈C

j 6=i

Vfm(cj)|

|SIUE
t (ci)|

(2)

We have defined coverage to reflect the targeted IUE as we
have observed significant differences depending on the ap-
plied fault model and the IUE. This information is lost when
coverage is defined globally for all services that the CUE uses
for interaction. Consider for instance the case where a CUE
has two interfaces with unequal numbers of services and that
each interface is exclusively targeted by some specific fault
model. Then each model may cover all of the services be-
longing to the interface it targets. Overall, the model target-
ing the “larger” interface would yield a better coverage (and
a better unique coverage) and might consequently be given
preference over the model targeting the “smaller” interface.
However, it would be transparent to the evaluator that this
seemingly preferable model fails to cover any service in the
other (potentially highly critical) interface.

If an injected fault triggers multiple vulnerabilities, the ef-
fect of one fault may be masked by the effect of another fault
and may therefore remain undetected. This can be inter-
preted as a weakness of the applied fault model that fails to
trigger the vulnerabilities independently, which is reflected by
the definition of coverage. The advantage of triggering mul-
tiple vulnerabilities in a single run vanishes with the ability
to detect them. As coverage denotes the ability of a fault
model to trigger present robustness vulnerabilities, it is a
benefit-oriented metric and thus preferably maximized.

3.2 Metric 2: Injection Efficiency
Injection efficiency is defined by the number of failures ob-

served per injection. This metric puts the number of observed
failures (which is considered a measure for the experiments’s
effectiveness) in relation to the number of injections neces-
sary to provoke this number of failures.

If several distinct failure modes are considered in a ro-
bustness evaluation, the obtained injection efficiencies have
to be weighted according to (application-specific) robustness
requirements of the CUE’s intended application. Since the
presented metric is intended to abstract as far as possible
from concrete application requirements, a separate injection
efficiency measure is considered for every failure mode. With
respect to possible error masking effects in cases where multi-
ple vulnerabilities are triggered during a single injection run,
the inutility argument from the coverage metric introduction
applies equally and is consistently reflected by the metric def-
inition. As injection efficiency displays the ability of a fault
model to trigger vulnerabilities leading to failures of a par-
ticular failure mode, it is a benefit-oriented metric and thus
preferably maximized.

Definition 2. If for a given injection campaign c the num-
ber of injection runs is denoted by r(c) and for each failure
mode fm the number of observed failures is denoted by ffm(c),
then the injection efficiency iefm(c) is given by

iefm(c) =
ffm(c)

r(c)
(3)

3.3 Metric 3: Average Execution Time
The average execution time of an injection run shows how

efficiently a robustness evaluation can be performed with a



specific model. Since an absolute measure (for a whole eval-
uation) or even a per-injection measure would ignore the fact
that the outcome of an injection influences the execution time
dramatically (e.g. system crashes usually require a restart),
the metric must also take the outcome of each injection run
into consideration.

Hence, the execution time for the (in terms of correlated
processing overhead) lowest common failure mode among
evaluations with different fault models is a promising indica-
tor. However “System Crash” or “Hang” failure modes should
be excluded, as the timeouts usually applied for their detec-
tion can strongly influence the results. A potentially consid-
ered “No Failure” mode might as well be excluded because
system failures eventually necessitate further processing of
the results, for instance to provide more detailed (potentially
fault type specific) logging and reporting functionality. How-
ever, as there may be scenarios when an inclusion of this
mode is indispensable for provision of meaningful results4,
its assessment is highly recommended even if its contribution
in a specific comparison may be of minor significance. The
average execution time per injection run is a cost-oriented
metric and, hence, preferably minimized.

Definition 3. If for a given injection campaign c the cu-
mulated execution time of all injection runs that resulted in
failure mode fm is denoted by cetfm(c) and the number of ob-
served failures of mode fm is given by ffm(c), the execution
time etfm(c) for each failure mode is defined as

etfm(c) =
cetfm(c)

ffm(c)
(4)

3.4 Metric 4: Implementation Complexity
The implementation complexity of a fault model indicates

the required effort to set up a fault injection mechanism for
the respective model. This may be measured a posteriori by
the amount of implementation time (e.g. in so-called man
hours of uninterrupted work), source lines of code (SLOC),
or any other software complexity measure as long as it is
measured uniformly for all model implementations.

Any implementation complexity metric suitable for fault
model comparison should mainly rely on comparisons of im-
plementation efforts inherent in the model’s requirements or
properties. If, for example, the injection mechanism of one
model requires the modification of one service invocation,
while another requires setting up a table and monitoring a
number of invocations before the actual injection can take
place, the implementation complexity is clearly higher than
in the first case, since additional logic and data structures
are required. Notably, these attributes are related to prop-
erties of the applied fault model and not a purely syntactical
complexity measure of the actual injector’s implementation.

We have considered several approaches for estimating the
implementation effort a priori on the basis of functionality-
related properties, e.g. IFPUG function points [14] and COS-
MIC full function points [13], but none of them seems to be
sufficiently accurate without experience in terms of either ex-
pert knowledge or statistical data on previous projects.

We therefore decided to use Delivered Source Instructions
(DSI) to measure implementation complexity a posteriori.
Being a SLOC metric, DSI possesses the disadvantages of

4e.g. if there are only two distinct failure modes or in case
of comparing fault models evaluated among experimental se-
tups with different CUE failure modes/detectors

purely syntactical metrics discussed above. However, as con-
ceptually preferable function point metrics cannot be ex-
pected to provide more accurate measures without a con-
siderable amount of expertise, DSI is chosen as a more easily
applicable alternative. Restrictions only apply to measure-
ment comparisons among different developers, implementa-
tion languages, or IDEs. If these are the same for all com-
pared models, syntactical metrics enable valid cross-model
comparisons. In our targeted scenario, the application of dif-
ferent fault models with one given injection framework main-
tained by one (or only few) evaluators is being considered.

Another a posteriori measure used to compensate the lack
of a direct functional measure is McCabe’s cyclomatic com-
plexity [22]. While DSI measures implementation complexity
as the amount of delivered code lines, cyclomatic complexity
takes a more algorithmic and less implementation specific ap-
proach, considering the control flow of the algorithm rather
than the size of its implementation.

Both implementation complexity measures are cumulated
for all source code related to the fault model implementation.

Definition 4. The implementation complexity of a fault
model is given by the DSI sum icDSI accumulating the DSIs
of all related source code files and the sum of the cyclomatic
complexities of all associated functions iccyc.

In accordance with Boehm’s definition in [5], the number
of DSIs equals the number of non-comment source lines.

DSI fulfills COCOMO’s [4] requirements on code counting
and the obtained measures can thus directly be applied for
COCOMO estimations by any software project manager us-
ing estimation variable values that match the situation of his
or her particular development team best.

Our definition of implementation complexity does not in-
clude efforts for instrumenting software components or for
setting up the CUE’s operational environment for the evalu-
ation. The reason is that most modern fault injection frame-
works perform instrumentations for fault injection online to
enable more flexible injection triggers. In order to inject a
transient fault into a CUE Server component after a cer-
tain time interval, for instance, the CUE Server needs to be
modified during operation in the course of the evaluation.
Such instrumentations are therefore captured by the execu-
tion time metric. Furthermore, we do not consider efforts
related to installing already implemented fault models, as we
are not aware of any fault injection framework that enables
an extension by existing fault model implementations from
other frameworks. We also do not consider efforts for the ini-
tial setup of the injection framework, because these depend
more on the actual framework than on a specific fault model.

We are aware of the limitations of this combined met-
ric to adequately measure implementation complexity, but
nonetheless suggest its application since all contending met-
rics that we are aware of have similar limitations. Both DSI
and cyclomatic complexity provide ratio scale measures. Im-
plementation complexity is a cost-oriented metric and, thus,
preferably minimized.

4. METRIC APPLICATION
We have validated the applicability of the proposed met-

rics, applying four different fault models in a robustness eval-
uation of the Windows CE 4.2 kernel. In the following we
present the experiment setup and the results we obtained
using the previously introduced metrics.



4.1 Experiment Setup
Figure 2 provides an overview on the experiment setup.

The CUE is the OS kernel of Windows CE .NET 4.2. The
CUE Server components targeted for injection are device
drivers, used by the CUE to access the system’s hardware.
We chose the OS’s driver interfaces for evaluation, as drivers
constitute a major cause for OS outages [7, 28, 9].

Operating System

Target driver

InjectorTracker

Experiment
Manager

Test Applications

- Exp. Setup
- Exp Synch.
- Logging
- Restarting

Host
Computer

Figure 2: Setup for experimental evaluations

The targeted drivers are a serial port driver, an Ether-
net driver, and a CompactFlash card driver. Each of these
drivers provides an interface (the driver’s exported interface,
EXP) to the OS kernel and in turn uses a number of in-
terfaces provided by the kernel, i.e. the Device Driver Kit
(DDK) [26], kernel core functionality (CORE) [25], and the
Network Driver Interface Specification (NDIS) [27].

Test applications constitute the CUE Clients intended to
trigger the execution of targeted services. We use test ap-
plications specifically designed to trigger executions of the
targeted drivers.

The fault injectors are implemented as software wrappers
located between the CUE and the targeted CUE Servers, in-
tercepting mutual service invocations. Faults are injected
either by corrupting parameters of intercepted service invo-
cations or by modifying drivers’s binary images.

We evaluate the performance of four different fault models
for a robustness evaluation of the CUE using the SWIFI tool
from [15]. Three models have been implemented for extensive
experimentation by our group [18, 17]. The fourth model was
additionally implemented to enable comparisons of models
with differing fault locations, such as in [24]. The applied
fault types are representative for a large class of fault models
(cf. Table 1 in Section 2) spanning:

Parameter Bit Flips (BF) A parameter of an inter-
cepted service call in the IUE is altered by changing the value
of one or more bits in its binary value. This model is intended
to simulate single event upsets (SEUs) in hardware compo-
nents that propagate through the CUE Servers to the IUE.
Injections of these faults are frequently performed at the IUE
for efficiency considerations.

Data Type Dependent Parameter Corruption (DT)
A parameter of an intercepted service call in the IUE is
changed to another value of the same data type. The main
reason for taking the range of a data type into account when
altering a value is the considered type of faults. If a data-
type-related fault results from a programming mistake in a
software component, then at least obvious violations of a pro-
gramming language’s type concept can be detected at com-
pile time and removed prior to deployment. Thus, a large

fraction of the faults that remain in a deployed component
can be expected to result in erroneous run time values that
are of the same or a similar data type as the correct value.

Parameter Fuzzing (FZ) Parameters of intercepted ser-
vice calls in the IUE are replaced by random values, uni-
formly selected across all possible values for the system ar-
chitecture’s word size. As opposed to the BF and DT fault
models, FZ is inspired by random testing rather than sys-
tematic test case derivation.

Single Event Upsets in Binaries (SEU) Faults are in-
jected by randomly flipping single bits in CUE Server bina-
ries. The fault type is derived from SEU effects that physical
perturbations have on computer hardware, i.e. bit flips in
memory and the processing circuitry. The SEU model differs
from the BF model only in terms of the injection location.

We restrict our comparison to fault models with equal fault
timing properties in order to single out the effects of differing
fault types and locations more clearly. We chose to inject
transient faults occurring on the first call to a targeted service
in order to minimize the runtime of our comparison.

The experiment manager component controls the execu-
tion of experiments. While the interceptors (i.e. tracker and
injector in Figure 2) are monitored for experiment progress,
the CUE, its Servers, and Clients are monitored for fail-
ures during an injection run. Evaluation-relevant events are
logged by sending them to a logging server on the host com-
puter. After the completion of an injection run, the target
manager restarts the system in order to run the next injec-
tion on a clean system image that does not carry any pos-
sibly induced dormant faults or errors. This is necessary to
keep individual injection runs as independent as possible and,
thus, their results individually reproducible.

We consider four different CUE failure modes that have
been discussed frequently in the literature (cf. [20]).

No Failure (NF) No effect is detected. An injected fault
may be either not activated or masked by the OS.

Application Error (AE) The injected fault is activated
and the error propagates to the test applications, but no ser-
vice specification is violated. This is for instance the case
when the OS detects an erroneous state and returns an ex-
ception to the test application. Incorrect results returned
by an OS service that nonetheless satisfy its specification in
terms of robustness (i.e. that are wrong but still within the
valid data range for the result) also fall in this category. This
failure mode does not cover incorrect results that violate the
specified data ranges of services.

Application Hang (AH) The injected fault is activated
and the error propagates to the application interface. The
specification of the fault triggering OS service is violated.
The detectable effect is either an incorrect result that vio-
lates the specified data range of the service, abnormal test
application termination, or lacking or wrong error codes.

System Crash (SC) The injected fault is activated and
causes the OS to hang or crash, meaning that it stops to pro-
vide services to any client. Although the system may manage
to reboot autonomously in some cases, external monitoring
and control is generally required for SC failure detection and
the system is usually recovered by a manual reset.

4.2 Experimental Results
As the performed injection campaigns only differ in terms

of the applied fault models and the injection target, these
two properties are used to identify particular campaigns in
the following discussion.



Table 2: Coverages for failure mode Application Error (AE) [%]

Campaign covDDK
AE covDDK

AE covCORE
AE covCORE

AE covNDIS
AE covNDIS

AE covEXP
AE covEXP

AE

cBF 71.43 0.0 31.03 0.0 57.14 0.0 30.77 0.0
cDT 71.43 0.0 27.59 1.15 9.92 0.0 0.0 0.0
cFZ 28.57 14.29 40.23 16.09 64.29 7.14 0.0 0.0
cSEU 0.0 0.0 0.0 0.0 0.0 0.0 92.31 46.15

Table 3: Coverages for failure mode Application Hang (AH) [%]

Campaign covDDK
AH covDDK

AH covCORE
AH covCORE

AH covNDIS
AH covNDIS

AH covEXP
AH covEXP

AH

cBF 14.29 0.0 14.94 4.60 57.14 57.14 7.69 0.0
cDT 28.57 0.0 13.79 4.60 0.0 0.0 15.38 0.0
cFZ 57.14 42.86 25.29 13.79 0.0 0.0 30.77 7.69
cSEU 0.0 0.0 0.0 0.0 0.0 0.0 53.38 23.08

Table 4: Coverages for failure mode System Crash (SC) [%]

Campaign covDDK
SC covDDK

SC covCORE
SC covCORE

SC covNDIS
SC covNDIS

SC covEXP
SC covEXP

SC

cBF 14.29 0.0 18.39 5.75 35.71 14.29 0.0 0.0
cDT 14.29 0.0 9.20 0.0 21.43 0.0 0.0 0.0
cFZ 14.29 0.0 10.34 2.30 7.14 0.0 0.0 0.0
cSEU 0.0 0.0 0.0 0.0 0.0 0.0 92.31 92.31

DDK
device
driver
kit

CORE
kernel core
functions

NDIS
network
driver
interface

EXP
exported
driver
interface

BF
parameter
bit flips

DT

data type
dependent
parameter
corruption

FZ
parameter
fuzzing

SEU
single-event
upsets in
binaries

Three of the proposed metrics (IUE coverage, injection ef-
ficiency, execution time) were directly derived from the same
data that was collected for evaluating the robustness of the
CUE. Additional tools were used to assess the implementa-
tion complexity of the implemented fault models. DSIs were
counted using SLOCCount 2.26 [32]. McCabe’s cyclomatic
complexity was measured using SourceMonitor 2.5 [29]. We
now overview the experimental results for the four targeted
metric types, and discuss their implications in Section 5. The
results were obtained by conducting more than 300 injections
per model and driver.

IUE Coverage The obtained coverage values are grouped
by detected failure modes in Tables 2, 3, and 4. For each
IUE (DDK, CORE, NDIS, EXP), the coverage covIUE

fm and
unique coverage covIUE

fm are given in the tables according to
Definition 1. The presented numbers reflect the fraction of
all services in the respective IUE that were covered by each
model. The first column of Table 2, for instance, provides
a comparison of the four applied fault models with respect
to the percentage of services in the DDK interface for which
they have detected vulnerabilities that led to AE failures.
The second column reveals that although BF and DT cover
a larger fraction of DDK services, FZ covers 14.29% of all
DDK services uniquely, i.e. these services are not covered
by BF or DT. A combination of FZ and either DT or BF
would thus yield a coverage of 85.72% of all services provided
by the DDK interface. A coverage of 0.0 means that no
service of the respective IUE was identified as vulnerable.
A unique coverage of 0.0 means that every covered service
was also identified by some other model. The presented data
noticeably contains identical numbers, e.g. 14.29 occurs five
times. The reason is that every targeted interface comprises
less than 100 services. 14.29% is one out of 7, which is the
number of services used by the drivers in the DDK and the
NDIS interfaces.

Injection Campaign Efficiency Figure 3 illustrates the
cumulated injection efficiencies for each model and every tar-
geted driver. Regarding the SC failure mode, SEU outper-
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Figure 3: Comparison of the applied models’s injec-
tion efficiencies for each targeted driver

forms all other models for each targeted driver. For AE and
AH, no such clear statement can be made; the results also de-
pend on the targeted driver. However, except for the AH effi-
ciency with the Ethernet driver as targeted CUE Server, the
highest efficiency values are either obtained for the Fuzzing
model or the SEU model.

An injection efficiency of 0 was obtained for AH failures
of the Ethernet driver when exposed to FZ faults and for
the flash disk driver when exposed to SEU faults, because no
such failures were detected during the respective campaigns.
The corresponding values are missing in the comparison of
average execution times for the same reason.

Average Execution Time The results obtained for the
execution time metric of injection runs with different exper-
iment outcomes are listed in Table 5. The units are minutes
and seconds (before and after the colon).

Experiments resulting in AH or SC failures tend to take
more time than experiments resulting in AE failures or no
failures as they usually imply failure detection by application
or system response timeout. If a faster detection mechanism
can be implemented for these failure modes, their execution



Table 5: Average execution times (m:s)

Target Campaign etNF etAE etAH etSC

cBF 00:57 00:53 01:34 03:31
Serial Port cDT 00:33 00:34 01:15 04:39

Driver cFZ 01:06 01:14 01:55 03:37
cSEU 01:19 01:20 02:03 04:39

cBF 00:34 00:29 01:19 04:15
Ethernet cDT 00:42 00:39 00:39 02:24
Driver cFZ 00:51 00:48 – 03:12

cSEU 01:04 01:03 01:44 04:24

cBF 00:43 00:43 01:25 03:41
Flash Disk cDT 00:36 00:37 01:16 03:53

Driver cFZ 01:03 01:02 01:19 03:38
cSEU 02:01 01:57 – 05:09

Table 6: Implementation complexities

Model icDSI iccyc

BF 133 30
DT 635 222
FZ 272 58

SEU 259 48

time and overall evaluation efficiency will greatly improve.
The detection of AE failures seems to add no complexity
in terms of execution time; it is even less than the execution
time for NF experiments in more than half of the cases. Note
that we are considering SWIFI efficiency drivers for basic
robustness evaluation needs. If the specific SWIFI objective
is to comprehensively find robustness vulnerabilities, then
longer execution times are also valid.

If the execution time metric is applied as proposed in Sec-
tion 3, i.e. if models are compared with respect to the execu-
tion times for their lowest common failure modes, BF is the
fastest model for the Ethernet driver and DT is fastest for
the serial port and flash disk drivers. The least performant
models in terms of injection efficiency perform best in terms
of execution time and vice versa. This relationship suggests
that the weakness of a model with respect to one metric may
be compensated by its strength with respect to another one.

Implementation Complexity Table 6 provides an over-
view on the assessed implementation complexity of the mod-
els. From both, the DSI count and the McCabe complexity,
DT is by far the most expensive model and BF is the least
expensive model investigated. Being slightly less expensive,
SEU’s complexity hardly differs from FZ’s.

We see that implementation complexity and execution time
do not correlate in general. The two most expensive models
in terms of execution time (SEU and FZ) are considerably
cheap in terms of implementation complexity and the cheap-
est model in terms of execution time (DT) is the most expen-
sive model in terms of implementation complexity. However,
BF is cheap in terms of both execution time and implemen-
tation complexity. We do add the note that the use (and ob-
tained rankings) of this metric is tied to the specific SWIFI
tool being used. We do not assert completeness or the effort
of setting up and configuring different SWIFI environments.

5. METRIC UTILITY
In the following we demonstrate the utility of our proposed

metrics by comparing all applied fault models using the pre-
viously presented measurements. Table 7 gives a simplified
overview of the results, assuming that all CUE failure modes
and IUEs are of equal interest to the evaluator. The rankings
were derived according to how often the models performed
best among all investigated models. The details of these ten-
dencies are highlighted and discussed onwards.

Parameter Bit Flips (BF) BF performs comparatively
well at identifying service vulnerabilities that lead to AE
failures in all targeted interfaces. However, it only detects
vulnerabilities that are also detected by other models. The
model performs best at identifying service vulnerabilities lead-
ing to AH and SC failures in the NDIS and (especially in
the case of SC failures) CORE interfaces, where it also de-
tects vulnerabilities that none of the other investigated mod-
els manages to detect. BF requires the least implementation
effort, but performs worst in terms of injection efficiency. In
terms of execution time it is a fairly cheap model to use.

Data Type Dependent Parameter Corruption (DT)
Although it manages to identify a few unique AE vulnerabil-
ities, DT provides average to poor coverage compared to the
other investigated models. DT has the highest implementa-
tion complexity. This result is intuitive, since separate logic
is required for each considered data type used for data ex-
change in the OS/driver (CUE/Server) interface, leading to
a higher number of DSIs and a higher cyclomatic complex-
ity. Overall, DT has a fair injection efficiency. It requires
the least amount of time per injection run, meaning that it
allows to perform more experiments than any other model
in a given amount of time. Although the DSI count for the
model is high, only small fractions of its code are actually
executed for a parameter corruption of a specific data type.
This is also indicated by the high cyclomatic complexity.

Parameter Fuzzing (FZ) The FZ model identifies a
large number of vulnerabilities for all considered failure modes
and most targeted interfaces. Except for the EXP, CORE
and NDIS interfaces (the latter two only for SC failures), it
outperforms all other models in terms of unique coverage,
i.e. it detects large numbers of service vulnerabilities that
remain undetected by other models. In terms of implemen-
tation complexity, the FZ model comes at almost twice the
cost of the BF model, but is still less than half as costly
as DT. FZ outperforms BF and DT in terms of injection
efficiency, but is outperformed by these models in terms of
execution time.

Single Event Upsets in Binaries (SEU) The SEU
model performs very well at identifying vulnerabilities in the
EXP interface but poorly at identifying vulnerabilities in any
other interface. This result is intuitive as, according to the
SEU model, faults are only injected to services belonging to
this interface, i.e. into the the driver binary and thus into
services exported by the driver. The implementation com-
plexity for the SEU model is slightly less than for the FZ
model. However, SWIFI mechanisms for supporting code
mutations with flexible injection triggers require a consid-
erable implementation effort. The fraction of code that is
solely related to code mutation mechanisms accounts for a
total of 1050 DSIs with a cumulated cyclomatic complexity
of 262 in the applied SWIFI tool, in addition to about 50
lines of assembly code. However, if code mutations are na-
tively supported by a chosen SWIFI framework, SEU is a
modest model to implement. From an injection efficiency
point of view SEU is, similarly to FZ, a very efficient model
with a particular strength in provoking SC failures, but is



Table 7: In-practice observation on fault models

Model Coverage
Implementation Injection Execution
Complexity Efficiency Time

BF F F F ? F F F F F ? ? ? F F F ?
DT F F ? ? F ? ? ? F F ? ? F F F F
FZ F F F F F F ? ? F F F ? F F ? ?
SEU F ? ? ? F F ? ? F F F ? F ? ? ?

Legend: ? ? ? ? Poor, F F F F Good.

(also like FZ) expensive in terms of execution time.
Derived Metrics As already hinted at in the previous

section, the comparative evaluation points out a trade-off be-
tween injection efficiency and execution time for three out of
four models (DT, FZ, SEU). In order to quantify this trade-
off more precisely for cross-model comparison, we derive a
combined metric displaying the number of observed failures
per unit of evaluation time. This metric should be of par-
ticular interest to evaluators in the software industry, where
testing ends when resources (time, money) are depleted, since
it enables the selection of a model that maximizes the number
of internal fault activations for a given resource constraint.

The results displayed in Figure 4 show that, when we com-
bine the metrics, the ranking for overall failure stimulation
and also the failure mode distribution from Figure 3 change,
in this case in favor of DT for AE failures. However, since we
have observed weak coverage capabilities for the DT model,
the presented combination of only two metrics alone must not
be considered sufficiently expressive. The obtained coverage
values suggest to spend at least some evaluation effort us-
ing the FZ and SEU models, since these two models identify
large numbers of vulnerable services that remain undetected
with any other model. If vulnerable services have been iden-
tified using these models, the degree and criticality of these
vulnerabilities can further be quantified using the DT and
BF models as time and available resources permit.

From Figure 4 we also see that a general preference of IUE
injections over CUE Server injections due to efficiency con-
siderations is not always justified. Bit flips that are injected
into drivers instead of the OS/driver interface are apparently
more efficient if both injection efficiency and execution time
are considered.

Contributions and Limitations The metrics proposed
in this paper are intended to guide fault model selections for
robustness evaluations. The results of our case study demon-
strate the applicability and validity of the presented approach
and the discussion above stresses that each of the proposed
metrics provides valuable insights. In any concrete evalua-
tion, better-than and worse-than relations can be established
for every individual metric by simply applying numerical
greater-than and less-than operators respectively to benefit-
and cost-oriented metrics, as we have shown throughout the
presentation and discussion of our results. The individual
measures of each metric are well suited for combinations,
as all metrics provide ratio scale measures and can thus be
quantified precisely. If, for instance, a model performs twice
as good as another one in terms of injection efficiency and
execution time, but only half as good in terms of implemen-
tation complexity and coverage, they are equally efficient for
the robustness evaluation if all metrics are weighted equally.

Caveats: The presented approach has some limitations
that evaluators should be aware of for objective usage. Our
approach is restricted to evaluation methodologies that follow
the system model outlined in Section 2.1. We assume explicit
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Figure 4: Cumulated failures of the serial port driver
per hour of evaluation time

interactions of the CUE with its environment and thereby
exclude certain classes of robustness evaluation approaches
(such as emulations of hardware-induced software errors in
the CUE) as well as certain classes of CUEs that heavily rely
on implicit interactions with their runtime environments.

We demonstrate the applicability of our approach in a case
study using a specific CUE and specific selections of CUE
Servers and Clients. We cannot claim the universal valid-
ity of inferences drawn from the results of this case study.
For instance, we have seen that the injection efficiency met-
ric does not solely depend on the applied fault model, but
also on the targeted CUE Server. For the serial port driver,
the obtained injection efficiencies for AH failures are signif-
icantly larger than for the other drivers, independent from
the applied fault model. It is also unclear whether the ob-
tained results are comparable for other CUEs. However, as
mentioned in the metrics introduction in Section 3, our main
concern is to provide a method to comparatively evaluate
contending fault models for a given evaluation attempt, i.e.
a fixed CUE.

Up to now, the results of fault model evaluations according
to the proposed approach can only be applied for feedback on
an ongoing evaluation with injection campaign granularity. A
campaign needs to be planned, executed, and evaluated be-
fore any feedback on the efficiency of the applied fault model
can be derived and used for planning subsequent campaigns.

6. CONCLUSION AND FUTURE WORK
Considering the importance of robustness testing approach-

es for COTS software components, this paper addresses the
problem of robustness testing sufficiency in absence of both
a single application scenario and source code access. To this
end it presents an approach to comparatively evaluate the
efficiency of different fault models applied in SWIFI-based



robustness evaluations in order to guide their selection.
Our proposed evaluation metrics cover both cost and bene-

fit aspects of fault model implementation and usage. Except
for the implementation complexity of fault models, for which
existing assessment tools are referenced, the proposed met-
rics do not require additional measurements beyond those
required for actual robustness evaluations. We have demon-
strated our approach in a robustness evaluation of the Win-
dows CE 4.2 kernel, comparing the efficiency of four com-
monly applied fault models as a case study.

We are currently attempting to transfer our fault model
evaluation approach to different software platforms (other
OS kernels as well as regular, user-space software) to investi-
gate the proposed quantifiers’s performance in cross-platform
model comparisons. Currently, we are investigating which
modifications of the metric definitions are required to in-
crease the adaptivity of robustness evaluations. For this pur-
pose we consider increasing the granularity of the feedback
provided by our metrics, (i.e. we aim at providing feedback
on a model’s efficiency per injection run instead of per in-
jection campaign and make this information directly accessi-
ble to the SWIFI framework), so that the robustness evalua-
tion efficiency can be optimized on-the-fly. We are also con-
sidering introducing further feedback loops into the generic
SWIFI-based robustness evaluation approach that reflect the
influences of other factors, such as the applied workloads and
targeted CUE Servers.
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