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Abstract—Attacks on critical infrastructures’ Supervisory
Control and Data Acquisition (SCADA) systems are beginning
to increase. They are often initiated by highly skilled attackers,
who are capable of deploying sophisticated attacks to exfiltrate
data or even to cause physical damage. In this paper, we rehearse
the rationale for protecting against cyber attacks and evaluate
a set of Anomaly Detection (AD) techniques in detecting attacks
by analysing traffic captured in a SCADA network. For this
purpose, we have implemented a tool chain with a reference im-
plementation of various state-of-the-art AD techniques to detect
attacks, which manifest themselves as anomalies. Specifically, in
order to evaluate the AD techniques, we apply our tool chain on a
dataset created from a gas pipeline SCADA system in Mississippi
State University’s lab, which include artefacts of both normal
operations and cyber attack scenarios. Our evaluation elaborate
on several performance metrics of the examined AD techniques
such as precision; recall; accuracy; F-score and G-score. The
results indicate that detection rate may change significantly when
considering various attack types and different detections modes
(i.e., supervised and unsupervised), and also provide indications
that there is a need for a robust, and preferably real-time AD
technique to introduce resilience in critical infrastructures.

Index Terms—Communication networks, critical infrastruc-
ture protection, resilience, anomaly detection, SCADA systems

I. INTRODUCTION

Attacks on critical infrastructures have increased over the
years. In particular, attacks targeting Supervisory Control and
Data Acquisition (SCADA) industrial control systems rose
100% in 2014 compared to the previous year as highlighted
in a report by Dell [1]. Similarly, a recent report published
by the industrial control systems cyber emergency response
team (ICS-CERT) showed that while industrial control system
(ICS) vendors have been targeted by various types of malicious
actors, over half of the attacks reported in 2014 involved
advanced persistent threats (APTs) [2]. Moreover, major vul-
nerabilities in SCADA systems enabled attacks on various
critical infrastructures in the past, which demonstrated that
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these systems are not resilient as one would expect. Stuxnet [3]
was firstly identified as a complex malware that targeted
the SCADA systems on Iran’s nuclear plant. In Maroochi,
Australia a disgruntled engineer penetrated a sewage control
system and caused approximately 264,000 gallons of raw
sewage leak to nearby rivers [4]. Also, in late 2015, a major
attack on Ukraine’s power grid infrastructure resulted on a
power outage caused by the BlackEnergy trojan [5].

SCADA systems monitor and control infrastructures includ-
ing power plants, water utility, energy and gas pipelines, which
makes them highly critical. Providing protection in terms of
security, safety and resilience in such networks is inherently
considered to be of a vital importance. Traditionally, most of
these systems were air gaped from other networks, but in sev-
eral cases, access to these devices may be still available over
a public network (e.g., Internet) as a requirement to improve
usability via providing operators the potential to remotely
access of devices. While the automation and interconnectivity
contribute to increase the efficiency and reduce operations
costs, they expose these systems to new threats. For instance,
the potential existence of a vulnerability in a system on the top
layers of the Purdue model [6] may allow attackers to exploit
them and to gradually take control of systems or devices that
operate in the lower levels, such as SCADA systems; this could
cause failure and hence serious disruptions.

Therefore, it is crucial that any challenge to the SCADA
systems and supporting communications infrastructure is
promptly detected and acted upon. To do this it is necessary
to detect a range of challenges, including those that manifest
themselves as anomalies. For example, data injection attacks
may be used to change measurement values of some devices,
in order to hinder the operation of the system [7]. Further,
a major concern is the intrinsic weakness of communica-
tion protocols used in SCADA systems that monitor and
control field devices in critical infrastructure installations.
The remote terminal units (RTUs) interface, which generally
control and collect information that determine the system
state and master terminal units (MTUs) which handles the
supervisory controls, can also be attacked to spoof information
by exploiting the lack of authentication provided by current



protocols (e.g., Modbus, DNP3 and Profibus) and lead to
unexpected behaviours [8]. Recent research has focused on
anomaly detection (AD) techniques to improve the resilience
and security of critical infrastructures [9], [10], [11]. In the
context of SCADA systems, a few anomaly detection tech-
niques have been adopted and redefined [12], [13], [14] and
they are further classified with respect to their operational
mode, i.e., supervised and unsupervised. However, choosing an
appropriate technique for use with SCADA systems requires
the examination of their effectiveness in detecting anomalous
SCADA operations, e.g., traffic between RTU and MTU.
From an operational perspective, supervised techniques require
training data to build the model and evaluate the fitness of the
new test data with respect to this model. On the other hand,
unsupervised techniques try to partition the feature spaces into
normal and anomalous regions without training data, and AD
techniques in this mode are much more flexible and easy to
use since they do not require upfront human intervention and
training [15], [16].

The main goal of this paper is to pinpoint the importance
of AD techniques as a step towards achieving resilience;
evaluate AD techniques in the context of SCADA systems
and discuss their advantages and disadvantages. Specifically,
we evaluate the K-means (KM)1 and Naı̈ve Bayesian (NB)2

techniques that are used in supervised mode, and the Principal
Component Analysis using Singular Value Decomposition
(PCA-SVD)3 and Gaussian Mixture Model (GMM)4 that are
used in unsupervised mode to analyse network transactions
between RTU and MTU from Mississippi State Universitys
in-house SCADA gas pipeline.

The rest of the paper is organised as follows: Section II
elaborates on our resilience strategy and its association with
AD techniques. Section III discusses the experimental method
and the properties of the dataset we have used. Section IV
describes the outcomes of our analysis and discusses the
obtained results, while section V summarises and concludes
the paper.

II. RESILIENCE AND ANOMALY DETECTION

In this section, we briefly elaborate on our resilience strat-
egy and how anomaly detection may serve as an important
component to apply resilience in critical infrastructures. We
define resilience as ”the ability of a network or system to
provide and maintain an acceptable level of service in the face
of various faults and challenges to normal operation” [17].
The D2R2+DR strategy is capable of achieving the afore-
mentioned via the Defend, Detect, Remediate, Recover, and
Diagnose and Refine processes (see Figure 1). Defend, Detect,
Remediate, and Recover consist processes of an internal loop
process and Diagnose and Refine processes of an outer loop.
In more detail, it is: Defend against challenges and threats to
normal operation; Detect when an adverse event or condition

1https://en.wikipedia.org/wiki/K-means clustering
2http://scikit-learn.org/stable/modules/naive bayes.html
3https://en.wikipedia.org/wiki/Principal component analysis
4http://scikit-learn.org/stable/modules/mixture.html

has occurred; Remediate the effects of the adverse event or
condition; Recover to original and normal operations; Diag-
nose the fault that was the root cause; and Refine behaviour
for the future based on past D2R2+DR cycles.

Anomaly detection is a technique that can be applied within
a resilience framework in order to promptly provide indica-
tions and warnings about adverse events or conditions that
may occur. Specifically, we demonstrate in [10] a resilience
framework for critical infrastructures that may support the
detection of anomalies at the different levels of infrastruc-
ture and services. Therefore, a first step towards achieving
resilience consist the identification of abnormal behaviours
in such environments. This can be accomplished within the
detection process of our resilience strategy, where several
resilience metrics are collected and forwarded to AD instances.
The diverse nature of data in critical infrastructures’ networks
compared with data stemming from IT systems, and the
existence of major threats such as APTs render the task of
evaluating existing AD techniques to be of vital importance.
The evaluation of them will provide indications for the ap-
plicability of them in environments as the examined one, and
initiate future research in that direction.
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Fig. 1: D2R2+DR strategy [17]

III. METHOD

The approach we have taken to evaluate the AD techniques
is described bellow:

• Obtain the most significant features from the original
dataset via pre-processing methods (discussed below).
Our approach include the normalization and principal
component analysis of the dataset. These features are
then converted into a time series and fed into a detector
implementing the AD techniques.

• We further split the dataset into 8 different traces. The
first one consists of a combined trace, which includes the
class of normal data and seven anomalous classes. The
rest of the seven traces include each the normal class and
one of anomalous classes. The latter is used to evaluate
the efficacy of the individual techniques to detect specific
type of anomalies.

• Each trace is then submitted to a detector along with
ground truth information to assess the applied AD tech-
nique based on its likelihood to identify anomalies in
the traces over time. Depending on their mode, AD

https://en.wikipedia.org/wiki/K-means_clustering
http://scikit-learn.org/stable/modules/naive_bayes.html
https://en.wikipedia.org/wiki/Principal_component_analysis
http://scikit-learn.org/stable/modules/mixture.html


techniques may require a training phase (e.g., supervised
learning). In this case, a random selection of the feature
vector is used as training data, and the rest is used to
generate the anomaly time series used for the evaluation.

• The output of the detector that includes a time series of
probabilities is then compared with the ground truth, and
yields an evaluation of the AD techniques.

More details with regard to the dataset and each of the
aforementioned steps are provided in subsequent subsections.

A. Dataset

The dataset we used was collected using a simulation of real
anomalies and normal activity on a gas pipeline. Specifically,
it constitutes Modbus traffic5 stemming from a serial line and
including read and write commands for a PLC6. It contains
three categorical features including payload information, net-
work information and ground truth. The payload information
indicates the gas pipeline’s state, settings and parameters.
The network information provides pattern of communications
and ground truth details, i.e., if the transaction is normal or
anomalous. In total 274627 instances and twenty raw features
are provided. We refer the reader to [18], [19] for a detailed
description of the individual features, dataset and test bed
architecture that was used to capture the data.

We first employ a pre-processing stage, which includes
normalization of data using Z-score7 and principal component
analysis (PCA) to select a subset of relevant features for subse-
quent analysis. The PCA allow us to extract new, orthogonal
(independent) features that are a linear combination of the
original ones. Basically, these new set of features are called
principal components and obtained in such a manner that the
first principal component accounts for as much as possible of
the variation in the original data then the second component
and so on. We select 14 principal components as new derived
features for our analysis because they represent most variation
in original dataset, therefore they are most significant.

Furthermore, we employ soft clustering approach using
Fuzzy C-means (FCM) [20] to identify natural groupings of
data. As oppose to hard clustering, in FCM the data points can
belong to more than one cluster, and association with each of
the points are membership grades that indicate the degree to
which the data points belong to the different cluster. Figure 2
illustrates the inherent structure of the data. It can be seen that
the data is not easily separable into 8 classes, but instead it
separates them into 4 classes where blue color indicates the
normal class. This is an important step in understanding the
dataset with respect to the number of classes.

B. Description of Anomalies

In total, the dataset contains seven different type of anoma-
lies that are divided into four main categories. These anomalies

5http://www.modbus.org/
6https://en.wikipedia.org/wiki/Programmable logic controller
7The result of Z-score normalization is that the features will be rescaled

so that they will have the properties of a standard normal distribution with
µ = 0 and σ = 1, where µ is the mean (average) and σ is the standard
deviation from the mean.

Fig. 2: Identification of anomalies using FCM with K=8

include ”response injection”, ”reconnaissance”, ”denial-of-
service” and ”command injection”. The response injection
is further divided into naı̈ve malicious response injection
(NMRI) and complex malicious response injection (CMRI).
The former leverage the ability to inject response packets
in the network but lack information about the process being
monitored. The latter on the other hand are more sophisticated
and attempt to mask the real state of the physical process being
controlled. Similarly, the command injection is further divided
into malicious state command injection (MSCI), malicious
parameter command injection (MPCI) and malicious function
code command injection (MFCI). MSCI change the state of
the process control system to drive the system from safe
state to critical state by malicious command. MPCI change
PLC set points and MFCI injects command which misuse
protocol network parameter. DoS attack target communication
link. Each sample is labelled with its ground truth from (0-7)
where 0 represents normal class and 1-7 is for each class of
anomalies.

C. Evaluation Metrics

A single metric alone is not sufficient to make a firm conclu-
sion about performance of the underlying anomaly detection
technique [21]. Therefore, we evaluated the effectiveness of
each technique using several metrics. Each input entry sub-
mitted to the detector describes the features of the monitored
trace during a given time period (bin), and subsequently the
detector computes the deviation from normal traffic. Therefore,
the performance can be assessed by determining the difference
between the class it produces for a given input and the class it
should have. Correctly identified negatives are true negatives
(TN), incorrectly identified negatives are false positives (FP),
correctly identified positives are true positives (TP) and incor-
rectly identified positives are false negatives (FN). From this
output it allows computation of the true-positive rate (TPR,
sensitivity or recall; TP/(TP + FN )), the false-positive rate
(FPR; FP/(FP +FN )), the precision (TP/(TP +FP)), the
accuracy (TP + TN /TP + TN + FP + FN ), the F-score

http://www.modbus.org/
https://en.wikipedia.org/wiki/Programmable_logic_controller
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(a) Precision comparison of ADTs for individual anomaly types
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(b) Accuracy comparison of AD techniques for individual anomaly types

Fig. 3: Performance comparison of AD techniques

(2× (Precision × Recall ) / (Precision + Recall )), and the
G-mean (

√
Precision × Recall ). Accuracy is the degree to

which the detector classifies data samples correctly; precision
is a measure of how many of the positive classifications are
correct, i.e., the probability that a detected anomaly has been
correctly classified; and recall is a measure of the detector’s
ability to correctly identify an anomaly, i.e., the probability
that an anomalous sample will be correctly detected. The final
two metrics are the harmonic mean (F-score) and geometric
mean (G-mean), which provide a more rounded measure of
the performance of a particular detector by accounting for all
of the outcomes to some degree.

IV. ANALYSIS OF RESULTS

One of the main issues with the raw dataset was that it con-
tained missing values, and thus, required from us to perform a
set of pre-processing tasks in order to make the dataset suitable
for use in our AD implementations. Otherwise, the results of
the analysis would not be indicative of the actual performance
of the examined AD techniques. Specifically, we pre-process
the raw dataset by applying Z-score and principal component
analysis techniques such that it remains representative of the

TABLE I: Comparison of AD techniques (combined dataset)

Method ADT Recall Precision Accuracy F-score G-mean

Supervised
K-means 0.5728 0.8319 0.5680 0.6751 0.6874

NB 0.7692 0.8195 0.9036 0.8595 0.8605

Un-supervised
PCA-SVD 0.2796 0.6472 0.1714 0.2710 0.3331

GMM 0.4416 0.7309 0.4516 0.5583 0.5745

original data, particularly the scope of attack scenarios, while
being better suited to use with AD techniques. Henceforth,
we call this new derived feature-set as combined dataset since
it contains artefacts of the normal data and all seven types
of anomalies. Subsequently, we used the combined dataset
as an input to our AD implementations. However, some of
the operations regarding AD techniques required an excessive
amount of time and memory to complete due to the size of
the combined dataset (275,000 rows). Therefore, in order to



TABLE II: Performance metrics of AD techniques per type of anomaly

Attack Scenario ADT # of correct
normal

detections

#of correct
anomalous
detections

#of total
predicted
anomalies

Recall Precision Accuracy F-score G-mean

NMRI

K-means 1465 5193 9728 0.1849 0.5338 0.1731 0.2614 0.3040

NB 6000 23168 23168 0.8102 1 0.7723 0.8715 0.8788

PCA-SVD 703 15534 20831 0.4510 0.7457 0.5178 0.6112 0.6214

GMM 6000 5011 5011 0.3059 1 0.1670 0.2863 0.4087

CMRI

K-means 3902 4554 12652 0.2013 0.3599 0.1518 0.2135 0.2338

NB 12000 23168 23168 0.8373 1 0.7723 0.8715 0.8788

PCA-SVD 2901 5193 14292 0.1927 0.3634 0.1731 0.2345 0.2508

GMM 181 13639 25458 0.3290 0.5357 0.4546 0.4919 0.4935

MSCI

K-means 3000 23193 26193 0.7276 0.8855 0.7731 0.8255 0.8274

NB 3000 23193 26193 0.7276 0.8855 0.7731 0.8255 0.8274

PCA-SVD 5837 16520 16683 0.6210 0.9902 0.5507 0.7078 0.7384

GMM 3000 20618 23618 0.6561 0.8730 0.6873 0.7691 0.7746

MPCI

K-means 10000 23193 33193 0.6639 0.6987 0.7731 0.7340 0.7350

NB 9970 23477 33507 0.6689 0.7007 0.7826 0.7394 0.7405

PCA-SVD 9672 23552 33880 0.6645 0.6952 0.7851 0.7374 0.7387

GMM 5204 26819 41615 0.6405 0.6445 0.894 0.749 0.7590

MFCI

K-means 2000 15516 17516 0.5152 0.8858 0.5172 0.6531 0.6769

NB 4000 13639 13639 0.5188 1 0.4546 0.6251 0.6743

PCA-SVD 2000 16474 18474 0.5434 0.8917 0.5491 0.6797 0.6998

GMM 4000 6807 6807 0.3179 1 0.2269 0.3699 0.4763

DoS

K-means 2000 15874 15874 0.5586 1 0.5291 0.6921 0.7274

NB 984 24373 25389 0.7924 0.9600 0.8124 0.8801 0.8831

PCA-SVD 1984 16492 16508 0.5774 0.9990 0.5497 0.7092 0.7411

GMM 1501 3181 3680 0.1463 0.8644 0.1060 0.1889 0.3027

Reconnaissance

K-means 2164 22681 23517 0.7529 0.9645 0.7560 0.8476 0.8539

NB 2971 13639 13668 0.5033 0.9979 0.4546 0.6247 0.6735

PCA-SVD 1386 16474 18088 0.5412 0.9108 0.5491 0.6852 0.7072

GMM 509 23193 25684 0.7182 0.9030 0.7731 0.8330 0.8355

overcome the time and memory constraints, we shuffled the
data in the combined dataset and selected a subset of it (30%)
to perform the training of supervised AD techniques.

Table I depict the results of the binary classification for the
combined dataset. Basically, in this approach all anomalous
classes are combined into a single anomaly class to be discrim-
inated from the normal communications. Both the precision
and accuracy results indicate that the supervised techniques
(KM and NB) perform better in classifying anomalies when
compared with the unsupervised techniques (PCA-SVD and
GMM). Specifically, the PCA-SVD becomes less accurate
in detecting anomalies since it manages to accomplish only
17% of accuracy. On the contrary, the NB technique shows
both a high precision and accuracy level, i.e., 81% and 90%,
respectively.

In order to further investigate the performance of the AD
techniques in identifying the individual attacks, we created

a separate set of a datasets. Each dataset included normal
data and data from one of the anomalies. The benefit of this
separation is that there are much more samples of a given
attack in each subset compared with the combined dataset, as
well as a higher degree of variability within the features. Each
dataset is then used as an input to the detector. All datasets
were run with the selected four AD techniques. Figure 3a
and Figure 3b illustrates the precision and accuracy for each
technique in detecting individual categories of anomalies,
respectively. The results show that all techniques produced
high precision for individual categories with one exception -
that of response injection attacks. However, when it comes to
accuracy, the NB and KM outperform other techniques, having
both a level of accuracy and precision over 80%. These results
are similar to what we have seen for a combined dataset.

Table II list the output metrics for each type of anomalies
and shows that the supervised techniques have become less



accurate in detecting individual type of anomalies. From these
results, it is strongly implied that there is a skewing of results
when running the detector with no prior training. The issue lies
within the nature of the supervised technique considering each
sample to be individual entities to be labelled as anomalous,
whereas there could be many samples corresponding to a
single anomaly to be classified. Given the discrete nature of
attacks, certain features can also be removed to improve the
accuracy in supervised mode given the fact that certain features
are more revealing about attack than others. However, the
feature selection and their analysis is beyond the scope of
this work.

An examination of the precision and recall results reveals
the exact anomaly types that are being classified incorrectly.
The precision rate for denial-of-service, reconnaissance, MFCI
and MSCI is over 80%. But for NMRI and CMRI, they
are below the acceptable level. Furthermore, some attack
types such as MFCI are detected with low recall rate and
high precision. This is related to the fact that the samples
considered to be these types of anomalies were indeed from
these categories, but suffered in detecting all samples that were
from each type of an attack. This could be due to a bad value
in a network transaction such as an incorrect CRC value in
a write function command, which would cause the RTU to
ignore the command and in turn may cause a denial-of-service.
The result also shows that the recall is lowest for the MPCI
and MSCI. The low recall lies in the fact that the system is
forced to be placed in normal conditions at the time of anomaly
injection, hence, very close similarity between normal and
anomalous conditions for these types of attacks.

V. CONCLUSION

In this work, the performance of various AD techniques
applied to SCADA communication is evaluated in terms of
their ability to identify various attacks. We have analysed the
communication between an RTU and MTU in a gas pipeline
system. The data in our evaluation were developed by the
Mississippi State University, and include artefacts of benign
RTU transactions and various attack transactions generated
specifically for conducting research in the area of critical
infrastructures protection. We have analysed the accuracy of
four AD techniques in correctly identifying anomalies using
a set of statistical features. Results from our experiments
indicate that detection rate differs with respect to the type
of the anomaly and the running mode of the applied AD
technique. Specifically, AD techniques that run in supervised
mode appeared to perform better; however, a dataset to train a
technique is not always possible to have. Therefore, we argue
that there is a need for developing a robust, and preferably
real-time AD technique that can work in unsupervised mode
and have a better detection accuracy. The configuration modes,
normalization techniques, etc. are yet more variables to con-
sider when it comes to apply them operationally.

In the future, we will investigate how to realise anomaly de-
tection in an online manner for SCADA systems. Furthermore,
we will investigate the performance benefits of data sampling,

so that very large data volumes can be processed in near real-
time.
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